Positive polynomials and sum of squares in formal power series rings

Siqi Yao
Master Seminar on Real Algebraic Geometry
University of Konstanz

Abstract

Let $\mathbb{R}[[\underline{X}]]=\mathbb{R}\left[\left[X_{1}, \ldots, X_{n}\right]\right]$ be the ring of formal power series and let $f \in \mathbb{R}[[\underline{X}]]$ be positive at every ordering of the Laurent series ring $\mathbb{R}((\underline{X}))$. We want to examine the question of whether f is a sum of squares. Using some basic characteristics of the power series rings, it is quite easy to prove that this holds when $n=1$ and it does not hold when $n \geq 3$. In the case $n=2$ the result also holds but the proof requires more advanced tools.

