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The primary sources for these notes are [11] and [3]. However, we also
referred to [2] and [13]. The references to results from the theory of topological
vector spaces appear in the following according to the enumeration used in [9]
and [10].
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Introduction

The theory of topological algebras has its first roots in the famous works by
Gelfand on“normed rings” of 1939 (see [4, 5, 6, 7]) followed by about fifteen
years of successful activity on this subject which culminated in the publica-
tion of the book dealing with the commutative theory and its applications.
From there the theory of normed and Banach algebras gained more and more
importance (see [?] for a thorough account) until, with the development of the
theories of topological rings and topological vector spaces, the investigation of
general topological algebras became unavoidable. On the one hand, there was
a great interest in better understanding which are the advantages of having
in the same structure both the properties of topological rings and topologi-
cal vector spaces. On the other hand it was desirable to understand how far
one can go beyond normed and Banach algebras still retaining their distin-
guished features. The need for such an extension has been apparent since the
early days of the theory of general topological algebras, more precisely with
the introduction of locally multiplicative convex algebras by Arens in [1] and
Michael in [12] (they introduced the notion independently). Moreover, it is
worth noticing that the previous demand was due not only to a theoretical
interest but also to concrete applications of this general theory to a variety of
other disciplines (such as quantum filed theory and more in general theoretical
physics). This double impact of the theory of topological algebras is probably
the reason for which, after almost 80 years from its foundation, this is still an
extremely active subject which is indeed recently enjoying very fast research
developments.
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Chapter 1

General Concepts

In this chapter we are going to consider vector spaces over the field K of real
or complex numbers which is given the usual euclidean topology defined by
means of the modulus.

1.1 Brief reminder about algebras over a field

Let us first recall the basic vocabulary needed to discuss about algebras.

Definition 1.1.1. A K−algebra A is a vector space over K equipped with an
additional binary operation which is bilinear:

A×A → A
(a, b) 7→ a · b

called vector multiplication.

In other words, (A,+, ·) is a ring such that the vector operations are both
compatible with the multiplication by scalars in K.

If a K−algebra has an associative (resp. commutative) vector multipli-
cation then it is said to be an associative (resp. commutative ) K−algebra.
Furthermore, if a K−algebra A has an identity element for the vector multi-
plication (called the unity of A), then A is referred to as unital.

Examples 1.1.2.
1. The real numbers form a unital associative commutative R−algebra.
2. The complex numbers form a unital associative commutative R−algebra.
3. Given n ∈ N, the polynomial ring R[x1, . . . , xn] (real coefficients and n

variables) equipped with pointwise addition and multiplication is a unital
associative commutative R−algebra.
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1. General Concepts

4. The space C(X) of K−valued continuous function on a topological space
X equipped with pointwise addition and multiplication is a unital asso-
ciative commutative K−algebra.

5. Given n ∈ N, the ring Rn×n of real square matrices of order n equipped
with the standard matrix addition and matrix multiplication is a unital
associative R−algebra but not commutative.

6. The set of quaternions H := {a + bi + cj + dk : a, b, c, d ∈ R} equipped
with the componentwise addition and scalar multiplication is a real vector
space with basis {1, i, j, k}. Let us equip H with the Hamilton product
which is defined first on the basis elements by setting

i · 1 = 1 = 1 · i, j · 1 = 1 = 1 · j, k · 1 = 1 = 1 · k, i2 = j2 = k2 = −1

ij = k, ji = −k, jk = i, kj = −i, ki = j, ik = −j,

and then it is extended to all quaternions by using the distributive prop-
erty and commutativity with real quaternions. Note that the multiplica-
tion formulas are equivalent to i2 = j2 = k2 = ijk = −1.
Then H is a unital, associative but non-commutative R−algebra since
e.g. ij = k but ji = −k.

7. The three-dimensional Euclidean space R3 equipped with componentwise
addition and scalar multiplication and with the vector cross product
∧ as multiplication is a non-unital, non-associative, non-commutative
R−algebra. Non-associative since e.g. (i ∧ j) ∧ j = k ∧ j = −i but
i ∧ (j ∧ j) = i ∧ 0 = 0, non-commutative since e.g. i ∧ j = k but
j ∧ i = −k and non-unital because if there was a unit element u then for
any x ∈ R3 we would have u∧ x = x = x∧ u, which is equivalent to say
that x is perpendicular to itself and so that x = 0. (Here i = (1, 0, 0),
j = (0, 1, 0) and k = (0, 0, 1)).
If we replace the vector cross product by the componentwise multiplica-
tion then R3 becomes a unital associative commutative R−algebra with
unity (1, 1, 1).

Recall that:

Definition 1.1.3. Let A be a K−algebra. Then

1. A subalgebra B of A is a linear subspace of A closed under vector mul-
tiplication, i.e. ∀b, b′ ∈ B, bb′ ∈ B.

2. A left ideal (resp. right ideal) I of A is a linear subspace of A such that
∀a ∈ A,∀b ∈ I, ab ∈ I (resp. ∀a ∈ A,∀b ∈ I, ba ∈ I. An ideal of A is
a linear subspace of A which is simultaneously left and right ideal of A.
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3. A homomorphism between two K−algebras (A, ·) and (B, ∗) is a linear
map ϕ : A → B such that ϕ(a · b) = ϕ(a) ∗ ϕ(b) for all a, b ∈ A. Its
kernel Ker(ϕ) is an ideal of A and its image ϕ(A) is a subalgebra of
B. A homomorphism between two unital K−algebras has the additional
property that ϕ(1A) = 1B where 1A and 1B are respectively the unit
element in A and the unit element in B.

4. The vector space A1 = K×A equipped with the following operations:

(λ, a) + (µ, b) := (λ+ µ, a+ b), ∀λ, µ ∈ K, a, b ∈ A

µ(λ, a) := (µλ, µa), ∀λ, µ ∈ K, a ∈ A

(λ, a) · (µ, b) := (λµ, λb+ µa+ ab), ∀λ, µ ∈ K, a, b ∈ A

is called the unitization of A.

Proposition 1.1.4. A K−algebra A can be always embedded in its unitization
A1 which is a unital algebra.

Proof. It is easy to check that A1 fulfils the assumptions of K−algebra and
that the map

e : A→ A1, a 7→ (0, a)

is an injective homomorphism, i.e. a monomorphism. The unit element of
A1 is given by (1, o) as (λ, a) · (1, o) = (λ, a) = (1, o) · (λ, a), ∀λ ∈ K, a ∈ A.
Identifying a and e(a) for any a ∈ A, we can see A as a subalgebra of A1.

1.2 Definition and main properties of a topological algebra

Definition 1.2.1. A K−algebra A is called a topological algebra (TA)if A
is endowed with a topology τ which makes the vector addition and the scalar
multiplication both continuous and the vector multiplication separately contin-
uous. (Here K is considered with the euclidean topology and, A×A and K×A
with the corresponding product topologies.)

If the vector multiplication in a TA is jointly continuous then we just
speak of a TA with a continuous multiplication. Recall that jointly continuous
implies separately continuous but the converse is false in general. In several
books, the definition of TA is given by requiring a jointly continuous vector
multiplication but we prefer here the more general definition according to [11].

An alternative definition of TA can be given in connection to TVS. Let us
recall the definition:
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1. General Concepts

Definition 1.2.2. A vector space X over K is called a topological vector space
(TVS)if X is provided with a topology τ which is compatible with the vector
space structure of X, i.e. τ makes the vector addition and the scalar multi-
plication both continuous. (Here K is considered with the euclidean topology
and, X ×X and K×X with the corresponding product topologies.)

Then it is clear that

Definition 1.2.3. A topological algebra over K is a TVS over K equipped
with a separately continuous vector multiplication.

Therefore, TAs inherit all the advantageous properties of TVS. In the
following we will try to characterize topologies which make a K−algebra into
a TA. To do that we will make use of the results already available from the
theory of TVS and see the further properties brought in by the additional
structure of being a TA.

In this spirit, let us first recall that the topology of a TVS is always trans-
lation invariant that means, roughly speaking, that any TVS topologically
looks about any point as it does about any other point. More precisely:

Proposition 1.2.4.
The filter 1 F(x) of neighbourhoods of x in a TVS X coincides with the family
of the sets O + x for all O ∈ F(o), where F(o) is the filter of neighbourhoods
of the origin o (i.e. neutral element of the vector addition).

(see [9, Corollary 2.1.9]]). This result easily implies that:

Proposition 1.2.5. Let X,Y be two t.v.s. and f : X → Y linear. The map
f is continuous if and only if f is continuous at the origin o.

Proof. (see [9, Corollary 2.1.15-3]]).

Thus, the topology of a TVS (and in particular the one of a TA) is com-
pletely determined by the filter of neighbourhoods of any of its points, in
particular by the filter of neighbourhoods of the origin o or, more frequently,
by a base of neighbourhoods of the origin o. We would like to derive a criterion
on a collection of subsets of a K−algebra A which ensures that it is a basis of
neighbourhoods of the origin o for some topology τ making (A, τ) a TA. To
this aim let us recall the following result from TVS theory:

1 A filter on a set X is a family F of subsets of X which fulfils the following conditions:
(F1) the empty set ∅ does not belong to F
(F2) F is closed under finite intersections
(F3) any subset of X containing a set in F belongs to F
(c.f. [9, Section 1.1.1]]).
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1.2. Definition and main properties of a topological algebra

Theorem 1.2.6. A filter F of a vector space X over K is the filter of neigh-
bourhoods of the origin for some topology τ making X into a TVS iff

1. The origin belongs to every set U ∈ F
2. ∀U ∈ F , ∃V ∈ F s.t. V + V ⊂ U
3. ∀U ∈ F , ∀λ ∈ K with λ 6= 0 we have λU ∈ F
4. ∀U ∈ F , U is absorbing.
5. ∀U ∈ F , ∃V ∈ F balanced s.t. V ⊂ U .

Proof. (see [9, Theorem 2.1.10]).

Recall that:

Definition 1.2.7. Let U be a subset of a vector space X.
1. U is absorbing (or radial) if ∀x ∈ X ∃ρ > 0 s.t. ∀λ ∈ K with |λ| ≤ ρ

we have λx ∈ U .
2. U is balanced (or circled) if ∀x ∈ U , ∀λ ∈ K with |λ| ≤ 1 we have

λx ∈ U .

(see also [9, Examples 2.1.12, Proposition 2.1.13]).
A first interesting consequence of Theorem 1.2.6 for TA is that

Lemma 1.2.8. For a TVS to be a TA with continuous multiplication it is
necessary and sufficient that the vector multiplication is jointly continuous at
the point (o, o).

Proof.
If A is a TA with continuous multiplication, then clearly the multiplication is
jointly continuous everywhere and so in particular at (o, o). Conversely, let
A be a TVS with multiplication M jointly continuous at the point (o, o) and
denote by F(o) the filter of neighbourhoods of the origin in A. Let (o, o) 6=
(a, b) ∈ A × A and U ∈ F(o). Then Theorem 1.2.6 guarantees that there
exists V ∈ F(o) balanced and such that V + V + V ⊂ U . Moreover, the joint
continuity of the multiplication at (o, o) gives that there exists U1, U2 ∈ F(0)
such that U1U2 ⊂ V . Taking W := U1 ∩ U2 we have WW ⊆ V . Also, since
W is absorbing, there exists ρ > 0 s.t. for all λ ∈ K with |λ| ≤ ρ we have

λa ∈W , λb ∈W . For θ :=

{
ρ if ρ ≤ 1
1
ρ if ρ > 1

, we have both |θ| ≤ 1 and |θ| ≤ ρ.

Hence,

(a+ θW )(b+ θW ) ⊆ ab+ aθW +Wθb+ θ2WW ⊆ ab+WW +WW + θ2V

⊆ ab+ V + V + V ⊆ ab+ U.

We showed that ∃N ∈ F(o) such that M−1(ab+U) ⊇ (a+N)×(b+N) which
proves that joint continuity of M at the point (a, b).
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1. General Concepts

We are now ready to give a characterization for a basis2 of neighbourhoods
of the origin in a TA (resp. TA with continuous multiplication).

Theorem 1.2.9. A non-empty collection B of subsets of a K−algebra A is a
basis of neighbourhoods of the origin for some topology making A into a TA if
and only if

a) B is a basis of neighbourhoods of o for a topology making A into a TVS.

b) ∀U ∈ B, ∀a ∈ A, ∃V,W ∈ B s.t. aV ⊆ U and Wa ⊆ U .

Proof.
Let (A, τ) be a TA and B be a basis of neighbourhoods of the origin of A.
Then (A, τ) is in particular a TVS and so (a) holds. Also by definition of TA,
the multiplication is separately continuous which means for any a ∈ A the
maps La(y) = ay and Ra(y) = ya are both continuous everywhere in A. Then
by Proposition 1.2.5 they are continuous at o, i.e. ∀U ∈ B, ∀a ∈ A, ∃V,W ∈ B
s.t. V ⊂ L−1a (U) and W ⊂ R−1a (U), i.e. aV ⊆ U and Wa ⊆ U , that is (b).

Conversely, suppose that B is a collection of subsets of a K−algebra A
fulfilling (a) and (b). Then (a) guarantees that there exists a topology τ having
B as basis of neighbourhoods of o and such that (A, τ) is a TVS. Hence, as
we have already observed, (b) means that both La and Ra are continuous at o
and so by Proposition 1.2.5 continuous everywhere. This yields that the vector
multiplication on A is separately continuous and so that (A, τ) is a TA.

Theorem 1.2.10. A non-empty collection B of subsets of a K−algebra A is
a basis of neighbourhoods of the origin for some topology making A into a TA
with continuous multiplication if and only if

a) B is a basis of neighbourhoods of o for a topology making A into a TVS.

b’) ∀U ∈ B,∃V ∈ B s.t. V V ⊆ U .

Proof. (Sheet 1).

Examples 1.2.11.

1. Every K−algebra A endowed with the trivial topology τ (i.e. τ = {∅, A})
is a TA.

2A family B of subsets of X is called a basis of a filter F if

1. B ⊆ F
2. ∀A ∈ F , ∃B ∈ B s.t. B ⊆ A

or equivalently if ∀A,B ∈ B, ∃C ∈ B s.t. C ⊆ A ∩B (c.f. [9, Section 1.1.1])
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2. Let S be a non-emptyset and KS be the set of all functions from S to
K equipped with pointwise operations and the topology ω of pointwise
convergence (or simple convergence), i.e. the topology generated by

B := {Wε(x1, . . . , xn) : n ∈ N, x1, . . . , xn ∈ S, ε > 0},

where Wε(x1, . . . , xn) := {f ∈ KS : f(xi) ∈ Bε(0), i = 1, . . . , n} and
Bε(0) = {k ∈ K : |k| ≤ ε}. Then (KS , ω) is a TA with continuous
multiplication. Indeed, for any n ∈ N, x1, . . . , xn ∈ S, ε > 0 we have that

W√ε(x1, . . . , xn)W√ε(x1, . . . , xn)={fg : f(xi), g(xi) ∈ B√ε(0), i = 1, . . . , n}
⊆{h : h(xi) ∈ Bε(0), i = 1, . . . , n}
=Wε(x1, . . . , xn).

As it is also easy to show that (KS , ω) is a TVS, the conclusion follows
by Theorem 1.2.10.
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