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Solution to the Christmas Assignment

Let (K, <) be an ordered field.

a)

b)

The system Z covers K since for any = € K, x €]z — 1,z + 1].
To show that Z is closed under finite intersections, it suffices to consider the intersection of two
elements in Z. Let A, B € Z. Then we can distinguish four main cases (draw a picture to help
yourself to see the different cases):
e At least one between A and B is the empty set. Then AN B =0 € Z since ) =]a, a| for any
a€ K.
e AB#0and ANB=0. Then ANBeT.
e A B+# () and either AC Bor BC A. Then ANB € {A,B}eZ.
e A,B+#( and AN B # 0 and neither A C B or B C A.
Since A, B # (), let us denote them by A =|a, b[ and B =|c¢,d[ witha <b€ K andc < d € K.
Then the other assumptions imply that we can have only two cases either a < ¢ < b < d or
¢ <a<d<b. In the first case AN B =|¢,b[€ T and in the second case AN B =la,d[e T

1
Consider a € K* and any € > 0 in K. W.lL.o.g. suppose that ¢ < —. We need to find some § > 0

lal

1 1

such that, whenever z € ]|a| — 4, |a| + [, we have — € } ol €, al + e[.
x a a

The latter relation implies that

0<d<

Then it remains to show that this condition is also sufficient. This easily follows by noting that
clal® e|al?
1+e€lal ~1—¢lal

since 0 < 1 —¢€lal < 1+ €lal.

Let B be the basis for the product topology on K™ given by the interval topology on K, i.e. the
collection of all the hypercubes of the form

[1]ai, b for any n € N, a;,b; € K fori=1,...,n,
i=1

and B’ be the basis for the euclidean topology on K™, i.e. the collection of all the open balls of
the form

B((a1,...,ay),r) = {(ml,...,xn) EK" | (z1—a1)2+ -+ (vn — an)? <r}
for any a;,r € K with r > 0.

It suffices to show that B and B’ are equivalent bases. Thus, we need to show that, for any
hypercube H € B, there exist two balls By, B € B’ such that By C H C By. Let H := H;L:l]a’i’ bi
for some n € N, a;,b; € K for i =1,...,n. Then we get our conclusion just by taking

__ ap + b an + by o fbi—ai
Bl.—B<< 5 5 >7m1n{ 5 .z-l,...,n})




and

L (ll+b1 anern bi—ai.,i
B2.B(< 5 T g ),max{ 5 .zl,...,n}).

2) Let (R, <) be a real closed field. Counsider Pos(R) := {x € R | x > 0}.

a) Let us first show that the subset Pos(R) C R* is a subgroup of (R*,-).
e (Pos(R),-) is closed under multiplication, since:

91,92 € Pos(R) Leby g1 >0, go>0 R ord fleld g1-92 >0 PN g1 g2 € Pos(R)

e (Pos(R),-) is closed under inverse, since:

rd. 1 1
g € Pos(R) &% g >0t add 50 &5 ; € Pos(R)
9

Note that (R*,-) is an abelian group since R is a field. Therefore, Pos(R) is an abelian subgroup
of (R*,-). Moreover, since (R, <) is a totally ordered set, the restriction of the ordering < to
Pos(R) is also a total ordering on Pos(R). Hence, (Pos(R), <) is a totally ordered set.

By Definition 1, it remains to show only that the property (1) holds. Indeed, this is true since for
any gi, gz, h € Pos(R) such that g1 > go we have that:

91292>0andh>0R0r£d'§01d Gi-h=h-g1>gs-h="h-go.

Hence, we have proved that Pos(R) is an ordered abelian subgroup of (R*,-)

b) Let us now show that (Pos(R),-) is divisible. Let a € Pos(R) and for any n € Nlet f,(z) = 2" —a.
Then we have:
e f,(0) =—a < 0since 0 < a € Rand R is an ordered field
o fu(l+a)= (1+a)"—a= Y (})a*—a= 1+na+ (;: (Z)ak> —a= 1—|—a(n—1)—|—(2 (Z)ak) >0
=2 k=2
By the intermediate value theorem (applicable since R is a real closed field), 3¢ €]0,1 + a[C R
such that f,,(c) = 0. Thus we have showed that for any n € N, 3¢ = {/a € R with ¢ > 0, i.e. for
any n € N, /a € Pos(R). Then, since (Pos(R),-) is closed under multiplication, we have that
for any m € Ny and n € N, a» = ({/a)™ € Pos(R), i.e. for any q € Q, a? € Pos(R).

3) a) Consider some polynomials py,...,p, € R[X], and an infinite subset U C R s.t. for all x € U
f(@) = pu(@) ()" + pn_1(z)(e”)" " + -+ po(x) = 0.

Suppose that the p;’s are not all identically 0, and that n is the biggest exponent of e” for which

Pr is non-zero on U.

i) If U has no bound, then it contains an infinite subsequence (zx)ren tending to +oo. For
instance, consider the case xp — +o0o as k — +00. We can write f(z) as follows

_ (,T\N Prn-1 . Po
But, for any [ = 1,...,n, we have
tim Pl
k—o0 (e””k)l
Thus, we get

lim f(z) = lim (e**)"p,(xx) = o0,
k—o0 k—o0

which contradicts the fact that for any &, f(zp) = 0.



b)

ii) If U is bounded, then it must have an accumulation point since it is infinite in R. Consider
f(2) where z is a complex variable. Note that f is a holomorphic function on the whole com-
plex plane C as sum and product of e*, py(2),...,pn(z) which are holomorphic functions on
C. Now we know that f(z) =0 for all z € U C R C C then, applying the Identity Theorem
of Complex Analysis, we obtain that f(z) = 0 for any z € C. In particular, restricting to the
real variable x, we get that f(x) = 0 for any z € R. Then, to get a contradiction, we can
apply the same argument as in the preceding item i) by setting U = R.

(For a reference the Identity Theorem of Complex Analysis see e.g. [I, Chapter 3, Theo-
rem 1.2 (ii)] and |2} Chapter 10, Corollary to Theorem 10.18|.)

Suppose that Ty is semi-algebraic in R?. Then, by the proposition about the normal form of
semi-algebraic sets of Lecture 11, we have that I'cx, would be a finite union of basic semi-algebraic
sets of the form

Z(g)NU(g1;- -5 9p)-

for some p € N and g¢,61,...,9, € R[X,Y].

Now, we proved in part a) of this exercise that for any 0 # g € R[X, Y] the set Z(g) = {(z,€”) €
R? : g(x,e®) = 0} is finite. Therefore, ey, would be a finite union of finite sets and so a finite
set that is a contradiction. Hence, g = 0 and so Z(g) = R% As a consequence, Iexp would
be a finite union of sets U(g1,...,gp). But in Sheet 7, Exercise 3 b), we proved that for any
h € R[X,Y], U(h) is open in R?. Hence, each U(gi,...,g,) is open in R?. This would mean that
I'exp contains an open square of R?, and thus has non-empty interior. As a consequence, I'eyp
would contain a vertical segment, which implies that some point in R has at least two distinct
images, contradicting the fact that the exponential is a function.

4) We consider the Motzkin polynomial

a)

b)

m(X,Y)=1-3X2Y2+ X2Y4 + X4Y2,

Let a := 1, b := X2Y* and ¢ := X*Y?2. Then for any (X,Y) € R? we have 0 < a,b,c € R.
Therefore, using the inequality suggested in the hint, we get that for any (X,Y) € R?

a—+b+c>3Vabe =3VX0Y6 =3X2y?2,

and thus m(X,Y) =a+b+c—3X?Y2 > 0.
Suppose that the Motzkin polynomial can be written as m = fZ + --- + f,f for some k£ € N and
fi(X,Y) € R[X,Y]. Then w.lo.g. we can take f1(X,Y) # 0 and so by Lemma 2 of Lecture 16

we have
6 = deg(m) = 2max{deg(f;), i =1,...,k},

which implies max{deg(f;), ¢ =1,...,k} = 3 and so deg(f;) <3 fori=1,...,k. A base of the
vector space of all the polynomials of degree < 3 is given by
{1, X, Y, X2, XY, Y2, X3 X2V, XY? Y3}

If X, X2, X3 respectively, appears in some f;, then X2, X% X0 respectively, would appear in
m(X,Y) with positive coefficient, which is not the case. So X, X2, X3 do not appear in any of
the f;’s. With the same argument, we can conclude that Y, Y2, Y3 do not appear either in any
of the f;’s.

Suppose by contradiction that m = fZ + -+ f? for some k € N and f;(X,Y) € R[X,Y]. Then,
by the part b) of this exercise, we know that for any ¢ € {1,...,k}:

[i(X,Y) =a; +b; XY 4+ ¢; X?Y +d; XY?, for some a;,b;,c;,d; € R.



Then for any i € {1,...,k} we have f2(X,Y) = b?X2Y? + other terms, which gives that

k k
m(X,Y) = Z fAX,Y) = z:b?XQY2 + other terms.
i=1 i=1
k
Identifying the terms with same degree, we obtain that > b2 = —3 which is clearly false in R.

i=1
Contradiction.

In conclusion, the Motzkin polynomial m(X,Y) is non-negative on R? but is not a s.o.s. in R[X,Y].

5) Let n e N, X := (Xq,...,X,) and d € Ny.

a) Let us first consider the case of an arbitrary monic monomial of degree < d, i.e. we consider
gi(X) := Xi= X1t Xin, for some multi-index i = (i1, .. .,i,) € N§ such that iy + -+, <d.
Then we have that

X X, X Xin — (it tin) vi i
5:(X0, X1, ., X)) = Xdgy (22, 20 ) = xg oL 0n  xdm(nbetin) i i
X X

= A0 it tin
XO

and so deg(g;) =d — (i1 + -+ in) +i1+ -+ i, =d.

Let us consider now some non-zero polynomial f € R[X] with deg(f) <d, i.e.

fX) = Y aX'= Y ag(X) withaeeR

Then we have have that

_ X1 X Xl X
Xo, X1, .., X)) =X (=,....,22) = Xx¢ ig (=, ... =2
f( 0,1, 3 ) 0f<X0a 7X0) 0 Z Gg(X07 ,XO)

Xl Xn
= Z anggi()(O,...,XO)

i=(iq, . in) END

Hence, since we have already proved that deg(g;) = d for any i = (i1,...,i,) € N such that

i1 + - - + i, < d, the polynomial f(Xg, X1,...,X,) is homogenous and deg(f) = d

b) Let us consider the homogenization map

h: den — Fd,n+1
f(X17-~~7Xn) = h‘(f) = f(X0>X17"'7X’n)'
To show that the map h is an isomorphism between vector spaces we need to show that h is an

invertible linear map, i.e. there exists A~ and both h and h~! are linear.

e h is linear, since for any o, 8 € R and for any f,g € Vg, we get:

X Xn X X
X (of (o ) 00 (e 52))

(0 (5 3)) <0 (s (5 %)

= Oéf(Xo,Xl,...,Xn)—|—ﬁg(X0,X1,...,Xn)
= ah(f(X)) + Bh(g(X)).

h(af(X) + Bg(X))



e The compositional inverse h~! of h is given by:

—1.
h : Fd7n+1 — Vdm

?(X(MXI»"'?XH) = h_l(f_) = f(17X17"'7Xn)'
which is clearly linear.

c) Let d € Ny be even. First we want to show that f > 0 on R™ implies f > 0 on R"*'. Let

(20,1, ..,2,) € R™! then we need to distinguish two cases:
- x
Case 1: zg # 0. Then, by definition, f(zg,z1,...,2,) = xof( n) By assumption,
330
€1 T
f (, . ) > 0 and, since d is even, 330 > 0. Hence, f(aso,:v1, cey Xy) > 0.
T " o
Case 2: xg = 0. Since any polynomial is a continuous map, we have that f( VL ey X)) =
hn(l) fle,w1,...,2,). But for any € € RX, we have just showed that f(e, xn) > 0.
e—

Thus, f(0,z1,...,7,) > 0.
Let us show now that f > 0 on R™*! implies f > 0 on R". This follows just by noting that for any
(x1,...,2n) € R™, we have f(x1,...,2,) = flxy, ... , Tn,), which is non-negative by assumption.
k
d) Suppose that f = Z f? for some k € N and some non-zero f;’s in R[X7y,..., X,,]. We have that

i=1
deg(f;) < d/2, since deg(f) < d. Then

k

2
ot 53 (B 22) -5 [ (2 )] - S

i=1
Note that by the part a) of this exercise we know that each f; € R[Xy, X1, ..., X,] is homogeneous
of degree = d/2.

k
Conversely, suppose that f(Xo, X1,...,X,) = Zsi(Xo,...,Xn)2 for some k € N and some
i=1

non-zero s;’s in R[ Xy, X1,...,X,]. Then

k

k
FXa o Xn) = F(L X, X)) =) s, X0, X)P =) filXa, ., X)),
1=1

i=1
where fz(l) = Si(l,Xl, ce ,Xn) € R[Xl, cee 7Xn]
e) The polynomial m is the homogenization of the Motzkin polynomial m introduced in Exercise 4.

There we proved that m is PSD but not sum of squares in R[X,Y]. Then by the parts ¢) and d)
of this exercise we have also that the form T is PSD but not sum of squares in R[X,Y, Z].
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