Universität Konstanz
Fachbereich Mathematik und Statistik
Prof. Dr. Salma Kuhlmann
Dr. Maria Infusino
Dr. Charu Goel

REAL ALGEBRAIC GEOMETRY-WS 2014/15

Solution to Exercise 1 - Sheet 5

Prove that there are $2^{\aleph_{0}}$ pairwise distinct Archimedean orderings on $\mathbb{Q}(x)$. (Recall that $2^{\aleph_{0}}$ is the cardinality of the continuum.)

Proof.
Let $\mathcal{Q}(\mathbb{Q}(x))$ be the collection of all orderings on $\mathbb{Q}(x)$. We aim to prove that

$$
|\mathcal{Q}(\mathbb{Q}(x))|=2^{\aleph_{0}} .
$$

Let us denote by $\left(\mathbb{R},<_{\mathbb{R}}\right)$ the set \mathbb{R} with its unique ordering $\sum \mathbb{R}^{2}$ and by $\tilde{\mathbb{Q}}^{r}$ the relative algebraic closure of \mathbb{Q} in \mathbb{R}. Consider $e, \pi \in \mathbb{R} \backslash \tilde{\mathbb{Q}}^{r}$ and the corresponding extensions of \mathbb{Q}, i.e. $\mathbb{Q}(e)$ and $\mathbb{Q}(\pi)$.

Since $\mathbb{Q}(e) \subset \mathbb{R}$, we have that $P_{e}:=\mathbb{Q}(e) \cap \sum \mathbb{R}^{2}$ is an ordering on $\mathbb{Q}(e)$ and we denote by $\left(\mathbb{Q}(e),<_{P_{e}}\right)$ the correspondent ordered field. In the same way, $P_{\pi}:=\mathbb{Q}(\pi) \cap \sum \mathbb{R}^{2}$ is an ordering on $\mathbb{Q}(\pi)$ and we denote by $\left(\mathbb{Q}(\pi),<_{P_{\pi}}\right)$ the correspondent ordered field. Note that both the orderings P_{e} and P_{π} are Archimedean since $\left(\mathbb{R},<_{\mathbb{R}}\right)$ is an Archimedean field.

Consider now the following field homomorphism $\varphi: \mathbb{Q}(e) \rightarrow \mathbb{Q}(\pi)$ defined by $\varphi(q)=q$ for any $q \in \mathbb{Q}$ and $\varphi(e)=\pi$. Note that φ is actually a field isomorphism, since e and π are both transcendental over \mathbb{Q} and so $\mathbb{Q}(e)$ and $\mathbb{Q}(\pi)$ are both isomorphic to $\mathbb{Q}(x)$.

Let Q_{π} be the cone given by the pull-back of P_{π} through φ, i.e.

$$
Q_{\pi}:=\varphi^{-1}\left(P_{\pi}\right)=\left\{x \in \mathbb{Q}(e): \varphi(x) \in P_{\pi}\right\} .
$$

Then the cone Q_{π} is an ordering on $\mathbb{Q}(e)$ (see Sheet $2-\mathrm{Ex} 3 . \mathrm{e}$) and we denote by $\left(\mathbb{Q}(e),<_{Q_{\pi}}\right)$ the corresponding ordered field. In other words, for any $x, y \in \mathbb{Q}(e)$ we have $x<_{Q_{\pi}} y$ if and only if $\varphi(x)<_{P_{\pi}} \varphi(y)$. Note that Q_{π} is also Archimedean since P_{π} is Archimedean. Indeed, for any $r \in \mathbb{Q}(e)$ there exists $n \in \mathbb{N}$ such that $\varphi(r)<_{P_{\pi}} n=\varphi(n)$, which is equivalent to $r<_{Q_{\pi}} n$ by definition of Q_{π}.

Let us show now that $Q_{\pi} \neq P_{e}$.
Since \mathbb{Q} is dense in \mathbb{R}, there exists $q \in \mathbb{Q}$ such that $e<_{\mathbb{R}} q<_{\mathbb{R}} \pi$. In particular, this gives that $e<_{P_{e}} q$ and $q<_{P_{\pi}} \pi$. Note that by the definition of φ and of Q_{π} we get that:

$$
q<_{P_{\pi}} \pi \Longleftrightarrow \varphi(q)<_{P_{\pi}} \varphi(e) \Longleftrightarrow q<_{Q_{\pi}} e
$$

Therefore, we proved that $e<_{P_{e}} q$ but $q<_{Q_{\pi}} e$. Hence, we have constructed two distinct Archimedean orderings Q_{π} and P_{e} on $\mathbb{Q}(e)$.

We can repeat the same procedure replacing π by any other $t \neq e$ transcendental over \mathbb{Q} to obtain a new Archimedean ordering Q_{t} on $\mathbb{Q}(e)$ which is different from P_{e}. In this way, we have explicitly constructed as many pairwise distinct Archimedean orderings on $\mathbb{Q}(e)$ as the number of transcendentals over \mathbb{Q}. In Sheet $4-$ Ex 3.c, we proved that the field of real algebraic numbers is countable, i.e. $\left|\tilde{\mathbb{Q}}^{r}\right|=\aleph_{0}$. Therefore, recalling that $|\mathbb{R}|=2^{\aleph_{0}}$, we have that $\left|\mathbb{R} \backslash \tilde{\mathbb{Q}}^{r}\right|=2^{\aleph_{0}}$, i.e. the set of transcendental numbers has cardinality $2^{\aleph_{0}}$.
So far, we showed that there exist at least $2^{\aleph_{0}}$ pairwise distinct Archimedean orderings on $\mathbb{Q}(e)$ and so on $\mathbb{Q}(x)$, since $\mathbb{Q}(x) \cong \mathbb{Q}(e)$, i.e. $|\mathcal{Q}(\mathbb{Q}(x))| \geq 2^{\aleph_{0}}$.

On the other hand, any ordering on $\mathbb{Q}(x)$ is a subset of $\mathbb{Q}(x)$ and $|\mathbb{Q}(x)|=\aleph_{0}$. Hence, $|\mathcal{Q}(\mathbb{Q}(x))| \leq|\mathcal{P}(\mathbb{Q}(x))|=2^{\aleph_{0}}$, where $\mathcal{P}(\mathbb{Q}(x))$ denotes the power set of $\mathbb{Q}(x)$.

