Universität Konstanz Fachbereich Mathematik und Statistik Prof. Dr. Salma Kuhlmann Dr. Maria Infusino Dr. Charu Goel

REAL ALGEBRAIC GEOMETRY–WS 2014/15

Solution to Exercise 1 – Sheet 5

Prove that there are 2^{\aleph_0} pairwise distinct Archimedean orderings on $\mathbb{Q}(x)$. (Recall that 2^{\aleph_0} is the cardinality of the continuum.)

Proof.

Let $\mathcal{Q}(\mathbb{Q}(x))$ be the collection of all orderings on $\mathbb{Q}(x)$. We aim to prove that

$$|\mathcal{Q}(\mathbb{Q}(x))| = 2^{\aleph_0}.$$

Let us denote by $(\mathbb{R}, <_{\mathbb{R}})$ the set \mathbb{R} with its unique ordering $\sum \mathbb{R}^2$ and by $\tilde{\mathbb{Q}}^r$ the relative algebraic closure of \mathbb{Q} in \mathbb{R} . Consider $e, \pi \in \mathbb{R} \setminus \tilde{\mathbb{Q}}^r$ and the corresponding extensions of \mathbb{Q} , i.e. $\mathbb{Q}(e)$ and $\mathbb{Q}(\pi)$.

Since $\mathbb{Q}(e) \subset \mathbb{R}$, we have that $P_e := \mathbb{Q}(e) \cap \sum \mathbb{R}^2$ is an ordering on $\mathbb{Q}(e)$ and we denote by $(\mathbb{Q}(e), <_{P_e})$ the correspondent ordered field. In the same way, $P_{\pi} := \mathbb{Q}(\pi) \cap \sum \mathbb{R}^2$ is an ordering on $\mathbb{Q}(\pi)$ and we denote by $(\mathbb{Q}(\pi), <_{P_{\pi}})$ the correspondent ordered field. Note that both the orderings P_e and P_{π} are Archimedean since $(\mathbb{R}, <_{\mathbb{R}})$ is an Archimedean field.

Consider now the following field homomorphism $\varphi : \mathbb{Q}(e) \to \mathbb{Q}(\pi)$ defined by $\varphi(q) = q$ for any $q \in \mathbb{Q}$ and $\varphi(e) = \pi$. Note that φ is actually a field isomorphism, since e and π are both transcendental over \mathbb{Q} and so $\mathbb{Q}(e)$ and $\mathbb{Q}(\pi)$ are both isomorphic to $\mathbb{Q}(x)$.

Let Q_{π} be the cone given by the pull-back of P_{π} through φ , i.e.

$$Q_{\pi} := \varphi^{-1}(P_{\pi}) = \{ x \in \mathbb{Q}(e) : \varphi(x) \in P_{\pi} \}.$$

Then the cone Q_{π} is an ordering on $\mathbb{Q}(e)$ (see Sheet 2–Ex 3.e) and we denote by $(\mathbb{Q}(e), <_{Q_{\pi}})$ the corresponding ordered field. In other words, for any $x, y \in \mathbb{Q}(e)$ we have $x <_{Q_{\pi}} y$ if and only if $\varphi(x) <_{P_{\pi}} \varphi(y)$. Note that Q_{π} is also Archimedean since P_{π} is Archimedean. Indeed, for any $r \in \mathbb{Q}(e)$ there exists $n \in \mathbb{N}$ such that $\varphi(r) <_{P_{\pi}} n = \varphi(n)$, which is equivalent to $r <_{Q_{\pi}} n$ by definition of Q_{π} .

Let us show now that $Q_{\pi} \neq P_e$.

Since \mathbb{Q} is dense in \mathbb{R} , there exists $q \in \mathbb{Q}$ such that $e <_{\mathbb{R}} q <_{\mathbb{R}} \pi$. In particular, this gives that $e <_{P_e} q$ and $q <_{P_{\pi}} \pi$. Note that by the definition of φ and of Q_{π} we get that:

$$q <_{P_{\pi}} \pi \iff \varphi(q) <_{P_{\pi}} \varphi(e) \iff q <_{Q_{\pi}} e.$$

Therefore, we proved that $e <_{P_e} q$ but $q <_{Q_{\pi}} e$. Hence, we have constructed two distinct Archimedean orderings Q_{π} and P_e on $\mathbb{Q}(e)$.

We can repeat the same procedure replacing π by any other $t \neq e$ transcendental over \mathbb{Q} to obtain a new Archimedean ordering Q_t on $\mathbb{Q}(e)$ which is different from P_e . In this way, we have explicitly constructed as many pairwise distinct Archimedean orderings on $\mathbb{Q}(e)$ as the number of transcendentals over \mathbb{Q} . In Sheet 4–Ex 3.c, we proved that the field of real algebraic numbers is countable, i.e. $|\tilde{\mathbb{Q}}^r| = \aleph_0$. Therefore, recalling that $|\mathbb{R}| = 2^{\aleph_0}$, we have that $|\mathbb{R} \setminus \tilde{\mathbb{Q}}^r| = 2^{\aleph_0}$, i.e. the set of transcendental numbers has cardinality 2^{\aleph_0} . So far, we showed that there exist at least 2^{\aleph_0} pairwise distinct Archimedean orderings on $\mathbb{Q}(e)$ and so on $\mathbb{Q}(x)$, since $\mathbb{Q}(x) \cong \mathbb{Q}(e)$, i.e. $|\mathcal{Q}(\mathbb{Q}(x))| \ge 2^{\aleph_0}$.

On the other hand, any ordering on $\mathbb{Q}(x)$ is a subset of $\mathbb{Q}(x)$ and $|\mathbb{Q}(x)| = \aleph_0$. Hence, $|\mathcal{Q}(\mathbb{Q}(x))| \leq |\mathcal{P}(\mathbb{Q}(x))| = 2^{\aleph_0}$, where $\mathcal{P}(\mathbb{Q}(x))$ denotes the power set of $\mathbb{Q}(x)$.