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Solution to the Christmas Assignment

1) Let (K,≤) be an ordered field.

a) The system I covers K since for any x ∈ K, x ∈]x− 1, x+ 1[.
To show that I is closed under finite intersections, it suffices to consider the intersection of two
elements in I. Let A,B ∈ I. Then we can distinguish four main cases (draw a picture to help
yourself to see the different cases):

• At least one between A and B is the empty set. Then A ∩ B = ∅ ∈ I since ∅ =]a, a[ for any
a ∈ K.

• A,B 6= ∅ and A ∩B = ∅. Then A ∩B ∈ I.
• A,B 6= ∅ and either A ⊆ B or B ⊆ A. Then A ∩B ∈ {A,B} ∈ I.
• A,B 6= ∅ and A ∩B 6= ∅ and neither A ⊆ B or B ⊆ A.

Since A,B 6= ∅, let us denote them by A =]a, b[ and B =]c, d[ with a < b ∈ K and c < d ∈ K.
Then the other assumptions imply that we can have only two cases either a < c < b < d or
c < a < d < b. In the first case A ∩B =]c, b[∈ I and in the second case A ∩B =]a, d[∈ I

b) Consider a ∈ K× and any ε > 0 in K. W.l.o.g. suppose that ε <
1

|a|
. We need to find some δ > 0

such that, whenever x ∈ ]|a| − δ, |a|+ δ[, we have
1

x
∈
]

1

|a|
− ε, 1

|a|
+ ε

[
.

The latter relation implies that

0 < δ <
ε|a|2

1 + ε|a|
.

Then it remains to show that this condition is also sufficient. This easily follows by noting that
ε|a|2

1 + ε|a|
<

ε|a|2

1− ε|a|
since 0 < 1− ε|a| < 1 + ε|a|.

c) Let B be the basis for the product topology on Kn given by the interval topology on K, i.e. the
collection of all the hypercubes of the form

n∏
i=1

]ai, bi[ for any n ∈ N, ai, bi ∈ K for i = 1, . . . , n,

and B′ be the basis for the euclidean topology on Kn, i.e. the collection of all the open balls of
the form

B
(
(a1, . . . , an), r

)
:=
{

(x1, . . . , xn) ∈ Kn |
√

(x1 − a1)2 + · · ·+ (xn − an)2 < r
}

for any ai, r ∈ K with r > 0.
It suffices to show that B and B′ are equivalent bases. Thus, we need to show that, for any
hypercubeH ∈ B, there exist two balls B1, B2 ∈ B′ such that B1 ⊆ H ⊆ B2. LetH :=

∏n
i=1]ai, bi[

for some n ∈ N, ai, bi ∈ K for i = 1, . . . , n. Then we get our conclusion just by taking

B1 := B

((
a1 + b1

2
, . . . ,

an + bn
2

)
,min

{
bi − ai

2
: i = 1, . . . , n

})
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and
B2 := B

((
a1 + b1

2
, . . . ,

an + bn
2

)
,max

{
bi − ai

2
: i = 1, . . . , n

})
.

2) Let (R,≤) be a real closed field. Consider Pos(R) := {x ∈ R | x > 0}.

a) Let us first show that the subset Pos(R) ⊂ R× is a subgroup of (R×, ·).

• (Pos(R), ·) is closed under multiplication, since:

g1, g2 ∈ Pos(R)
def⇐⇒ g1 > 0, g2 > 0

R ord.field
=⇒ g1 · g2 > 0

def⇐⇒ g1 · g2 ∈ Pos(R)

• (Pos(R), ·) is closed under inverse, since:

g ∈ Pos(R)
def⇐⇒ g > 0

R ord.field
=⇒ 1

g
> 0

def⇐⇒ 1

g
∈ Pos(R)

Note that (R×, ·) is an abelian group since R is a field. Therefore, Pos(R) is an abelian subgroup
of (R×, ·). Moreover, since (R,≤) is a totally ordered set, the restriction of the ordering ≤ to
Pos(R) is also a total ordering on Pos(R). Hence, (Pos(R),≤) is a totally ordered set.
By Definition 1, it remains to show only that the property (1) holds. Indeed, this is true since for
any g1, g2, h ∈ Pos(R) such that g1 ≥ g2 we have that:

g1 ≥ g2 > 0 and h > 0
R ord.field

=⇒ g1 · h = h · g1 ≥ g2 · h = h · g2.

Hence, we have proved that Pos(R) is an ordered abelian subgroup of (R×, ·)

b) Let us now show that (Pos(R), ·) is divisible. Let a ∈ Pos(R) and for any n ∈ N let fn(x) = xn−a.
Then we have:

• fn(0) = −a < 0 since 0 < a ∈ R and R is an ordered field

• fn(1+a)= (1+a)n−a=
n∑
k=0

(
n
k

)
ak−a= 1+na+

(
n∑
k=2

(
n
k

)
ak
)
−a= 1+a(n−1)+

(
n∑
k=2

(
n
k

)
ak
)
> 0

By the intermediate value theorem (applicable since R is a real closed field), ∃ c ∈]0, 1 + a[⊂ R

such that fn(c) = 0. Thus we have showed that for any n ∈ N, ∃ c = n
√
a ∈ R with c > 0, i.e. for

any n ∈ N, n
√
a ∈ Pos(R). Then, since (Pos(R), ·) is closed under multiplication, we have that

for any m ∈ N0 and n ∈ N, am
n = ( n

√
a)m ∈ Pos(R), i.e. for any q ∈ Q, aq ∈ Pos(R).

3) a) Consider some polynomials p0, . . . , pn ∈ R[X], and an infinite subset U ⊂ R s.t. for all x ∈ U

f(x) := pn(x)(ex)n + pn−1(x)(ex)n−1 + · · ·+ p0(x) = 0.

Suppose that the pi’s are not all identically 0, and that n is the biggest exponent of ex for which
pn is non-zero on U .

i) If U has no bound, then it contains an infinite subsequence (xk)k∈N tending to ±∞. For
instance, consider the case xk → +∞ as k → +∞. We can write f(x) as follows

f(x) = (ex)n
[
pn(x) +

pn−1
ex

+ · · ·+ p0
(ex)n

]
.

But, for any l = 1, . . . , n, we have

lim
k→∞

pn−l(xk)

(exk)l
= 0.

Thus, we get
lim
k→∞

f(xk) = lim
k→∞

(exk)npn(xk) = ±∞,

which contradicts the fact that for any k, f(xk) = 0.
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ii) If U is bounded, then it must have an accumulation point since it is infinite in R. Consider
f(z) where z is a complex variable. Note that f is a holomorphic function on the whole com-
plex plane C as sum and product of ez, p0(z), . . . , pn(z) which are holomorphic functions on
C. Now we know that f(z) = 0 for all z ∈ U ⊂ R ⊂ C then, applying the Identity Theorem
of Complex Analysis, we obtain that f(z) = 0 for any z ∈ C. In particular, restricting to the
real variable x, we get that f(x) = 0 for any x ∈ R. Then, to get a contradiction, we can
apply the same argument as in the preceding item i) by setting U = R.
(For a reference the Identity Theorem of Complex Analysis see e.g. [1, Chapter 3, Theo-
rem 1.2 (ii)] and [2, Chapter 10, Corollary to Theorem 10.18].)

b) Suppose that Γexp is semi-algebraic in R2. Then, by the proposition about the normal form of
semi-algebraic sets of Lecture 11, we have that Γexp would be a finite union of basic semi-algebraic
sets of the form

Z(g) ∩ U(g1, . . . , gp).

for some p ∈ N and g, g1, . . . , gp ∈ R[X,Y ].
Now, we proved in part a) of this exercise that for any 0 6≡ g ∈ R[X,Y ] the set Z(g) = {(x, ex) ∈
R2 : g(x, ex) = 0} is finite. Therefore, Γexp would be a finite union of finite sets and so a finite
set that is a contradiction. Hence, g ≡ 0 and so Z(g) = R2. As a consequence, Γexp would
be a finite union of sets U(g1, . . . , gp). But in Sheet 7, Exercise 3 b), we proved that for any
h ∈ R[X,Y ], U(h) is open in R2. Hence, each U(g1, . . . , gp) is open in R2. This would mean that
Γexp contains an open square of R2, and thus has non-empty interior. As a consequence, Γexp

would contain a vertical segment, which implies that some point in R has at least two distinct
images, contradicting the fact that the exponential is a function.

4) We consider the Motzkin polynomial

m(X,Y ) = 1− 3X2Y 2 +X2Y 4 +X4Y 2.

a) Let a := 1, b := X2Y 4 and c := X4Y 2. Then for any (X,Y ) ∈ R2 we have 0 ≤ a, b, c ∈ R.
Therefore, using the inequality suggested in the hint, we get that for any (X,Y ) ∈ R2

a+ b+ c ≥ 3
3
√
abc = 3

3
√
X6Y 6 = 3X2Y 2,

and thus m(X,Y ) = a+ b+ c− 3X2Y 2 ≥ 0.

b) Suppose that the Motzkin polynomial can be written as m = f21 + · · · + f2k for some k ∈ N and
fi(X,Y ) ∈ R[X,Y ]. Then w.l.o.g. we can take f1(X,Y ) 6≡ 0 and so by Lemma 2 of Lecture 16
we have

6 = deg(m) = 2 max{deg(fi), i = 1, . . . , k},

which implies max{deg(fi), i = 1, . . . , k} = 3 and so deg(fi) ≤ 3 for i = 1, . . . , k. A base of the
vector space of all the polynomials of degree ≤ 3 is given by

{1, X, Y, X2, XY, Y 2, X3, X2Y, XY 2, Y 3}.

If X, X2, X3 respectively, appears in some fi, then X2, X4, X6 respectively, would appear in
m(X,Y ) with positive coefficient, which is not the case. So X, X2, X3 do not appear in any of
the fi’s. With the same argument, we can conclude that Y , Y 2, Y 3 do not appear either in any
of the fi’s.

c) Suppose by contradiction that m = f21 + · · ·+ f2k for some k ∈ N and fi(X,Y ) ∈ R[X,Y ]. Then,
by the part b) of this exercise, we know that for any i ∈ {1, . . . , k}:

fi(X,Y ) = ai + biXY + ciX
2Y + diXY

2, for some ai, bi, ci, di ∈ R.
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Then for any i ∈ {1, . . . , k} we have f2i (X,Y ) = b2iX
2Y 2 + other terms, which gives that

m(X,Y ) =

k∑
i=1

f2i (X,Y ) =

k∑
i=1

b2iX
2Y 2 + other terms.

Identifying the terms with same degree, we obtain that
k∑
i=1

b2i = −3 which is clearly false in R.

Contradiction.

In conclusion, the Motzkin polynomial m(X,Y ) is non-negative on R2 but is not a s.o.s. in R[X,Y ].

5) Let n ∈ N, X := (X1, . . . , Xn) and d ∈ N0.

a) Let us first consider the case of an arbitrary monic monomial of degree ≤ d, i.e. we consider
gi(X) := Xi = Xi1

1 · · ·Xin
n , for some multi-index i = (i1, . . . , in) ∈ Nn0 such that i1 + · · ·+ in ≤ d.

Then we have that

ḡi(X0, X1, . . . , Xn) := Xd
0 gi

(
X1

X0
, . . . ,

Xn

X0

)
= Xd

0

Xi1
1 · · ·Xin

n

Xi1+···+in
0

= X
d−(i1+···+in)
0 Xi1

1 · · ·Xin
n

and so deg(ḡi) = d− (i1 + · · ·+ in) + i1 + · · ·+ in = d.
Let us consider now some non-zero polynomial f ∈ R[X] with deg(f) ≤ d, i.e.

f(X) :=
∑

i=(i1,...,in)∈Nn0
i1+···+in≤d

aiX
i =

∑
i=(i1,...,in)∈Nn0
i1+···+in≤d

ai gi(X) with ai ∈ R.

Then we have have that

f̄(X0, X1, . . . , Xn) := Xd
0f

(
X1

X0
, . . . ,

Xn

X0

)
= Xd

0

∑
i=(i1,...,in)∈Nn0
i1+···+in≤d

ai gi

(
X1

X0
, . . . ,

Xn

X0

)

=
∑

i=(i1,...,in)∈Nn0
i1+···+in≤d

aiX
d
0 gi

(
X1

X0
, . . . ,

Xn

X0

)

=
∑

i=(i1,...,in)∈Nn0
i1+···+in≤d

ai ḡi(X0, X1, . . . , Xn).

Hence, since we have already proved that deg(ḡi) = d for any i = (i1, . . . , in) ∈ Nn0 such that
i1 + · · ·+ in ≤ d, the polynomial f̄(X0, X1, . . . , Xn) is homogenous and deg(f̄) = d

b) Let us consider the homogenization map

h : Vd,n → Fd,n+1

f(X1, . . . , Xn) 7→ h(f) := f(X0, X1, . . . , Xn).

To show that the map h is an isomorphism between vector spaces we need to show that h is an
invertible linear map, i.e. there exists h−1 and both h and h−1 are linear.

• h is linear, since for any α, β ∈ R and for any f, g ∈ Vd,n we get:

h(αf(X) + βg(X)) = Xd
0

(
αf

(
X1

X0
, . . . ,

Xn

X0

)
+ βg

(
X1

X0
, . . . ,

Xn

X0

))
= α

(
Xd

0f

(
X1

X0
, . . . ,

Xn

X0

))
+ β

(
Xd

0 g

(
X1

X0
, . . . ,

Xn

X0

))
= αf̄(X0, X1, . . . , Xn) + βḡ(X0, X1, . . . , Xn)

= αh(f(X)) + βh(g(X)).
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• The compositional inverse h−1 of h is given by:

h−1 : Fd,n+1 → Vd,n
f(X0, X1, . . . , Xn) 7→ h−1(f̄) := f̄(1, X1, . . . , Xn).

which is clearly linear.

c) Let d ∈ N0 be even. First we want to show that f ≥ 0 on Rn implies f ≥ 0 on Rn+1. Let
(x0, x1, . . . , xn) ∈ Rn+1 then we need to distinguish two cases:

Case 1: x0 6= 0. Then, by definition, f(x0, x1, . . . , xn) = xd0f

(
x1
x0
, . . . ,

xn
x0

)
. By assumption,

f

(
x1
x0
, . . . ,

xn
x0

)
≥ 0 and, since d is even, xd0 > 0. Hence, f(x0, x1, . . . , xn) ≥ 0.

Case 2: x0 = 0. Since any polynomial is a continuous map, we have that f(0, x1, . . . , xn) =

lim
ε→0

f(ε, x1, . . . , xn). But for any ε ∈ R×, we have just showed that f(ε, x1, . . . , xn) ≥ 0.

Thus, f(0, x1, . . . , xn) ≥ 0.

Let us show now that f ≥ 0 on Rn+1 implies f ≥ 0 on Rn. This follows just by noting that for any
(x1, . . . , xn) ∈ Rn, we have f(x1, . . . , xn) = f(1, x1, . . . , xn), which is non-negative by assumption.

d) Suppose that f =

k∑
i=1

f2i for some k ∈ N and some non-zero fi’s in R[X1, . . . , Xn]. We have that

deg(fi) ≤ d/2, since deg(f) ≤ d. Then

f(X0, X1, . . . , Xn) = Xd
0f

(
X1

X0
, . . . ,

Xn

X0

)
=

k∑
i=1

[
X
d/2
0 fi

(
X1

X0
, . . . ,

Xn

X0

)]2
=

k∑
i=1

f̄i(X0, X1, . . . , Xn)2

Note that by the part a) of this exercise we know that each f̄i ∈ R[X0, X1, . . . , Xn] is homogeneous
of degree = d/2.

Conversely, suppose that f(X0, X1, . . . , Xn) =

k∑
i=1

si(X0, . . . , Xn)2 for some k ∈ N and some

non-zero si’s in R[X0, X1, . . . , Xn]. Then

f(X1, . . . , Xn) = f(1, X1, . . . , Xn) =

k∑
i=1

si(1, X1, . . . , Xn)2 =

k∑
i=1

fi(X1, . . . , Xn)2,

where fi(X) := si(1, X1, . . . , Xn) ∈ R[X1, . . . , Xn].

e) The polynomial m is the homogenization of the Motzkin polynomial m introduced in Exercise 4.
There we proved that m is PSD but not sum of squares in R[X,Y ]. Then by the parts c) and d)
of this exercise we have also that the form m is PSD but not sum of squares in R[X,Y, Z].
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