
3.3. Projective limit algebras

Proposition 3.3.3. Let E be a vector space over K endowed with the pro-
jective topology ⌧proj w.r.t. the family {(E↵, ⌧↵), f↵, I}, where each (E↵, ⌧↵)
is a TVS over K and each f↵ a linear mapping from E to E↵. Then ⌧proj
is Hausdor↵ if and only if for each 0 6= x 2 E, there exists an ↵ 2 I and a
neighbourhood U↵ of the origin in (E↵, ⌧↵) such that f↵(x) /2 U↵.

Proof.
Suppose that (E, ⌧proj) is Hausdor↵ and let 0 6= x 2 E. By Proposition 1.3.2,
there exists a neighbourhood U of the origin in E not containing x. Then, by
(3.7), there exists a finite subset F ✓ I and, for any ↵ 2 F , there exists U↵

neighbourhood of the origin in (E↵, ⌧↵) s.t.
T

↵2F f�1

↵ (U↵) ✓ U . Hence, as x /2
U , there exists ↵ 2 F s.t. x /2 f�1

↵ (U↵), i.e. f↵(x) /2 U↵. Conversely, suppose
that there exists ↵ 2 I and a neighbourhood V↵ of the origin in (E↵, ⌧↵)
such that f↵(x) /2 V↵. Let B↵ be a basis of neighbourhoods of the origin in
(E↵, ⌧↵). Then there exists U↵ 2 B↵ such that U↵ ✓ V↵. Hence, x /2 f�1

↵ (U↵)
and f�1

↵ (U↵) 2 Bproj (see (3.7)), that is, we have found a neighbourhood of
the origin in (E, ⌧proj) not containing x. This implies, by Proposition 1.3.2,
that ⌧proj is a Hausdor↵ topology.

Coming back to the context of TAs, we have the following result.

Theorem 3.3.4. Let E be a K�algebra endowed with the projective topology
⌧proj w.r.t. the family {(E↵, ⌧↵), f↵, I}, where each (E↵, ⌧↵) is a TA over K
(resp. a TA with continuous multiplication) and each f↵ a homomorphism
from E to E↵. Then (E, ⌧proj) is a TA (resp. a TA with continuous multipli-
cation).

Proof.
As each (E↵, ⌧↵) is a TVS, it is easy to verify that (E, ⌧proj) is a TVS. There-
fore, it remains to show that left and right multiplication are both continuous.
For any x 2 E, consider the left multiplication `x : E ! E. For each ↵ 2 I
we get that:

8 y 2 E, (f↵ � `x)(y) = f↵(xy) = f↵(x)f↵(y) = `f↵(x)(f↵(y)) = (`f↵(x) � f↵)(y).
(3.8)

Since f↵(x) 2 E↵ and (E↵, ⌧↵) is a TA, we have that `f↵(x) : E↵ ! E↵ is
continuous and so `f↵(x) � f↵ is continuous. Hence, by (3.8), we have that
f↵ � `x is continuous for all ↵ 2 I and so by the previous lemma we have that
`x is continuous. Similarly, we get the continuity of the right multiplication
in E. Hence, (E, ⌧proj) is a TA.
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3. Further special classes of topological algebras

If each (E↵, ⌧↵) is a TA with continuous multiplication, then by combining
Remark 3.3.1 and Proposition 1.4.1 we can conclude that (E, ⌧proj) is a TA.

Proposition 3.3.5. Let E be a K�algebra endowed with the projective topol-
ogy ⌧proj w.r.t. the family {(E↵, ⌧↵), f↵, I}, where each (E↵, ⌧↵) is an lc (resp.
lmc) algebra over K and each f↵ a homomorphism from E to E↵. Then
(E, ⌧proj) is an lc (resp. lmc) algebra.

Proof.
By assumption, we know that each (E↵, ⌧↵) is a TA and so Theorem 3.3.4
ensures that (E, ⌧proj) is a TA, too. Moreover, as each (E↵, ⌧↵) is an lc (resp.
lmc) algebra, there exists a basis B↵ of convex (resp. m-convex) neighbour-
hoods of the origin in (E↵, ⌧↵). Then the corresponding Bproj (see (3.7)) also
consists of convex (resp. m-convex) neighbourhoods of the origin in (E, ⌧proj).
In fact, any B 2 Bproj is of the form B =

T

↵2F f�1

↵ (U↵) for some F ✓ I finite
and U↵ 2 B↵, 8↵ 2 F . Since all the U↵’s are convex (resp. m-convex) and the
preimage of a convex (resp. m-convex) set under a homomorphism is convex
(resp. m-convex by Proposition 2.1.3-d)), we get that B is a finite intersection
of convex (resp. m-convex) sets and so it is convex (resp. m-convex).

Corollary 3.3.6. Let (A, ⌧) be an lc (resp. lmc) algebra and M a subalgebra
of A. If we endow M with the relative topology ⌧M induced by A, then (M, ⌧M )
is an lc (resp. lmc) algebra.

Proof.
Recalling that ⌧M coincides with the projective topology on M induced by
id : M ! A (see Corollary 1.4.2), the conclusion easily follows from the
previous proposition (applied for I = {1}, E

1

= A and ⌧
1

= ⌧ , E = M and
f
1

= id).

Corollary 3.3.7. Any subalgebra of a Hausdor↵ TA is a Hausdor↵ TA.

Proof. This is a direct application of Proposition 3.3.3 and Corollary 1.4.2.

Example 3.3.8. Let {(E↵, ⌧↵) : ↵ 2 I} be a family of TAs over K. Then
the Cartesian product F =

Q

↵2I E↵ equipped with coordinatewise operation
is a K�algebra. Consider the canonical projections ⇡↵ : F ! E↵ defined
by ⇡↵(x) := x↵ for any x = (x�)�2I 2 F , which are all homomorphisms.
Then the product topology ⌧prod on F is the coarsest topology for which all
the canonical projections are continuous and so coincides with the projective
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3.3. Projective limit algebras

topology on F w.r.t. {(E↵, ⌧↵),⇡↵ : ↵ 2 I} 2. Hence, by Theorem 3.3.4 we
have that (F, ⌧prod) is a TA.

Recalling that a cartesian product of complete Hausdor↵ TAs endowed
with the product topology is a complete Hausdor↵ TA and applying Proposi-
tion 3.3.5, Corollary 3.3.6 and Proposition 3.3.3 to the previous example, we
can easily prove the following properties

• any Cartesian product of lc (resp. lmc) algebras endowed with the prod-
uct topology is an lc (resp. lmc) algebra

• any subalgebra of a Cartesian product of lc (resp. lmc) endowed with
the relative topology is a TA of the same type

• a cartesian product of Hausdor↵ TAs endowed with the product topology
is a Hausdor↵ TA.

3.3.2 Projective systems of TAs and their projective limit

In this section we are going to discuss the concept of projective system (resp.
projective limit) first for just K-algebras and then for TAs.

Definition 3.3.9. Let (I,<) be a directed partially ordered set (i.e. for all
↵,� 2 I there exists � 2 I such that ↵  � and �  �). A projective system
of algebras {E↵, f↵� , I} is a family of K�algebras {E↵,↵ 2 I} together with
a family of homomorphisms f↵� : E� ! E↵ defined for all ↵  � in I such
that f↵↵ is the identity on E↵ and f↵� � f�� = f↵� for all ↵  �  �, i.e. the
diagram

E�

E� E↵

f�� f↵�

f↵�

commutes.

2We could have also directly showed that the equivalence of the two topologies using
their basis of neighbourhoods of the origin. Indeed

Bproj
(3.7)

=

(

\

↵2F

⇡�1

↵ (U↵) : F ✓ I finite, U↵ 2 B↵, 8↵ 2 F

)

=

8

<

:

Y

↵2F

U↵ ⇥
Y

↵2I\F

E↵ : F ✓ I finite, U↵ 2 B↵, 8↵ 2 F

9

=

;

= Bprod.

65



3. Further special classes of topological algebras

Definition 3.3.10. Given a projective system of algebras S := {E↵, f↵� , I},
we define the projective limit of S (or the projective limit algebra associated
with S) to be the triple {ES , f↵, I}, where

ES :=

(

x := (x↵)↵2I 2
Y

↵2I
E↵ : x↵ = f↵�(x�), 8↵  � in I

)

and, for any ↵ 2 I, f↵ : ES ! E↵ is defined by f↵ := ⇡↵ �ES (where
⇡↵ :

Q

�2I E� ! E↵ is the canonical projection, see Example 3.3.8).

It is easy to see from the previous definitions that ES is a subalgebra of
Q

↵2I E↵. Indeed, for any x, y 2 ES and for any � 2 K we have that for all
↵  � in I the following hold

�x↵ + y↵ = �f↵�(x�) + f↵�(y�) = f↵�(�x� + y�)

and
x↵y↵ = f↵�(x�)f↵�(y�) = f↵�(x�y�),

i.e. �x+y, xy 2 ES . Note that the f↵’s are not necessarily surjective and also
that

f↵ = f↵� � f� , 8↵  � in I,

since for all x := (x↵)↵2I 2 ES we have f↵(x) = x↵ = f↵�(x�) = f↵�(f�(x)).
Also, we can show that {ES , f↵, I} satisfies the following universal prop-

erty: given a K�algebra A and a family of homomorphism {g↵ : A ! E↵,↵ 2
I} such that g↵ = f↵� � g� for all ↵  � in I, there exists a unique homomor-
phism ' : A ! ES such that g↵ = f↵ � ' for all ↵ 2 I, i.e. the diagram

A

ES

E� E↵

'

g↵g�

f�
f↵

f↵�

commutes. In fact, the map ' : A ! ES defined by '(a) := (g↵(a))↵2I for
all a 2 A is a homomorphism such that (f↵ � ')(a) = ('(a))↵ = g↵(a), for all
a 2 A. Moreover, if there exists '0 : A ! ES such that g↵ = f↵ � '0 for all
↵ 2 I, then for all a 2 A we get

'(a) = (g↵(a))↵2I =
�

(f↵ � '0)(a)
�

↵2I =
�

('0(a))↵
�

↵2I = '0(a),
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3.3. Projective limit algebras

i.e. '0 ⌘ ' on A.
These considerations allows to easily see that one can give the following

more general definition of projective limit algebra.

Definition 3.3.11. Given a projective system of algebras S := {E↵, f↵� , I},
a projective limit of S (or a projective limit algebra associated with S) is a
triple {E, h↵, I}, where E is a K�algebra; for any ↵ 2 I, h↵ : E ! E↵ is a
homomorphisms such that h↵ = f↵� �h� , 8↵  � in I; and the following uni-
versal property holds: for any K�algebra A and any family of homomorphism
{g↵ : A ! E↵,↵ 2 I} such that g↵ = f↵� � g� for all ↵  � in I, there exists
a unique homomorphism ' : A ! E such that g↵ = h↵ � ' for all ↵ 2 I.

It is easy to show that {E, h↵, I} is unique up to (algebraic) isomorphisms,
i.e. if {Ẽ, h̃↵, I} fulfills Definition 3.3.11 then there exists a unique isomor-
phism between E and Ẽ. This justifies why in Definition 3.3.10 we have called
{ES , f↵, I} the projective limit of S. (Indeed, we have already showed that
{ES , f↵, I} fulfills Definition 3.3.11.)

The definitions introduced above for algebras can be easily adapted to the
category of TAs.

Definition 3.3.12. Let (I,<) be a directed partially ordered set. A projective
system of TAs {(E↵, ⌧↵), f↵� , I} is a family of K-algebras {(E↵, ⌧↵) : ↵ 2 I}
together with a family of continuous homomorphisms f↵� : E� ! E↵ defined
for all ↵  � in I such that f↵↵ is the identity on E↵ and f↵� � f�� = f↵� for
all ↵  �  �, i.e. the diagram

E�

E� E↵

f�� f↵�

f↵�

commutes. Equivalently, a projective system of TAs is a projective system of
algebras {E↵, f↵� , I} in which each E↵ is endowed with a topology ⌧↵ making
(E↵, ⌧↵) into a TA and all the homomorphisms f↵� continuous.

Definition 3.3.13. Given a projective system S := {(E↵, ⌧↵), f↵� , I} of TAs,
we define the projective limit of S (or the projective limit TA associated with
S) to be the triple {(ES , ⌧proj), f↵, I} where {ES , f↵, I} is the projective limit
algebra associated with {E↵, f↵� , I} and ⌧proj is the projective topology on ES
w.r.t. the family {(E↵, ⌧↵), f↵ : ↵ 2 I}.

Similarly, to the algebraic case, one could give the following more general
definition of projective limit TA.
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3. Further special classes of topological algebras

Definition 3.3.14. Given a projective system of TAs S := {(E↵, ⌧↵), f↵� , I},
a projective limit of S (or a projective limit TA associated with S) is a
triple {(E, ⌧), h↵, I} where (E, ⌧) is a TA; for any ↵ 2 I, h↵ : E ! E↵ is a
continuous homomorphism such that h↵ = f↵� � h� , for all ↵  � in I; and
the following universal property holds: for any TA (A,!) and any family of
continuous homomorphism {g↵ : A ! E↵,↵ 2 I} such that g↵ = f↵� � g� for
all ↵  � in I, there exists a unique continuous homomorphism ' : A ! E
such that g↵ = h↵ � ' for all ↵ 2 I.

It is easy to show that {(E, ⌧), h↵, I} is unique up to topological isomor-
phisms. We have already showed that ES is an algebra such that the family
of all f↵ := ⇡↵ �ES (↵ 2 I) fulfills f↵ = f↵� � f� , 8↵  � in I. Endowing ES
with the projective topology ⌧proj w.r.t. {(E↵, ⌧↵), f↵, I}, we get by Theorem
3.3.4 that (ES , ⌧proj) is a TA and that all f↵’s are continuous. Also, for any
TA (A,!) and any family of continuous homomorphism {g↵ : A ! E↵,↵ 2 I}
such that g↵ = f↵� � g� for all ↵  � in I, we have already showed that
' : A ! ES defined by '(a) := (g↵(a))↵2I for all a 2 A is the unique ho-
momorphism such that g↵ = f↵ � ' for all ↵ 2 I. But ' is also continuous
because for any U 2 Bproj we have U =

T

↵2F f�1

↵ (U↵) for some F ⇢ I finite
and some U↵ 2 B↵ for all ↵ 2 F and so '�1(U) =

T

↵2F '�1(f�1

↵ (U↵)) =
T

↵2F (f↵ � ')�1(U↵) =
T

↵2F g�1

↵ (U↵) 2 B!. Hence, {(ES , ⌧proj), f↵, I} satis-
fies Definiton 3.3.14.

Remark 3.3.15.

From the previous definitions one can easily deduce the following:

a) the projective limit of a projective system of Hausdor↵ TAs is a Hausdor↵
TA (easily follows by Proposition 3.3.3).

b) the projective limit of a projective system of Hausdor↵ TAs {(E↵, ⌧↵), f↵,� , I}
is a closed subalgebra of (

Q

↵2I E↵, ⌧
prod

) (see Sheet 6).

c) the projective limit of a projective system of complete Hausdor↵ TAs is a
complete Hausdor↵ TA (see Sheet 6).

Corollary 3.3.16. A projective limit of lmc algebras is an lmc algebra.

Proof.
Let {(E↵, ⌧↵), f↵,� , I} be a projective system of lmc algebras. Then its pro-
jective limit {(ES , ⌧proj), f↵, I} is an lmc algebra by Proposition 3.3.5.

This easy corollary brings us to a very natural but fundamental question:
can any lmc algebra be written as a projective limit of a projective system of
lmc algebras or at least as a subalgebra of such a projective limit? The whole
next section will be devoted to show a positive answer to this question.
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