Universität Konstanz Fachbereich Mathematik und Statistik Prof. Dr. Salma Kuhlmann Dr. Maria Infusino Dr. Charu Goel

REAL ALGEBRAIC GEOMETRY–WS 2014/15

Solution to the Christmas Assignment

- 1) Let (K, \leq) be an ordered field.
 - a) The system \mathcal{I} covers K since for any $x \in K, x \in]x 1, x + 1[$.
 - To show that \mathcal{I} is closed under finite intersections, it suffices to consider the intersection of two elements in \mathcal{I} . Let $A, B \in \mathcal{I}$. Then we can distinguish four main cases (draw a picture to help yourself to see the different cases):
 - At least one between A and B is the empty set. Then $A \cap B = \emptyset \in \mathcal{I}$ since $\emptyset =]a, a[$ for any $a \in K$.
 - $A, B \neq \emptyset$ and $A \cap B = \emptyset$. Then $A \cap B \in \mathcal{I}$.
 - $A, B \neq \emptyset$ and either $A \subseteq B$ or $B \subseteq A$. Then $A \cap B \in \{A, B\} \in \mathcal{I}$.
 - $A, B \neq \emptyset$ and $A \cap B \neq \emptyset$ and neither $A \subseteq B$ or $B \subseteq A$.
 - Since $A, B \neq \emptyset$, let us denote them by A =]a, b[and B =]c, d[with $a < b \in K$ and $c < d \in K$. Then the other assumptions imply that we can have only two cases either a < c < b < d or c < a < d < b. In the first case $A \cap B =]c, b[\in \mathcal{I}$ and in the second case $A \cap B =]a, d[\in \mathcal{I}$
 - **b)** Consider $a \in K^{\times}$ and any $\epsilon > 0$ in K. W.l.o.g. suppose that $\epsilon < \frac{1}{|a|}$. We need to find some $\delta > 0$ such that, whenever $x \in]|a| \delta$, $|a| + \delta[$, we have $\frac{1}{x} \in]\frac{1}{|a|} \epsilon$, $\frac{1}{|a|} + \epsilon[$.

The latter relation implies that

$$0 < \delta < \frac{\epsilon |a|^2}{1 + \epsilon |a|}$$

Then it remains to show that this condition is also sufficient. This easily follows by noting that $\frac{\epsilon |a|^2}{1+\epsilon |a|} < \frac{\epsilon |a|^2}{1-\epsilon |a|} \text{ since } 0 < 1-\epsilon |a| < 1+\epsilon |a|.$

c) Let \mathcal{B} be the basis for the product topology on K^n given by the interval topology on K, i.e. the collection of all the hypercubes of the form

$$\prod_{i=1}^{n}]a_i, b_i[\text{ for any } n \in \mathbb{N}, a_i, b_i \in K \text{ for } i = 1, \dots, n$$

and \mathcal{B}' be the basis for the euclidean topology on K^n , i.e. the collection of all the open balls of the form

$$B((a_1, \dots, a_n), r) := \left\{ (x_1, \dots, x_n) \in K^n \mid \sqrt{(x_1 - a_1)^2 + \dots + (x_n - a_n)^2} < r \right\}$$

for any $a_i, r \in K$ with r > 0.

It suffices to show that \mathcal{B} and \mathcal{B}' are equivalent bases. Thus, we need to show that, for any hypercube $H \in \mathcal{B}$, there exist two balls $B_1, B_2 \in \mathcal{B}'$ such that $B_1 \subseteq H \subseteq B_2$. Let $H := \prod_{i=1}^n [a_i, b_i]$ for some $n \in \mathbb{N}$, $a_i, b_i \in K$ for $i = 1, \ldots, n$. Then we get our conclusion just by taking

$$B_1 := B\left(\left(\frac{a_1 + b_1}{2}, \dots, \frac{a_n + b_n}{2}\right), \min\left\{\frac{b_i - a_i}{2} : i = 1, \dots, n\right\}\right)$$

and

$$B_2 := B\left(\left(\frac{a_1 + b_1}{2}, \dots, \frac{a_n + b_n}{2}\right), \max\left\{\frac{b_i - a_i}{2} : i = 1, \dots, n\right\}\right).$$

- 2) Let (R, \leq) be a real closed field. Consider $Pos(R) := \{x \in R \mid x > 0\}$.
 - **a)** Let us first show that the subset $Pos(R) \subset R^{\times}$ is a subgroup of (R^{\times}, \cdot) .
 - $(Pos(R), \cdot)$ is closed under multiplication, since:

$$g_1, g_2 \in Pos(R) \iff g_1 > 0, \ g_2 > 0 \implies^{\text{R ord, field}} g_1 \cdot g_2 > 0 \iff g_1 \cdot g_2 \in Pos(R)$$

• $(Pos(R), \cdot)$ is closed under inverse, since:

$$g \in Pos(R) \ \Longleftrightarrow \ g > 0 \ \overset{\text{R ord, field}}{\Longrightarrow} \ \frac{1}{g} > 0 \ \Longleftrightarrow \ \frac{1}{g} \in Pos(R)$$

Note that (R^{\times}, \cdot) is an abelian group since R is a field. Therefore, Pos(R) is an abelian subgroup of (R^{\times}, \cdot) . Moreover, since (R, \leq) is a totally ordered set, the restriction of the ordering \leq to Pos(R) is also a total ordering on Pos(R). Hence, $(Pos(R), \leq)$ is a totally ordered set.

By Definition 1, it remains to show only that the property (1) holds. Indeed, this is true since for any $g_1, g_2, h \in Pos(R)$ such that $g_1 \ge g_2$ we have that:

$$g_1 \ge g_2 > 0 \text{ and } h > 0 \stackrel{\text{R ord, field}}{\Longrightarrow} g_1 \cdot h = h \cdot g_1 \ge g_2 \cdot h = h \cdot g_2.$$

Hence, we have proved that Pos(R) is an ordered abelian subgroup of (R^{\times}, \cdot)

- b) Let us now show that $(Pos(R), \cdot)$ is divisible. Let $a \in Pos(R)$ and for any $n \in \mathbb{N}$ let $f_n(x) = x^n a$. Then we have:
 - $f_n(0) = -a < 0$ since $0 < a \in R$ and R is an ordered field

•
$$f_n(0) = -a < 0$$
 since $0 < a \in R$ and R is an ordered field
• $f_n(1+a) = (1+a)^n - a = \sum_{k=0}^n \binom{n}{k} a^k - a = 1 + na + \left(\sum_{k=2}^n \binom{n}{k} a^k\right) - a = 1 + a(n-1) + \left(\sum_{k=2}^n \binom{n}{k} a^k\right) > 0$

By the intermediate value theorem (applicable since R is a real closed field), $\exists c \in]0, 1 + a [\subset R]$ such that $f_n(c) = 0$. Thus we have showed that for any $n \in \mathbb{N}, \exists c = \sqrt[n]{a} \in R$ with c > 0, i.e. for any $n \in \mathbb{N}$, $\sqrt[n]{a} \in Pos(R)$. Then, since $(Pos(R), \cdot)$ is closed under multiplication, we have that for any $m \in \mathbb{N}_0$ and $n \in \mathbb{N}$, $a^{\frac{m}{n}} = (\sqrt[n]{a})^m \in Pos(R)$, i.e. for any $q \in \mathbb{Q}$, $a^q \in Pos(R)$.

3) a) Consider some polynomials $p_0, \ldots, p_n \in \mathbb{R}[X]$, and an infinite subset $U \subset \mathbb{R}$ s.t. for all $x \in U$

$$f(x) := p_n(x)(e^x)^n + p_{n-1}(x)(e^x)^{n-1} + \dots + p_0(x) = 0$$

Suppose that the p_i 's are not all identically 0, and that n is the biggest exponent of e^x for which p_n is non-zero on U.

i) If U has no bound, then it contains an infinite subsequence $(x_k)_{k\in\mathbb{N}}$ tending to $\pm\infty$. For instance, consider the case $x_k \to +\infty$ as $k \to +\infty$. We can write f(x) as follows

$$f(x) = (e^x)^n \left[p_n(x) + \frac{p_{n-1}}{e^x} + \dots + \frac{p_0}{(e^x)^n} \right].$$

But, for any $l = 1, \ldots, n$, we have

$$\lim_{k \to \infty} \frac{p_{n-l}(x_k)}{(e^{x_k})^l} = 0.$$

Thus, we get

$$\lim_{k \to \infty} f(x_k) = \lim_{k \to \infty} (e^{x_k})^n p_n(x_k) = \pm \infty,$$

which contradicts the fact that for any k, $f(x_k) = 0$.

ii) If U is bounded, then it must have an accumulation point since it is infinite in \mathbb{R} . Consider f(z) where z is a complex variable. Note that f is a holomorphic function on the whole complex plane \mathbb{C} as sum and product of e^z , $p_0(z), \ldots, p_n(z)$ which are holomorphic functions on \mathbb{C} . Now we know that f(z) = 0 for all $z \in U \subset \mathbb{R} \subset \mathbb{C}$ then, applying the Identity Theorem of Complex Analysis, we obtain that f(z) = 0 for any $z \in \mathbb{C}$. In particular, restricting to the real variable x, we get that f(x) = 0 for any $x \in \mathbb{R}$. Then, to get a contradiction, we can apply the same argument as in the preceding item i) by setting $U = \mathbb{R}$.

(For a reference the Identity Theorem of Complex Analysis see e.g. [1, Chapter 3, Theorem 1.2 (ii)] and [2, Chapter 10, Corollary to Theorem 10.18].)

b) Suppose that Γ_{exp} is semi-algebraic in \mathbb{R}^2 . Then, by the proposition about the normal form of semi-algebraic sets of Lecture 11, we have that Γ_{exp} would be a finite union of basic semi-algebraic sets of the form

$$Z(g) \cap U(g_1,\ldots,g_p).$$

for some $p \in \mathbb{N}$ and $g, g_1, \ldots, g_p \in \mathbb{R}[X, Y]$.

Now, we proved in part a) of this exercise that for any $0 \neq g \in \mathbb{R}[X, Y]$ the set $Z(g) = \{(x, e^x) \in \mathbb{R}^2 : g(x, e^x) = 0\}$ is finite. Therefore, Γ_{exp} would be a finite union of finite sets and so a finite set that is a contradiction. Hence, $g \equiv 0$ and so $Z(g) = \mathbb{R}^2$. As a consequence, Γ_{exp} would be a finite union of sets $U(g_1, \ldots, g_p)$. But in Sheet 7, Exercise 3 b), we proved that for any $h \in \mathbb{R}[X, Y], U(h)$ is open in \mathbb{R}^2 . Hence, each $U(g_1, \ldots, g_p)$ is open in \mathbb{R}^2 . This would mean that Γ_{exp} contains an open square of \mathbb{R}^2 , and thus has non-empty interior. As a consequence, Γ_{exp} would contain a vertical segment, which implies that some point in \mathbb{R} has at least two distinct images, contradicting the fact that the exponential is a function.

4) We consider the Motzkin polynomial

$$m(X,Y) = 1 - 3X^2Y^2 + X^2Y^4 + X^4Y^2.$$

a) Let a := 1, $b := X^2 Y^4$ and $c := X^4 Y^2$. Then for any $(X, Y) \in \mathbb{R}^2$ we have $0 \le a, b, c \in \mathbb{R}$. Therefore, using the inequality suggested in the hint, we get that for any $(X, Y) \in \mathbb{R}^2$

$$a+b+c \ge 3\sqrt[3]{abc} = 3\sqrt[3]{X^6Y^6} = 3X^2Y^2,$$

and thus $m(X,Y) = a + b + c - 3X^2Y^2 \ge 0$.

b) Suppose that the Motzkin polynomial can be written as $m = f_1^2 + \cdots + f_k^2$ for some $k \in \mathbb{N}$ and $f_i(X,Y) \in \mathbb{R}[X,Y]$. Then w.l.o.g. we can take $f_1(X,Y) \neq 0$ and so by Lemma 2 of Lecture 16 we have

$$6 = \deg(m) = 2 \max\{\deg(f_i), i = 1, \dots, k\},\$$

which implies $\max\{\deg(f_i), i = 1, ..., k\} = 3$ and so $\deg(f_i) \le 3$ for i = 1, ..., k. A base of the vector space of all the polynomials of degree ≤ 3 is given by

$$\{1, X, Y, X^2, XY, Y^2, X^3, X^2Y, XY^2, Y^3\}.$$

If X, X^2 , X^3 respectively, appears in some f_i , then X^2 , X^4 , X^6 respectively, would appear in m(X, Y) with positive coefficient, which is not the case. So X, X^2 , X^3 do not appear in any of the f_i 's. With the same argument, we can conclude that Y, Y^2 , Y^3 do not appear either in any of the f_i 's.

c) Suppose by contradiction that $m = f_1^2 + \cdots + f_k^2$ for some $k \in \mathbb{N}$ and $f_i(X, Y) \in \mathbb{R}[X, Y]$. Then, by the part b) of this exercise, we know that for any $i \in \{1, \ldots, k\}$:

$$f_i(X,Y) = a_i + b_i XY + c_i X^2 Y + d_i XY^2, \text{ for some } a_i, b_i, c_i, d_i \in \mathbb{R}.$$

Then for any $i \in \{1, \ldots, k\}$ we have $f_i^2(X, Y) = b_i^2 X^2 Y^2$ + other terms, which gives that

$$m(X,Y) = \sum_{i=1}^{k} f_i^2(X,Y) = \sum_{i=1}^{k} b_i^2 X^2 Y^2 + \text{ other terms.}$$

Identifying the terms with same degree, we obtain that $\sum_{i=1}^{k} b_i^2 = -3$ which is clearly false in \mathbb{R} . Contradiction.

In conclusion, the Motzkin polynomial m(X, Y) is non-negative on \mathbb{R}^2 but is not a s.o.s. in $\mathbb{R}[X, Y]$.

- **5)** Let $n \in \mathbb{N}, \underline{X} := (X_1, \dots, X_n)$ and $d \in \mathbb{N}_0$.
 - a) Let us first consider the case of an arbitrary monic monomial of degree $\leq d$, i.e. we consider $g_{\underline{i}}(\underline{X}) := \underline{X}^{\underline{i}} = X_1^{i_1} \cdots X_n^{i_n}$, for some multi-index $\underline{i} = (i_1, \ldots, i_n) \in \mathbb{N}_0^n$ such that $i_1 + \cdots + i_n \leq d$. Then we have that

$$\bar{g}_{\underline{i}}(X_0, X_1, \dots, X_n) := X_0^d g_{\underline{i}}\left(\frac{X_1}{X_0}, \dots, \frac{X_n}{X_0}\right) = X_0^d \frac{X_1^{i_1} \cdots X_n^{i_n}}{X_0^{i_1 + \dots + i_n}} = X_0^{d - (i_1 + \dots + i_n)} X_1^{i_1} \cdots X_n^{i_n}$$

and so $\deg(\bar{g}_{\underline{i}}) = d - (i_1 + \dots + i_n) + i_1 + \dots + i_n = d.$

Let us consider now some non-zero polynomial $f \in \mathbb{R}[\underline{X}]$ with $\deg(f) \leq d$, i.e.

$$f(\underline{X}) := \sum_{\substack{\underline{i} = (i_1, \dots, i_n) \in \mathbb{N}_0^n \\ i_1 + \dots + i_n \leq d}} a_{\underline{i}} \underline{X}^{\underline{i}} = \sum_{\substack{\underline{i} = (i_1, \dots, i_n) \in \mathbb{N}_0^n \\ i_1 + \dots + i_n \leq d}} a_{\underline{i}} \underline{g}_{\underline{i}}(\underline{X}) \quad \text{with } a_{\underline{i}} \in \mathbb{R}.$$

Then we have have that

$$\begin{split} \bar{f}(X_0, X_1, \dots, X_n) &:= X_0^d f\left(\frac{X_1}{X_0}, \dots, \frac{X_n}{X_0}\right) &= X_0^d \sum_{\substack{\underline{i} = (i_1, \dots, i_n) \in \mathbb{N}_0^n \\ i_1 + \dots + i_n \leq d}} a_{\underline{i}} g_{\underline{i}} \left(\frac{X_1}{X_0}, \dots, \frac{X_n}{X_0}\right) \\ &= \sum_{\substack{\underline{i} = (i_1, \dots, i_n) \in \mathbb{N}_0^n \\ i_1 + \dots + i_n \leq d}} a_{\underline{i}} X_0^d g_{\underline{i}} \left(\frac{X_1}{X_0}, \dots, \frac{X_n}{X_0}\right) \\ &= \sum_{\substack{\underline{i} = (i_1, \dots, i_n) \in \mathbb{N}_0^n \\ i_1 + \dots + i_n \leq d}} a_{\underline{i}} \bar{g}_{\underline{i}} (X_0, X_1, \dots, X_n). \end{split}$$

Hence, since we have already proved that $\deg(\bar{g}_{\underline{i}}) = d$ for any $\underline{i} = (i_1, \ldots, i_n) \in \mathbb{N}_0^n$ such that $i_1 + \cdots + i_n \leq d$, the polynomial $\bar{f}(X_0, X_1, \ldots, X_n)$ is homogenous and $\deg(\bar{f}) = d$

b) Let us consider the homogenization map

$$\begin{array}{rccc} h: & V_{d,n} & \to & F_{d,n+1} \\ & f(X_1,\ldots,X_n) & \mapsto & h(f) := \overline{f}(X_0,X_1,\ldots,X_n). \end{array}$$

To show that the map h is an isomorphism between vector spaces we need to show that h is an invertible linear map, i.e. there exists h^{-1} and both h and h^{-1} are linear.

• h is linear, since for any $\alpha, \beta \in \mathbb{R}$ and for any $f, g \in V_{d,n}$ we get:

$$\begin{aligned} h(\alpha f(\underline{X}) + \beta g(\underline{X})) &= X_0^d \left(\alpha f\left(\frac{X_1}{X_0}, \dots, \frac{X_n}{X_0}\right) + \beta g\left(\frac{X_1}{X_0}, \dots, \frac{X_n}{X_0}\right) \right) \\ &= \alpha \left(X_0^d f\left(\frac{X_1}{X_0}, \dots, \frac{X_n}{X_0}\right) \right) + \beta \left(X_0^d g\left(\frac{X_1}{X_0}, \dots, \frac{X_n}{X_0}\right) \right) \\ &= \alpha \bar{f}(X_0, X_1, \dots, X_n) + \beta \bar{g}(X_0, X_1, \dots, X_n) \\ &= \alpha h(f(\underline{X})) + \beta h(g(\underline{X})). \end{aligned}$$

• The compositional inverse h^{-1} of h is given by:

$$\begin{array}{rccc} {}^{-1}: & F_{d,n+1} & \to & V_{d,n} \\ & \overline{f}(X_0, X_1, \dots, X_n) & \mapsto & h^{-1}(\overline{f}) := \overline{f}(1, X_1, \dots, X_n). \end{array}$$

which is clearly linear.

 h^{-}

c) Let $d \in \mathbb{N}_0$ be even. First we want to show that $f \ge 0$ on \mathbb{R}^n implies $\overline{f} \ge 0$ on \mathbb{R}^{n+1} . Let $(x_0, x_1, \ldots, x_n) \in \mathbb{R}^{n+1}$ then we need to distinguish two cases:

Case 1: $x_0 \neq 0$. Then, by definition, $\overline{f}(x_0, x_1, \dots, x_n) = x_0^d f\left(\frac{x_1}{x_0}, \dots, \frac{x_n}{x_0}\right)$. By assumption, $f\left(\frac{x_1}{x_0}, \dots, \frac{x_n}{x_0}\right) \geq 0$ and, since d is even, $x_0^d > 0$. Hence, $\overline{f}(x_0, x_1, \dots, x_n) \geq 0$.

Case 2: $x_0 = 0$. Since any polynomial is a continuous map, we have that $\overline{f}(0, x_1, \ldots, x_n) = \lim_{\epsilon \to 0} \overline{f}(\epsilon, x_1, \ldots, x_n)$. But for any $\epsilon \in \mathbb{R}^{\times}$, we have just showed that $\overline{f}(\epsilon, x_1, \ldots, x_n) \ge 0$. Thus, $\overline{f}(0, x_1, \ldots, x_n) \ge 0$.

Let us show now that $\overline{f} \ge 0$ on \mathbb{R}^{n+1} implies $f \ge 0$ on \mathbb{R}^n . This follows just by noting that for any $(x_1, \ldots, x_n) \in \mathbb{R}^n$, we have $f(x_1, \ldots, x_n) = \overline{f}(1, x_1, \ldots, x_n)$, which is non-negative by assumption.

d) Suppose that $f = \sum_{i=1}^{n} f_i^2$ for some $k \in \mathbb{N}$ and some non-zero f_i 's in $\mathbb{R}[X_1, \ldots, X_n]$. We have that $\deg(f_i) \leq d/2$, since $\deg(f) \leq d$. Then

$$\overline{f}(X_0, X_1, \dots, X_n) = X_0^d f\left(\frac{X_1}{X_0}, \dots, \frac{X_n}{X_0}\right) = \sum_{i=1}^k \left[X_0^{d/2} f_i\left(\frac{X_1}{X_0}, \dots, \frac{X_n}{X_0}\right)\right]^2 = \sum_{i=1}^k \overline{f}_i(X_0, X_1, \dots, X_n)^2$$

Note that by the part a) of this exercise we know that each $\bar{f}_i \in \mathbb{R}[X_0, X_1, \dots, X_n]$ is homogeneous of degree = d/2.

Conversely, suppose that $\overline{f}(X_0, X_1, \dots, X_n) = \sum_{i=1}^k s_i(X_0, \dots, X_n)^2$ for some $k \in \mathbb{N}$ and some non-zero s_i 's in $\mathbb{R}[X_0, X_1, \dots, X_n]$. Then

$$f(X_1, \dots, X_n) = \overline{f}(1, X_1, \dots, X_n) = \sum_{i=1}^k s_i (1, X_1, \dots, X_n)^2 = \sum_{i=1}^k f_i (X_1, \dots, X_n)^2,$$

where $f_i(\underline{X}) := s_i(1, X_1, \dots, X_n) \in \mathbb{R}[X_1, \dots, X_n]$.

e) The polynomial \overline{m} is the homogenization of the Motzkin polynomial m introduced in Exercise 4. There we proved that m is PSD but not sum of squares in $\mathbb{R}[X, Y]$. Then by the parts c) and d) of this exercise we have also that the form \overline{m} is PSD but not sum of squares in $\mathbb{R}[X, Y, Z]$.

References

- [1] S. Lang. Complex Analysis. Springer-Verlag, New York, fourth edition, 1999.
- [2] W. Rudin. Real and Complex Analysis. McGraw-Hill, New York, second edition, 1974.

