Proposition 3.3.3. Let *E* be a vector space over \mathbb{K} endowed with the projective topology τ_{proj} w.r.t. the family $\{(E_{\alpha}, \tau_{\alpha}), f_{\alpha}, I\}$, where each $(E_{\alpha}, \tau_{\alpha})$ is a TVS over \mathbb{K} and each f_{α} a linear mapping from *E* to E_{α} . Then τ_{proj} is Hausdorff if and only if for each $0 \neq x \in E$, there exists an $\alpha \in I$ and a neighbourhood U_{α} of the origin in $(E_{\alpha}, \tau_{\alpha})$ such that $f_{\alpha}(x) \notin U_{\alpha}$.

Proof.

Suppose that (E, τ_{proj}) is Hausdorff and let $0 \neq x \in E$. By Proposition 1.3.2, there exists a neighbourhood U of the origin in E not containing x. Then, by (3.7), there exists a finite subset $F \subseteq I$ and, for any $\alpha \in F$, there exists U_{α} neighbourhood of the origin in $(E_{\alpha}, \tau_{\alpha})$ s.t. $\bigcap_{\alpha \in F} f_{\alpha}^{-1}(U_{\alpha}) \subseteq U$. Hence, as $x \notin U$, there exists $\alpha \in F$ s.t. $x \notin f_{\alpha}^{-1}(U_{\alpha})$, i.e. $f_{\alpha}(x) \notin U_{\alpha}$. Conversely, suppose that there exists $\alpha \in I$ and a neighbourhood V_{α} of the origin in $(E_{\alpha}, \tau_{\alpha})$ such that $f_{\alpha}(x) \notin V_{\alpha}$. Let \mathcal{B}_{α} be a basis of neighbourhoods of the origin in $(E_{\alpha}, \tau_{\alpha})$. Then there exists $U_{\alpha} \in \mathcal{B}_{\alpha}$ such that $U_{\alpha} \subseteq V_{\alpha}$. Hence, $x \notin f_{\alpha}^{-1}(U_{\alpha})$ and $f_{\alpha}^{-1}(U_{\alpha}) \in \mathcal{B}_{proj}$ (see (3.7)), that is, we have found a neighbourhood of the origin in (E, τ_{proj}) not containing x. This implies, by Proposition 1.3.2, that τ_{proj} is a Hausdorff topology.

Coming back to the context of TAs, we have the following result.

Theorem 3.3.4. Let E be a \mathbb{K} -algebra endowed with the projective topology τ_{proj} w.r.t. the family $\{(E_{\alpha}, \tau_{\alpha}), f_{\alpha}, I\}$, where each $(E_{\alpha}, \tau_{\alpha})$ is a TA over \mathbb{K} (resp. a TA with continuous multiplication) and each f_{α} a homomorphism from E to E_{α} . Then (E, τ_{proj}) is a TA (resp. a TA with continuous multiplication).

Proof.

As each $(E_{\alpha}, \tau_{\alpha})$ is a TVS, it is easy to verify that (E, τ_{proj}) is a TVS. Therefore, it remains to show that left and right multiplication are both continuous. For any $x \in E$, consider the left multiplication $\ell_x : E \to E$. For each $\alpha \in I$ we get that:

$$\forall y \in E, \ (f_{\alpha} \circ \ell_x)(y) = f_{\alpha}(xy) = f_{\alpha}(x)f_{\alpha}(y) = \ell_{f_{\alpha}(x)}(f_{\alpha}(y)) = (\ell_{f_{\alpha}(x)} \circ f_{\alpha})(y).$$
(3.8)

Since $f_{\alpha}(x) \in E_{\alpha}$ and $(E_{\alpha}, \tau_{\alpha})$ is a TA, we have that $\ell_{f_{\alpha}(x)} : E_{\alpha} \to E_{\alpha}$ is continuous and so $\ell_{f_{\alpha}(x)} \circ f_{\alpha}$ is continuous. Hence, by (3.8), we have that $f_{\alpha} \circ \ell_x$ is continuous for all $\alpha \in I$ and so by the previous lemma we have that ℓ_x is continuous. Similarly, we get the continuity of the right multiplication in E. Hence, (E, τ_{proj}) is a TA.

If each $(E_{\alpha}, \tau_{\alpha})$ is a TA with continuous multiplication, then by combining Remark 3.3.1 and Proposition 1.4.1 we can conclude that (E, τ_{proj}) is a TA.

Proposition 3.3.5. Let E be a \mathbb{K} -algebra endowed with the projective topology τ_{proj} w.r.t. the family $\{(E_{\alpha}, \tau_{\alpha}), f_{\alpha}, I\}$, where each $(E_{\alpha}, \tau_{\alpha})$ is an lc (resp. lmc) algebra over \mathbb{K} and each f_{α} a homomorphism from E to E_{α} . Then (E, τ_{proj}) is an lc (resp. lmc) algebra.

Proof.

By assumption, we know that each $(E_{\alpha}, \tau_{\alpha})$ is a TA and so Theorem 3.3.4 ensures that (E, τ_{proj}) is a TA, too. Moreover, as each $(E_{\alpha}, \tau_{\alpha})$ is an lc (resp. lmc) algebra, there exists a basis \mathcal{B}_{α} of convex (resp. m-convex) neighbourhoods of the origin in $(E_{\alpha}, \tau_{\alpha})$. Then the corresponding \mathcal{B}_{proj} (see (3.7)) also consists of convex (resp. m-convex) neighbourhoods of the origin in (E, τ_{proj}) . In fact, any $B \in \mathcal{B}_{proj}$ is of the form $B = \bigcap_{\alpha \in F} f_{\alpha}^{-1}(U_{\alpha})$ for some $F \subseteq I$ finite and $U_{\alpha} \in \mathcal{B}_{\alpha}, \forall \alpha \in F$. Since all the U_{α} 's are convex (resp. m-convex) and the preimage of a convex (resp. m-convex) set under a homomorphism is convex (resp. m-convex by Proposition 2.1.3-d)), we get that B is a finite intersection of convex (resp. m-convex) sets and so it is convex (resp. m-convex).

Corollary 3.3.6. Let (A, τ) be an lc (resp. lmc) algebra and M a subalgebra of A. If we endow M with the relative topology τ_M induced by A, then (M, τ_M) is an lc (resp. lmc) algebra.

Proof.

Recalling that τ_M coincides with the projective topology on M induced by id : $M \to A$ (see Corollary 1.4.2), the conclusion easily follows from the previous proposition (applied for $I = \{1\}, E_1 = A$ and $\tau_1 = \tau, E = M$ and $f_1 = id$).

Corollary 3.3.7. Any subalgebra of a Hausdorff TA is a Hausdorff TA.

Proof. This is a direct application of Proposition 3.3.3 and Corollary 1.4.2.

Example 3.3.8. Let $\{(E_{\alpha}, \tau_{\alpha}) : \alpha \in I\}$ be a family of TAs over \mathbb{K} . Then the Cartesian product $F = \prod_{\alpha \in I} E_{\alpha}$ equipped with coordinatewise operation is a \mathbb{K} -algebra. Consider the canonical projections $\pi_{\alpha} : F \to E_{\alpha}$ defined by $\pi_{\alpha}(x) := x_{\alpha}$ for any $x = (x_{\beta})_{\beta \in I} \in F$, which are all homomorphisms. Then the product topology τ_{prod} on F is the coarsest topology for which all the canonical projections are continuous and so coincides with the projective topology on F w.r.t. $\{(E_{\alpha}, \tau_{\alpha}), \pi_{\alpha} : \alpha \in I\}^{2}$. Hence, by Theorem 3.3.4 we have that (F, τ_{prod}) is a TA.

Recalling that a cartesian product of complete Hausdorff TAs endowed with the product topology is a complete Hausdorff TA and applying Proposition 3.3.5, Corollary 3.3.6 and Proposition 3.3.3 to the previous example, we can easily prove the following properties

- any Cartesian product of lc (resp. lmc) algebras endowed with the product topology is an lc (resp. lmc) algebra
- any subalgebra of a Cartesian product of lc (resp. lmc) endowed with the relative topology is a TA of the same type
- a cartesian product of Hausdorff TAs endowed with the product topology is a Hausdorff TA.

3.3.2 Projective systems of TAs and their projective limit

In this section we are going to discuss the concept of projective system (resp. projective limit) first for just K-algebras and then for TAs.

Definition 3.3.9. Let (I, <) be a directed partially ordered set (i.e. for all $\alpha, \beta \in I$ there exists $\gamma \in I$ such that $\alpha \leq \gamma$ and $\beta \leq \gamma$). A projective system of algebras $\{E_{\alpha}, f_{\alpha\beta}, I\}$ is a family of \mathbb{K} -algebras $\{E_{\alpha}, \alpha \in I\}$ together with a family of homomorphisms $f_{\alpha\beta} : E_{\beta} \to E_{\alpha}$ defined for all $\alpha \leq \beta$ in I such that $f_{\alpha\alpha}$ is the identity on E_{α} and $f_{\alpha\beta} \circ f_{\beta\gamma} = f_{\alpha\gamma}$ for all $\alpha \leq \beta \leq \gamma$, i.e. the diagram

commutes.

 $^2 \rm We$ could have also directly showed that the equivalence of the two topologies using their basis of neighbourhoods of the origin. Indeed

$$\mathcal{B}_{proj} \stackrel{(3.7)}{=} \left\{ \bigcap_{\alpha \in F} \pi_{\alpha}^{-1}(U_{\alpha}) : F \subseteq I \text{ finite, } U_{\alpha} \in \mathcal{B}_{\alpha}, \forall \alpha \in F \right\}$$
$$= \left\{ \prod_{\alpha \in F} U_{\alpha} \times \prod_{\alpha \in I \setminus F} E_{\alpha} : F \subseteq I \text{ finite, } U_{\alpha} \in \mathcal{B}_{\alpha}, \forall \alpha \in F \right\} = \mathcal{B}_{prod}.$$

65

Definition 3.3.10. Given a projective system of algebras $S := \{E_{\alpha}, f_{\alpha\beta}, I\}$, we define the projective limit of S (or the projective limit algebra associated with S) to be the triple $\{E_S, f_{\alpha}, I\}$, where

$$E_{\mathcal{S}} := \left\{ x := (x_{\alpha})_{\alpha \in I} \in \prod_{\alpha \in I} E_{\alpha} : x_{\alpha} = f_{\alpha\beta}(x_{\beta}), \ \forall \alpha \le \beta \ in \ I \right\}$$

and, for any $\alpha \in I$, $f_{\alpha} : E_{\mathcal{S}} \to E_{\alpha}$ is defined by $f_{\alpha} := \pi_{\alpha} \upharpoonright_{E_{\mathcal{S}}}$ (where $\pi_{\alpha} : \prod_{\beta \in I} E_{\beta} \to E_{\alpha}$ is the canonical projection, see Example 3.3.8).

It is easy to see from the previous definitions that $E_{\mathcal{S}}$ is a subalgebra of $\prod_{\alpha \in I} E_{\alpha}$. Indeed, for any $x, y \in E_{\mathcal{S}}$ and for any $\lambda \in \mathbb{K}$ we have that for all $\alpha \leq \beta$ in I the following hold

$$\lambda x_{\alpha} + y_{\alpha} = \lambda f_{\alpha\beta}(x_{\beta}) + f_{\alpha\beta}(y_{\beta}) = f_{\alpha\beta}(\lambda x_{\beta} + y_{\beta})$$

and

$$x_{\alpha}y_{\alpha} = f_{\alpha\beta}(x_{\beta})f_{\alpha\beta}(y_{\beta}) = f_{\alpha\beta}(x_{\beta}y_{\beta})$$

i.e. $\lambda x + y, xy \in E_{\mathcal{S}}$. Note that the f_{α} 's are not necessarily surjective and also that

$$f_{\alpha} = f_{\alpha\beta} \circ f_{\beta}, \, \forall \alpha \leq \beta \text{ in } I,$$

since for all $x := (x_{\alpha})_{\alpha \in I} \in E_{\mathcal{S}}$ we have $f_{\alpha}(x) = x_{\alpha} = f_{\alpha\beta}(x_{\beta}) = f_{\alpha\beta}(f_{\beta}(x))$.

Also, we can show that $\{E_{\mathcal{S}}, f_{\alpha}, I\}$ satisfies the following universal property: given a \mathbb{K} -algebra A and a family of homomorphism $\{g_{\alpha} : A \to E_{\alpha}, \alpha \in I\}$ such that $g_{\alpha} = f_{\alpha\beta} \circ g_{\beta}$ for all $\alpha \leq \beta$ in I, there exists a unique homomorphism $\varphi : A \to E_{\mathcal{S}}$ such that $g_{\alpha} = f_{\alpha} \circ \varphi$ for all $\alpha \in I$, i.e. the diagram

commutes. In fact, the map $\varphi : A \to E_{\mathcal{S}}$ defined by $\varphi(a) := (g_{\alpha}(a))_{\alpha \in I}$ for all $a \in A$ is a homomorphism such that $(f_{\alpha} \circ \varphi)(a) = (\varphi(a))_{\alpha} = g_{\alpha}(a)$, for all $a \in A$. Moreover, if there exists $\varphi' : A \to E_{\mathcal{S}}$ such that $g_{\alpha} = f_{\alpha} \circ \varphi'$ for all $\alpha \in I$, then for all $a \in A$ we get

$$\varphi(a) = (g_{\alpha}(a))_{\alpha \in I} = \left((f_{\alpha} \circ \varphi')(a) \right)_{\alpha \in I} = \left((\varphi'(a))_{\alpha} \right)_{\alpha \in I} = \varphi'(a),$$

i.e. $\varphi' \equiv \varphi$ on A.

These considerations allows to easily see that one can give the following more general definition of projective limit algebra.

Definition 3.3.11. Given a projective system of algebras $S := \{E_{\alpha}, f_{\alpha\beta}, I\}$, a projective limit of S (or a projective limit algebra associated with S) is a triple $\{E, h_{\alpha}, I\}$, where E is a \mathbb{K} -algebra; for any $\alpha \in I$, $h_{\alpha} : E \to E_{\alpha}$ is a homomorphisms such that $h_{\alpha} = f_{\alpha\beta} \circ h_{\beta}, \forall \alpha \leq \beta$ in I; and the following universal property holds: for any \mathbb{K} -algebra A and any family of homomorphism $\{g_{\alpha} : A \to E_{\alpha}, \alpha \in I\}$ such that $g_{\alpha} = f_{\alpha\beta} \circ g_{\beta}$ for all $\alpha \leq \beta$ in I, there exists a unique homomorphism $\varphi : A \to E$ such that $g_{\alpha} = h_{\alpha} \circ \varphi$ for all $\alpha \in I$.

It is easy to show that $\{E, h_{\alpha}, I\}$ is unique up to (algebraic) isomorphisms, i.e. if $\{\tilde{E}, \tilde{h}_{\alpha}, I\}$ fulfills Definition 3.3.11 then there exists a unique isomorphism between E and \tilde{E} . This justifies why in Definition 3.3.10 we have called $\{E_{\mathcal{S}}, f_{\alpha}, I\}$ the projective limit of \mathcal{S} . (Indeed, we have already showed that $\{E_{\mathcal{S}}, f_{\alpha}, I\}$ fulfills Definition 3.3.11.)

The definitions introduced above for algebras can be easily adapted to the category of TAs.

Definition 3.3.12. Let (I, <) be a directed partially ordered set. A projective system of TAs $\{(E_{\alpha}, \tau_{\alpha}), f_{\alpha\beta}, I\}$ is a family of K-algebras $\{(E_{\alpha}, \tau_{\alpha}) : \alpha \in I\}$ together with a family of continuous homomorphisms $f_{\alpha\beta} : E_{\beta} \to E_{\alpha}$ defined for all $\alpha \leq \beta$ in I such that $f_{\alpha\alpha}$ is the identity on E_{α} and $f_{\alpha\beta} \circ f_{\beta\gamma} = f_{\alpha\gamma}$ for all $\alpha \leq \beta \leq \gamma$, i.e. the diagram

commutes. Equivalently, a projective system of TAs is a projective system of algebras $\{E_{\alpha}, f_{\alpha\beta}, I\}$ in which each E_{α} is endowed with a topology τ_{α} making $(E_{\alpha}, \tau_{\alpha})$ into a TA and all the homomorphisms $f_{\alpha\beta}$ continuous.

Definition 3.3.13. Given a projective system $S := \{(E_{\alpha}, \tau_{\alpha}), f_{\alpha\beta}, I\}$ of TAs, we define the projective limit of S (or the projective limit TA associated with S) to be the triple $\{(E_S, \tau_{proj}), f_{\alpha}, I\}$ where $\{E_S, f_{\alpha}, I\}$ is the projective limit algebra associated with $\{E_{\alpha}, f_{\alpha\beta}, I\}$ and τ_{proj} is the projective topology on E_S w.r.t. the family $\{(E_{\alpha}, \tau_{\alpha}), f_{\alpha} : \alpha \in I\}$.

Similarly, to the algebraic case, one could give the following more general definition of projective limit TA.

Definition 3.3.14. Given a projective system of TAs $S := \{(E_{\alpha}, \tau_{\alpha}), f_{\alpha\beta}, I\}$, a projective limit of S (or a projective limit TA associated with S) is a triple $\{(E, \tau), h_{\alpha}, I\}$ where (E, τ) is a TA; for any $\alpha \in I$, $h_{\alpha} : E \to E_{\alpha}$ is a continuous homomorphism such that $h_{\alpha} = f_{\alpha\beta} \circ h_{\beta}$, for all $\alpha \leq \beta$ in I; and the following universal property holds: for any TA (A, ω) and any family of continuous homomorphism $\{g_{\alpha} : A \to E_{\alpha}, \alpha \in I\}$ such that $g_{\alpha} = f_{\alpha\beta} \circ g_{\beta}$ for all $\alpha \leq \beta$ in I, there exists a unique continuous homomorphism $\varphi : A \to E$ such that $g_{\alpha} = h_{\alpha} \circ \varphi$ for all $\alpha \in I$.

It is easy to show that $\{(E, \tau), h_{\alpha}, I\}$ is unique up to topological isomorphisms. We have already showed that $E_{\mathcal{S}}$ is an algebra such that the family of all $f_{\alpha} := \pi_{\alpha} \upharpoonright_{E_{\mathcal{S}}} (\alpha \in I)$ fulfills $f_{\alpha} = f_{\alpha\beta} \circ f_{\beta}, \forall \alpha \leq \beta$ in I. Endowing $E_{\mathcal{S}}$ with the projective topology τ_{proj} w.r.t. $\{(E_{\alpha}, \tau_{\alpha}), f_{\alpha}, I\}$, we get by Theorem 3.3.4 that $(E_{\mathcal{S}}, \tau_{proj})$ is a TA and that all f_{α} 's are continuous. Also, for any TA (A, ω) and any family of continuous homomorphism $\{g_{\alpha} : A \to E_{\alpha}, \alpha \in I\}$ such that $g_{\alpha} = f_{\alpha\beta} \circ g_{\beta}$ for all $\alpha \leq \beta$ in I, we have already showed that $\varphi : A \to E_{\mathcal{S}}$ defined by $\varphi(a) := (g_{\alpha}(a))_{\alpha \in I}$ for all $a \in A$ is the unique homomorphism such that $g_{\alpha} = f_{\alpha} \circ \varphi$ for all $\alpha \in I$. But φ is also continuous because for any $U \in \mathcal{B}_{proj}$ we have $U = \bigcap_{\alpha \in F} f_{\alpha}^{-1}(U_{\alpha})$ for some $F \subset I$ finite and some $U_{\alpha} \in \mathcal{B}_{\alpha}$ for all $\alpha \in F$ and so $\varphi^{-1}(U) = \bigcap_{\alpha \in F} \varphi^{-1}(f_{\alpha}^{-1}(U_{\alpha})) = \bigcap_{\alpha \in F} (f_{\alpha} \circ \varphi)^{-1}(U_{\alpha}) = \bigcap_{\alpha \in F} g_{\alpha}^{-1}(U_{\alpha}) \in \mathcal{B}_{\omega}$. Hence, $\{(E_{\mathcal{S}}, \tau_{proj}), f_{\alpha}, I\}$ satisfies Definiton 3.3.14.

Remark 3.3.15.

From the previous definitions one can easily deduce the following:

- a) the projective limit of a projective system of Hausdorff TAs is a Hausdorff TA (easily follows by Proposition 3.3.3).
- b) the projective limit of a projective system of Hausdorff TAs $\{(E_{\alpha}, \tau_{\alpha}), f_{\alpha,\beta}, I\}$ is a closed subalgebra of $(\prod_{\alpha \in I} E_{\alpha}, \tau_{\text{prod}})$ (see Sheet 6).
- c) the projective limit of a projective system of complete Hausdorff TAs is a complete Hausdorff TA (see Sheet 6).

Corollary 3.3.16. A projective limit of lmc algebras is an lmc algebra.

Proof.

Let $\{(E_{\alpha}, \tau_{\alpha}), f_{\alpha,\beta}, I\}$ be a projective system of lmc algebras. Then its projective limit $\{(E_{\mathcal{S}}, \tau_{proj}), f_{\alpha}, I\}$ is an lmc algebra by Proposition 3.3.5.

This easy corollary brings us to a very natural but fundamental question: can any lmc algebra be written as a projective limit of a projective system of lmc algebras or at least as a subalgebra of such a projective limit? The whole next section will be devoted to show a positive answer to this question.