Universität Konstanz
Fachbereich Mathematik und Statistik
Prof. Dr. Salma Kuhlmann
Dr. Maria Infusino
Dr. Charu Goel

REAL ALGEBRAIC GEOMETRY-WS 2014/15

Solution to the Christmas Assignment

1) Let (K, \leq) be an ordered field.
a) The system \mathcal{I} covers K since for any $x \in K, x \in] x-1, x+1[$.

To show that \mathcal{I} is closed under finite intersections, it suffices to consider the intersection of two elements in \mathcal{I}. Let $A, B \in \mathcal{I}$. Then we can distinguish four main cases (draw a picture to help yourself to see the different cases):

- At least one between A and B is the empty set. Then $A \cap B=\emptyset \in \mathcal{I}$ since $\emptyset=] a, a[$ for any $a \in K$.
- $A, B \neq \emptyset$ and $A \cap B=\emptyset$. Then $A \cap B \in \mathcal{I}$.
- $A, B \neq \emptyset$ and either $A \subseteq B$ or $B \subseteq A$. Then $A \cap B \in\{A, B\} \in \mathcal{I}$.
- $A, B \neq \emptyset$ and $A \cap B \neq \emptyset$ and neither $A \subseteq B$ or $B \subseteq A$.

Since $A, B \neq \emptyset$, let us denote them by $A=] a, b[$ and $B=] c, d[$ with $a<b \in K$ and $c<d \in K$. Then the other assumptions imply that we can have only two cases either $a<c<b<d$ or $c<a<d<b$. In the first case $A \cap B=] c, b[\in \mathcal{I}$ and in the second case $A \cap B=] a, d[\in \mathcal{I}$
b) Consider $a \in K^{\times}$and any $\epsilon>0$ in K. W.l.o.g. suppose that $\epsilon<\frac{1}{|a|}$. We need to find some $\delta>0$ such that, whenever $x \in]|a|-\delta,|a|+\delta\left[\right.$, we have $\left.\frac{1}{x} \in\right] \frac{1}{|a|}-\epsilon, \frac{1}{|a|}+\epsilon[$.
The latter relation implies that

$$
0<\delta<\frac{\epsilon|a|^{2}}{1+\epsilon|a|}
$$

Then it remains to show that this condition is also sufficient. This easily follows by noting that $\frac{\epsilon|a|^{2}}{1+\epsilon|a|}<\frac{\epsilon|a|^{2}}{1-\epsilon|a|}$ since $0<1-\epsilon|a|<1+\epsilon|a|$.
c) Let \mathcal{B} be the basis for the product topology on K^{n} given by the interval topology on K, i.e. the collection of all the hypercubes of the form

$$
\left.\prod_{i=1}^{n}\right] a_{i}, b_{i}\left[\text { for any } n \in \mathbb{N}, a_{i}, b_{i} \in K \text { for } i=1, \ldots, n\right.
$$

and \mathcal{B}^{\prime} be the basis for the euclidean topology on K^{n}, i.e. the collection of all the open balls of the form

$$
B\left(\left(a_{1}, \ldots, a_{n}\right), r\right):=\left\{\left(x_{1}, \ldots, x_{n}\right) \in K^{n} \mid \sqrt{\left(x_{1}-a_{1}\right)^{2}+\cdots+\left(x_{n}-a_{n}\right)^{2}}<r\right\}
$$

for any $a_{i}, r \in K$ with $r>0$.
It suffices to show that \mathcal{B} and \mathcal{B}^{\prime} are equivalent bases. Thus, we need to show that, for any hypercube $H \in \mathcal{B}$, there exist two balls $B_{1}, B_{2} \in \mathcal{B}^{\prime}$ such that $B_{1} \subseteq H \subseteq B_{2}$. Let $\left.H:=\prod_{i=1}^{n}\right] a_{i}, b_{i}[$ for some $n \in \mathbb{N}, a_{i}, b_{i} \in K$ for $i=1, \ldots, n$. Then we get our conclusion just by taking

$$
B_{1}:=B\left(\left(\frac{a_{1}+b_{1}}{2}, \ldots, \frac{a_{n}+b_{n}}{2}\right), \min \left\{\frac{b_{i}-a_{i}}{2}: i=1, \ldots, n\right\}\right)
$$

and

$$
B_{2}:=B\left(\left(\frac{a_{1}+b_{1}}{2}, \ldots, \frac{a_{n}+b_{n}}{2}\right), \max \left\{\frac{b_{i}-a_{i}}{2}: i=1, \ldots, n\right\}\right) .
$$

2) Let (R, \leq) be a real closed field. Consider $\operatorname{Pos}(R):=\{x \in R \mid x>0\}$.
a) Let us first show that the subset $\operatorname{Pos}(R) \subset R^{\times}$is a subgroup of $\left(R^{\times}, \cdot\right)$.

- $(\operatorname{Pos}(R), \cdot)$ is closed under multiplication, since:

$$
g_{1}, g_{2} \in \operatorname{Pos}(R) \stackrel{\text { def }}{\Longleftrightarrow} g_{1}>0, g_{2}>0 \stackrel{\mathrm{R} \text { ord.field }}{\Longrightarrow} g_{1} \cdot g_{2}>0 \stackrel{\text { def }}{\Longleftrightarrow} g_{1} \cdot g_{2} \in \operatorname{Pos}(R)
$$

- $(\operatorname{Pos}(R), \cdot)$ is closed under inverse, since:

$$
g \in \operatorname{Pos}(R) \stackrel{\text { def }}{\Longleftrightarrow} g>0 \stackrel{\text { R ord.field }}{\Longrightarrow} \frac{1}{g}>0 \stackrel{\text { def }}{\Longleftrightarrow} \frac{1}{g} \in \operatorname{Pos}(R)
$$

Note that $\left(R^{\times}, \cdot\right)$ is an abelian group since R is a field. Therefore, $\operatorname{Pos}(R)$ is an abelian subgroup of $\left(R^{\times}, \cdot\right)$. Moreover, since (R, \leq) is a totally ordered set, the restriction of the ordering \leq to $\operatorname{Pos}(R)$ is also a total ordering on $\operatorname{Pos}(R)$. Hence, $(\operatorname{Pos}(R), \leq)$ is a totally ordered set.
By Definition 1, it remains to show only that the property (1) holds. Indeed, this is true since for any $g_{1}, g_{2}, h \in \operatorname{Pos}(R)$ such that $g_{1} \geq g_{2}$ we have that:

$$
g_{1} \geq g_{2}>0 \text { and } h>0 \stackrel{\mathrm{R} \text { ord.field }}{\Longrightarrow} g_{1} \cdot h=h \cdot g_{1} \geq g_{2} \cdot h=h \cdot g_{2} .
$$

Hence, we have proved that $\operatorname{Pos}(R)$ is an ordered abelian subgroup of $\left(R^{\times}, \cdot\right)$
b) Let us now show that $(\operatorname{Pos}(R), \cdot)$ is divisible. Let $a \in \operatorname{Pos}(R)$ and for any $n \in \mathbb{N}$ let $f_{n}(x)=x^{n}-a$. Then we have:

- $f_{n}(0)=-a<0$ since $0<a \in R$ and R is an ordered field
- $f_{n}(1+a)=(1+a)^{n}-a=\sum_{k=0}^{n}\binom{n}{k} a^{k}-a=1+n a+\left(\sum_{k=2}^{n}\binom{n}{k} a^{k}\right)-a=1+a(n-1)+\left(\sum_{k=2}^{n}\binom{n}{k} a^{k}\right)>0$

By the intermediate value theorem (applicable since R is a real closed field), $\exists c \in] 0,1+a[\subset R$ such that $f_{n}(c)=0$. Thus we have showed that for any $n \in \mathbb{N}, \exists c=\sqrt[n]{a} \in R$ with $c>0$, i.e. for any $n \in \mathbb{N}, \sqrt[n]{a} \in \operatorname{Pos}(R)$. Then, since $(\operatorname{Pos}(R), \cdot)$ is closed under multiplication, we have that for any $m \in \mathbb{N}_{0}$ and $n \in \mathbb{N}, a^{\frac{m}{n}}=(\sqrt[n]{a})^{m} \in \operatorname{Pos}(R)$, i.e. for any $q \in \mathbb{Q}, a^{q} \in \operatorname{Pos}(R)$.
3) a) Consider some polynomials $p_{0}, \ldots, p_{n} \in \mathbb{R}[X]$, and an infinite subset $U \subset \mathbb{R}$ s.t. for all $x \in U$

$$
f(x):=p_{n}(x)\left(e^{x}\right)^{n}+p_{n-1}(x)\left(e^{x}\right)^{n-1}+\cdots+p_{0}(x)=0 .
$$

Suppose that the p_{i} 's are not all identically 0 , and that n is the biggest exponent of e^{x} for which p_{n} is non-zero on U.
i) If U has no bound, then it contains an infinite subsequence $\left(x_{k}\right)_{k \in \mathbb{N}}$ tending to $\pm \infty$. For instance, consider the case $x_{k} \rightarrow+\infty$ as $k \rightarrow+\infty$. We can write $f(x)$ as follows

$$
f(x)=\left(e^{x}\right)^{n}\left[p_{n}(x)+\frac{p_{n-1}}{e^{x}}+\cdots+\frac{p_{0}}{\left(e^{x}\right)^{n}}\right] .
$$

But, for any $l=1, \ldots, n$, we have

$$
\lim _{k \rightarrow \infty} \frac{p_{n-l}\left(x_{k}\right)}{\left(e^{x_{k}}\right)^{l}}=0
$$

Thus, we get

$$
\lim _{k \rightarrow \infty} f\left(x_{k}\right)=\lim _{k \rightarrow \infty}\left(e^{x_{k}}\right)^{n} p_{n}\left(x_{k}\right)= \pm \infty
$$

which contradicts the fact that for any $k, f\left(x_{k}\right)=0$.
ii) If U is bounded, then it must have an accumulation point since it is infinite in \mathbb{R}. Consider $f(z)$ where z is a complex variable. Note that f is a holomorphic function on the whole complex plane \mathbb{C} as sum and product of $e^{z}, p_{0}(z), \ldots, p_{n}(z)$ which are holomorphic functions on \mathbb{C}. Now we know that $f(z)=0$ for all $z \in U \subset \mathbb{R} \subset \mathbb{C}$ then, applying the Identity Theorem of Complex Analysis, we obtain that $f(z)=0$ for any $z \in \mathbb{C}$. In particular, restricting to the real variable x, we get that $f(x)=0$ for any $x \in \mathbb{R}$. Then, to get a contradiction, we can apply the same argument as in the preceding item i) by setting $U=\mathbb{R}$.
(For a reference the Identity Theorem of Complex Analysis see e.g. [1, Chapter 3, Theorem 1.2 (ii)] and [2, Chapter 10, Corollary to Theorem 10.18].)
b) Suppose that $\Gamma_{\exp }$ is semi-algebraic in \mathbb{R}^{2}. Then, by the proposition about the normal form of semi-algebraic sets of Lecture 11, we have that $\Gamma_{\exp }$ would be a finite union of basic semi-algebraic sets of the form

$$
Z(g) \cap U\left(g_{1}, \ldots, g_{p}\right)
$$

for some $p \in \mathbb{N}$ and $g, g_{1}, \ldots, g_{p} \in \mathbb{R}[X, Y]$.
Now, we proved in part a) of this exercise that for any $0 \not \equiv g \in \mathbb{R}[X, Y]$ the set $Z(g)=\left\{\left(x, e^{x}\right) \in\right.$ $\left.\mathbb{R}^{2}: g\left(x, e^{x}\right)=0\right\}$ is finite. Therefore, $\Gamma_{\exp }$ would be a finite union of finite sets and so a finite set that is a contradiction. Hence, $g \equiv 0$ and so $Z(g)=\mathbb{R}^{2}$. As a consequence, $\Gamma_{\exp }$ would be a finite union of sets $U\left(g_{1}, \ldots, g_{p}\right)$. But in Sheet 7, Exercise 3 b), we proved that for any $h \in \mathbb{R}[X, Y], U(h)$ is open in \mathbb{R}^{2}. Hence, each $U\left(g_{1}, \ldots, g_{p}\right)$ is open in \mathbb{R}^{2}. This would mean that $\Gamma_{\exp }$ contains an open square of \mathbb{R}^{2}, and thus has non-empty interior. As a consequence, $\Gamma_{\exp }$ would contain a vertical segment, which implies that some point in \mathbb{R} has at least two distinct images, contradicting the fact that the exponential is a function.
4) We consider the Motzkin polynomial

$$
m(X, Y)=1-3 X^{2} Y^{2}+X^{2} Y^{4}+X^{4} Y^{2}
$$

a) Let $a:=1, b:=X^{2} Y^{4}$ and $c:=X^{4} Y^{2}$. Then for any $(X, Y) \in \mathbb{R}^{2}$ we have $0 \leq a, b, c \in \mathbb{R}$. Therefore, using the inequality suggested in the hint, we get that for any $(X, Y) \in \mathbb{R}^{2}$

$$
a+b+c \geq 3 \sqrt[3]{a b c}=3 \sqrt[3]{X^{6} Y^{6}}=3 X^{2} Y^{2}
$$

and thus $m(X, Y)=a+b+c-3 X^{2} Y^{2} \geq 0$.
b) Suppose that the Motzkin polynomial can be written as $m=f_{1}^{2}+\cdots+f_{k}^{2}$ for some $k \in \mathbb{N}$ and $f_{i}(X, Y) \in \mathbb{R}[X, Y]$. Then w.l.o.g. we can take $f_{1}(X, Y) \not \equiv 0$ and so by Lemma 2 of Lecture 16 we have

$$
6=\operatorname{deg}(m)=2 \max \left\{\operatorname{deg}\left(f_{i}\right), i=1, \ldots, k\right\}
$$

which implies $\max \left\{\operatorname{deg}\left(f_{i}\right), i=1, \ldots, k\right\}=3$ and so $\operatorname{deg}\left(f_{i}\right) \leq 3$ for $i=1, \ldots, k$. A base of the vector space of all the polynomials of degree ≤ 3 is given by

$$
\left\{1, X, Y, X^{2}, X Y, Y^{2}, X^{3}, X^{2} Y, X Y^{2}, Y^{3}\right\}
$$

If X, X^{2}, X^{3} respectively, appears in some f_{i}, then X^{2}, X^{4}, X^{6} respectively, would appear in $m(X, Y)$ with positive coefficient, which is not the case. So X, X^{2}, X^{3} do not appear in any of the f_{i} 's. With the same argument, we can conclude that Y, Y^{2}, Y^{3} do not appear either in any of the f_{i} 's.
c) Suppose by contradiction that $m=f_{1}^{2}+\cdots+f_{k}^{2}$ for some $k \in \mathbb{N}$ and $f_{i}(X, Y) \in \mathbb{R}[X, Y]$. Then, by the part b) of this exercise, we know that for any $i \in\{1, \ldots, k\}$:

$$
f_{i}(X, Y)=a_{i}+b_{i} X Y+c_{i} X^{2} Y+d_{i} X Y^{2}, \text { for some } a_{i}, b_{i}, c_{i}, d_{i} \in \mathbb{R} .
$$

Then for any $i \in\{1, \ldots, k\}$ we have $f_{i}^{2}(X, Y)=b_{i}^{2} X^{2} Y^{2}+$ other terms, which gives that

$$
m(X, Y)=\sum_{i=1}^{k} f_{i}^{2}(X, Y)=\sum_{i=1}^{k} b_{i}^{2} X^{2} Y^{2}+\text { other terms }
$$

Identifying the terms with same degree, we obtain that $\sum_{i=1}^{k} b_{i}^{2}=-3$ which is clearly false in \mathbb{R}. Contradiction.

In conclusion, the Motzkin polynomial $m(X, Y)$ is non-negative on \mathbb{R}^{2} but is not a s.o.s. in $\mathbb{R}[X, Y]$.
5) Let $n \in \mathbb{N}, \underline{X}:=\left(X_{1}, \ldots, X_{n}\right)$ and $d \in \mathbb{N}_{0}$.
a) Let us first consider the case of an arbitrary monic monomial of degree $\leq d$, i.e. we consider $g_{\underline{i}}(\underline{X}):=\underline{X^{i}}=X_{1}^{i_{1}} \cdots X_{n}^{i_{n}}$, for some multi-index $\underline{i}=\left(i_{1}, \ldots, i_{n}\right) \in \mathbb{N}_{0}^{n}$ such that $i_{1}+\cdots+i_{n} \leq d$. Then we have that

$$
\bar{g}_{\underline{i}}\left(X_{0}, X_{1}, \ldots, X_{n}\right):=X_{0}^{d} g_{\underline{i}}\left(\frac{X_{1}}{X_{0}}, \ldots, \frac{X_{n}}{X_{0}}\right)=X_{0}^{d} \frac{X_{1}^{i_{1}} \cdots X_{n}^{i_{n}}}{X_{0}^{i_{1}+\cdots+i_{n}}}=X_{0}^{d-\left(i_{1}+\cdots+i_{n}\right)} X_{1}^{i_{1}} \cdots X_{n}^{i_{n}}
$$

and so $\operatorname{deg}\left(\bar{g}_{\underline{i}}\right)=d-\left(i_{1}+\cdots+i_{n}\right)+i_{1}+\cdots+i_{n}=d$.
Let us consider now some non-zero polynomial $f \in \mathbb{R}[\underline{X}]$ with $\operatorname{deg}(f) \leq d$, i.e.

$$
f(\underline{X}):=\sum_{\substack{\underline{i}=\left(i_{1}, \ldots, i_{n}\right) \in \mathbb{N}_{d}^{n} \\ i_{1}+\cdots+i_{n} \leq d}} a_{\underline{i}} \underline{X^{\underline{i}}}=\sum_{\substack{\underline{i}=\left(i_{1}, \ldots, i_{n}\right) \in \mathbb{N}_{0}^{n} \\ i_{1}+\cdots+i_{n} \leq d}} a_{i} g_{\underline{i}}(\underline{X}) \quad \text { with } a_{\underline{i}} \in \mathbb{R} .
$$

Then we have have that

$$
\begin{aligned}
\bar{f}\left(X_{0}, X_{1}, \ldots, X_{n}\right):=X_{0}^{d} f\left(\frac{X_{1}}{X_{0}}, \ldots, \frac{X_{n}}{X_{0}}\right) & =X_{0}^{d} \sum_{\substack{i=\left(i_{1}, \ldots, i_{n}\right) \in \mathbb{N}_{0}^{n} \\
i_{1}+\cdots+i_{n} \leq d}} a_{\underline{i}} g_{\underline{i}}\left(\frac{X_{1}}{X_{0}}, \ldots, \frac{X_{n}}{X_{0}}\right) \\
& =\sum_{\substack{\underline{i}=\left(i_{1}, \ldots, i_{n}\right) \in \mathbb{N}_{0}^{n} \\
i_{1}+\cdots+i_{n} \leq d}} a_{\underline{i}} X_{0}^{d} g_{\underline{i}}\left(\frac{X_{1}}{X_{0}}, \ldots, \frac{X_{n}}{X_{0}}\right) \\
& =\sum_{\substack{\underline{i}=\left(i_{1}, \ldots, i_{n}\right) \in \mathbb{N}_{0}^{n} \\
i_{1}+\cdots+i_{n} \leq d}} a_{\underline{i}} \bar{g}_{\underline{i}}\left(X_{0}, X_{1}, \ldots, X_{n}\right) .
\end{aligned}
$$

Hence, since we have already proved that $\operatorname{deg}\left(\bar{g}_{\underline{i}}\right)=d$ for any $\underline{i}=\left(i_{1}, \ldots, i_{n}\right) \in \mathbb{N}_{0}^{n}$ such that $i_{1}+\cdots+i_{n} \leq d$, the polynomial $\bar{f}\left(X_{0}, X_{1}, \ldots, X_{n}\right)$ is homogenous and $\operatorname{deg}(\bar{f})=d$
b) Let us consider the homogenization map

$$
\begin{array}{cccc}
h: & V_{d, n} & \rightarrow & F_{d, n+1} \\
& f\left(X_{1}, \ldots, X_{n}\right) & \mapsto & h(f):=\bar{f}\left(X_{0}, X_{1}, \ldots, X_{n}\right) .
\end{array}
$$

To show that the map h is an isomorphism between vector spaces we need to show that h is an invertible linear map, i.e. there exists h^{-1} and both h and h^{-1} are linear.

- h is linear, since for any $\alpha, \beta \in \mathbb{R}$ and for any $f, g \in V_{d, n}$ we get:

$$
\begin{aligned}
h(\alpha f(\underline{X})+\beta g(\underline{X})) & =X_{0}^{d}\left(\alpha f\left(\frac{X_{1}}{X_{0}}, \ldots, \frac{X_{n}}{X_{0}}\right)+\beta g\left(\frac{X_{1}}{X_{0}}, \ldots, \frac{X_{n}}{X_{0}}\right)\right) \\
& =\alpha\left(X_{0}^{d} f\left(\frac{X_{1}}{X_{0}}, \ldots, \frac{X_{n}}{X_{0}}\right)\right)+\beta\left(X_{0}^{d} g\left(\frac{X_{1}}{X_{0}}, \ldots, \frac{X_{n}}{X_{0}}\right)\right) \\
& =\alpha \bar{f}\left(X_{0}, X_{1}, \ldots, X_{n}\right)+\beta \bar{g}\left(X_{0}, X_{1}, \ldots, X_{n}\right) \\
& =\alpha h(f(\underline{X}))+\beta h(g(\underline{X})) .
\end{aligned}
$$

- The compositional inverse h^{-1} of h is given by:

$$
\begin{array}{lccc}
h^{-1}: & F_{d, n+1} & \rightarrow & V_{d, n} \\
& \bar{f}\left(X_{0}, X_{1}, \ldots, X_{n}\right) & \mapsto & h^{-1}(\bar{f}):=\bar{f}\left(1, X_{1}, \ldots, X_{n}\right) .
\end{array}
$$

which is clearly linear.
c) Let $d \in \mathbb{N}_{0}$ be even. First we want to show that $f \geq 0$ on \mathbb{R}^{n} implies $\bar{f} \geq 0$ on \mathbb{R}^{n+1}. Let $\left(x_{0}, x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n+1}$ then we need to distinguish two cases:
Case 1: $x_{0} \neq 0$. Then, by definition, $\bar{f}\left(x_{0}, x_{1}, \ldots, x_{n}\right)=x_{0}^{d} f\left(\frac{x_{1}}{x_{0}}, \ldots, \frac{x_{n}}{x_{0}}\right)$. By assumption, $f\left(\frac{x_{1}}{x_{0}}, \ldots, \frac{x_{n}}{x_{0}}\right) \geq 0$ and, since d is even, $x_{0}^{d}>0$. Hence, $\bar{f}\left(x_{0}, x_{1}, \ldots, x_{n}\right) \geq 0$.
Case 2: $x_{0}=0$. Since any polynomial is a continuous map, we have that $\bar{f}\left(0, x_{1}, \ldots, x_{n}\right)=$ $\lim _{\epsilon \rightarrow 0} \bar{f}\left(\epsilon, x_{1}, \ldots, x_{n}\right)$. But for any $\epsilon \in \mathbb{R}^{\times}$, we have just showed that $\bar{f}\left(\epsilon, x_{1}, \ldots, x_{n}\right) \geq 0$. Thus, $\bar{f}\left(0, x_{1}, \ldots, x_{n}\right) \geq 0$.
Let us show now that $\bar{f} \geq 0$ on \mathbb{R}^{n+1} implies $f \geq 0$ on \mathbb{R}^{n}. This follows just by noting that for any $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, we have $f\left(x_{1}, \ldots, x_{n}\right)=\bar{f}\left(1, x_{1}, \ldots, x_{n}\right)$, which is non-negative by assumption.
d) Suppose that $f=\sum_{i=1}^{k} f_{i}^{2}$ for some $k \in \mathbb{N}$ and some non-zero f_{i} 's in $\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$. We have that $\operatorname{deg}\left(f_{i}\right) \leq d / 2$, since $\operatorname{deg}(f) \leq d$. Then
$\bar{f}\left(X_{0}, X_{1}, \ldots, X_{n}\right)=X_{0}^{d} f\left(\frac{X_{1}}{X_{0}}, \ldots, \frac{X_{n}}{X_{0}}\right)=\sum_{i=1}^{k}\left[X_{0}^{d / 2} f_{i}\left(\frac{X_{1}}{X_{0}}, \ldots, \frac{X_{n}}{X_{0}}\right)\right]^{2}=\sum_{i=1}^{k} \bar{f}_{i}\left(X_{0}, X_{1}, \ldots, X_{n}\right)^{2}$
Note that by the part a) of this exercise we know that each $\bar{f}_{i} \in \mathbb{R}\left[X_{0}, X_{1}, \ldots, X_{n}\right]$ is homogeneous of degree $=d / 2$.
Conversely, suppose that $\bar{f}\left(X_{0}, X_{1}, \ldots, X_{n}\right)=\sum_{i=1}^{k} s_{i}\left(X_{0}, \ldots, X_{n}\right)^{2}$ for some $k \in \mathbb{N}$ and some non-zero s_{i} 's in $\mathbb{R}\left[X_{0}, X_{1}, \ldots, X_{n}\right]$. Then

$$
f\left(X_{1}, \ldots, X_{n}\right)=\bar{f}\left(1, X_{1}, \ldots, X_{n}\right)=\sum_{i=1}^{k} s_{i}\left(1, X_{1}, \ldots, X_{n}\right)^{2}=\sum_{i=1}^{k} f_{i}\left(X_{1}, \ldots, X_{n}\right)^{2}
$$

where $f_{i}(\underline{X}):=s_{i}\left(1, X_{1}, \ldots, X_{n}\right) \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$.
e) The polynomial \bar{m} is the homogenization of the Motzkin polynomial m introduced in Exercise 4. There we proved that m is PSD but not sum of squares in $\mathbb{R}[X, Y]$. Then by the parts c) and d) of this exercise we have also that the form \bar{m} is PSD but not sum of squares in $\mathbb{R}[X, Y, Z]$.

References

[1] S. Lang. Complex Analysis. Springer-Verlag, New York, fourth edition, 1999.
[2] W. Rudin. Real and Complex Analysis. McGraw-Hill, New York, second edition, 1974.

