Proposition 3.3.3. Let E be a vector space over \mathbb{K} endowed with the projective topology $\tau_{\text {proj }}$ w.r.t. the family $\left\{\left(E_{\alpha}, \tau_{\alpha}\right), f_{\alpha}, I\right\}$, where each $\left(E_{\alpha}, \tau_{\alpha}\right)$ is a TVS over \mathbb{K} and each f_{α} a linear mapping from E to E_{α}. Then $\tau_{\text {proj }}$ is Hausdorff if and only if for each $0 \neq x \in E$, there exists an $\alpha \in I$ and a neighbourhood U_{α} of the origin in $\left(E_{\alpha}, \tau_{\alpha}\right)$ such that $f_{\alpha}(x) \notin U_{\alpha}$.

Proof.
Suppose that $\left(E, \tau_{\text {proj }}\right)$ is Hausdorff and let $0 \neq x \in E$. By Proposition 1.3.2, there exists a neighbourhood U of the origin in E not containing x. Then, by (3.7), there exists a finite subset $F \subseteq I$ and, for any $\alpha \in F$, there exists U_{α} neighbourhood of the origin in $\left(E_{\alpha}, \tau_{\alpha}\right)$ s.t. $\bigcap_{\alpha \in F} f_{\alpha}^{-1}\left(U_{\alpha}\right) \subseteq U$. Hence, as $x \notin$ U, there exists $\alpha \in F$ s.t. $x \notin f_{\alpha}^{-1}\left(U_{\alpha}\right)$, i.e. $f_{\alpha}(x) \notin U_{\alpha}$. Conversely, suppose that there exists $\alpha \in I$ and a neighbourhood V_{α} of the origin in $\left(E_{\alpha}, \tau_{\alpha}\right)$ such that $f_{\alpha}(x) \notin V_{\alpha}$. Let \mathcal{B}_{α} be a basis of neighbourhoods of the origin in $\left(E_{\alpha}, \tau_{\alpha}\right)$. Then there exists $U_{\alpha} \in \mathcal{B}_{\alpha}$ such that $U_{\alpha} \subseteq V_{\alpha}$. Hence, $x \notin f_{\alpha}^{-1}\left(U_{\alpha}\right)$ and $f_{\alpha}^{-1}\left(U_{\alpha}\right) \in \mathcal{B}_{\text {proj }}$ (see (3.7)), that is, we have found a neighbourhood of the origin in $\left(E, \tau_{p r o j}\right)$ not containing x. This implies, by Proposition 1.3.2, that $\tau_{p r o j}$ is a Hausdorff topology.

Coming back to the context of TAs, we have the following result.
Theorem 3.3.4. Let E be $a \mathbb{K}$-algebra endowed with the projective topology $\tau_{\text {proj }}$ w.r.t. the family $\left\{\left(E_{\alpha}, \tau_{\alpha}\right), f_{\alpha}, I\right\}$, where each $\left(E_{\alpha}, \tau_{\alpha}\right)$ is a TA over \mathbb{K} (resp. a TA with continuous multiplication) and each f_{α} a homomorphism from E to E_{α}. Then $\left(E, \tau_{p r o j}\right)$ is a TA (resp. a TA with continuous multiplication).

Proof.
As each $\left(E_{\alpha}, \tau_{\alpha}\right)$ is a TVS, it is easy to verify that $\left(E, \tau_{p r o j}\right)$ is a TVS. Therefore, it remains to show that left and right multiplication are both continuous. For any $x \in E$, consider the left multiplication $\ell_{x}: E \rightarrow E$. For each $\alpha \in I$ we get that:
$\forall y \in E,\left(f_{\alpha} \circ \ell_{x}\right)(y)=f_{\alpha}(x y)=f_{\alpha}(x) f_{\alpha}(y)=\ell_{f_{\alpha}(x)}\left(f_{\alpha}(y)\right)=\left(\ell_{f_{\alpha}(x)} \circ f_{\alpha}\right)(y)$.
Since $f_{\alpha}(x) \in E_{\alpha}$ and $\left(E_{\alpha}, \tau_{\alpha}\right)$ is a TA, we have that $\ell_{f_{\alpha}(x)}: E_{\alpha} \rightarrow E_{\alpha}$ is continuous and so $\ell_{f_{\alpha}(x)} \circ f_{\alpha}$ is continuous. Hence, by (3.8), we have that $f_{\alpha} \circ \ell_{x}$ is continuous for all $\alpha \in I$ and so by the previous lemma we have that ℓ_{x} is continuous. Similarly, we get the continuity of the right multiplication in E. Hence, $\left(E, \tau_{\text {proj }}\right)$ is a TA.

If each $\left(E_{\alpha}, \tau_{\alpha}\right)$ is a TA with continuous multiplication, then by combining Remark 3.3.1 and Proposition 1.4.1 we can conclude that ($E, \tau_{\text {proj }}$) is a TA.

Proposition 3.3.5. Let E be $a \mathbb{K}$-algebra endowed with the projective topology $\tau_{\text {proj }}$ w.r.t. the family $\left\{\left(E_{\alpha}, \tau_{\alpha}\right), f_{\alpha}, I\right\}$, where each $\left(E_{\alpha}, \tau_{\alpha}\right)$ is an lc (resp. lmc) algebra over \mathbb{K} and each f_{α} a homomorphism from E to E_{α}. Then $\left(E, \tau_{p r o j}\right)$ is an lc (resp. lmc) algebra.
Proof.
By assumption, we know that each $\left(E_{\alpha}, \tau_{\alpha}\right)$ is a TA and so Theorem 3.3.4 ensures that $\left(E, \tau_{p r o j}\right)$ is a TA, too. Moreover, as each $\left(E_{\alpha}, \tau_{\alpha}\right)$ is an lc (resp. lmc) algebra, there exists a basis \mathcal{B}_{α} of convex (resp. m-convex) neighbourhoods of the origin in $\left(E_{\alpha}, \tau_{\alpha}\right)$. Then the corresponding $\mathcal{B}_{\text {proj }}$ (see (3.7)) also consists of convex (resp. m-convex) neighbourhoods of the origin in $\left(E, \tau_{p r o j}\right)$. In fact, any $B \in \mathcal{B}_{\text {proj }}$ is of the form $B=\bigcap_{\alpha \in F} f_{\alpha}^{-1}\left(U_{\alpha}\right)$ for some $F \subseteq I$ finite and $U_{\alpha} \in \mathcal{B}_{\alpha}, \forall \alpha \in F$. Since all the U_{α} 's are convex (resp. m-convex) and the preimage of a convex (resp. m-convex) set under a homomorphism is convex (resp. m-convex by Proposition 2.1.3-d)), we get that B is a finite intersection of convex (resp. m-convex) sets and so it is convex (resp. m-convex).

Corollary 3.3.6. Let (A, τ) be an lc (resp. lmc) algebra and M a subalgebra of A. If we endow M with the relative topology τ_{M} induced by A, then $\left(M, \tau_{M}\right)$ is an lc (resp. lmc) algebra.
Proof.
Recalling that τ_{M} coincides with the projective topology on M induced by id : $M \rightarrow A$ (see Corollary 1.4.2), the conclusion easily follows from the previous proposition (applied for $I=\{1\}, E_{1}=A$ and $\tau_{1}=\tau, E=M$ and $f_{1}=\mathrm{id}$).

Corollary 3.3.7. Any subalgebra of a Hausdorff TA is a Hausdorff TA.
Proof. This is a direct application of Proposition 3.3.3 and Corollary 1.4.2.
Example 3.3.8. Let $\left\{\left(E_{\alpha}, \tau_{\alpha}\right): \alpha \in I\right\}$ be a family of TAs over \mathbb{K}. Then the Cartesian product $F=\prod_{\alpha \in I} E_{\alpha}$ equipped with coordinatewise operation is a \mathbb{K}-algebra. Consider the canonical projections $\pi_{\alpha}: F \rightarrow E_{\alpha}$ defined by $\pi_{\alpha}(x):=x_{\alpha}$ for any $x=\left(x_{\beta}\right)_{\beta \in I} \in F$, which are all homomorphisms. Then the product topology $\tau_{\text {prod }}$ on F is the coarsest topology for which all the canonical projections are continuous and so coincides with the projective
topology on F w.r.t. $\left\{\left(E_{\alpha}, \tau_{\alpha}\right), \pi_{\alpha}: \alpha \in I\right\}^{2}$. Hence, by Theorem 3.3.4 we have that $\left(F, \tau_{\text {prod }}\right)$ is a TA.

Recalling that a cartesian product of complete Hausdorff TAs endowed with the product topology is a complete Hausdorff TA and applying Proposition 3.3.5, Corollary 3.3.6 and Proposition 3.3.3 to the previous example, we can easily prove the following properties

- any Cartesian product of lc (resp. lmc) algebras endowed with the product topology is an lc (resp. 1 mc) algebra
- any subalgebra of a Cartesian product of lc (resp. lmc) endowed with the relative topology is a TA of the same type
- a cartesian product of Hausdorff TAs endowed with the product topology is a Hausdorff TA.

3.3.2 Projective systems of TAs and their projective limit

In this section we are going to discuss the concept of projective system (resp. projective limit) first for just \mathbb{K}-algebras and then for TAs.

Definition 3.3.9. Let $(I,<)$ be a directed partially ordered set (i.e. for all $\alpha, \beta \in I$ there exists $\gamma \in I$ such that $\alpha \leq \gamma$ and $\beta \leq \gamma$). A projective system of algebras $\left\{E_{\alpha}, f_{\alpha \beta}, I\right\}$ is a family of \mathbb{K}-algebras $\left\{E_{\alpha}, \alpha \in I\right\}$ together with a family of homomorphisms $f_{\alpha \beta}: E_{\beta} \rightarrow E_{\alpha}$ defined for all $\alpha \leq \beta$ in I such that $f_{\alpha \alpha}$ is the identity on E_{α} and $f_{\alpha \beta} \circ f_{\beta \gamma}=f_{\alpha \gamma}$ for all $\alpha \leq \beta \leq \gamma$, i.e. the diagram

commutes.

[^0]Definition 3.3.10. Given a projective system of algebras $\mathcal{S}:=\left\{E_{\alpha}, f_{\alpha \beta}, I\right\}$, we define the projective limit of \mathcal{S} (or the projective limit algebra associated with \mathcal{S}) to be the triple $\left\{E_{\mathcal{S}}, f_{\alpha}, I\right\}$, where

$$
E_{\mathcal{S}}:=\left\{x:=\left(x_{\alpha}\right)_{\alpha \in I} \in \prod_{\alpha \in I} E_{\alpha}: x_{\alpha}=f_{\alpha \beta}\left(x_{\beta}\right), \forall \alpha \leq \beta \text { in } I\right\}
$$

and, for any $\alpha \in I, f_{\alpha}: E_{\mathcal{S}} \rightarrow E_{\alpha}$ is defined by $f_{\alpha}:=\pi_{\alpha} \upharpoonright_{E_{\mathcal{S}}}$ (where $\pi_{\alpha}: \prod_{\beta \in I} E_{\beta} \rightarrow E_{\alpha}$ is the canonical projection, see Example 3.3.8).

It is easy to see from the previous definitions that $E_{\mathcal{S}}$ is a subalgebra of $\prod_{\alpha \in I} E_{\alpha}$. Indeed, for any $x, y \in E_{\mathcal{S}}$ and for any $\lambda \in \mathbb{K}$ we have that for all $\alpha \leq \beta$ in I the following hold

$$
\lambda x_{\alpha}+y_{\alpha}=\lambda f_{\alpha \beta}\left(x_{\beta}\right)+f_{\alpha \beta}\left(y_{\beta}\right)=f_{\alpha \beta}\left(\lambda x_{\beta}+y_{\beta}\right)
$$

and

$$
x_{\alpha} y_{\alpha}=f_{\alpha \beta}\left(x_{\beta}\right) f_{\alpha \beta}\left(y_{\beta}\right)=f_{\alpha \beta}\left(x_{\beta} y_{\beta}\right),
$$

i.e. $\lambda x+y, x y \in E_{\mathcal{S}}$. Note that the f_{α} 's are not necessarily surjective and also that

$$
f_{\alpha}=f_{\alpha \beta} \circ f_{\beta}, \forall \alpha \leq \beta \text { in } I,
$$

since for all $x:=\left(x_{\alpha}\right)_{\alpha \in I} \in E_{\mathcal{S}}$ we have $f_{\alpha}(x)=x_{\alpha}=f_{\alpha \beta}\left(x_{\beta}\right)=f_{\alpha \beta}\left(f_{\beta}(x)\right)$.
Also, we can show that $\left\{E_{\mathcal{S}}, f_{\alpha}, I\right\}$ satisfies the following universal property: given a \mathbb{K}-algebra A and a family of homomorphism $\left\{g_{\alpha}: A \rightarrow E_{\alpha}, \alpha \in\right.$ $I\}$ such that $g_{\alpha}=f_{\alpha \beta} \circ g_{\beta}$ for all $\alpha \leq \beta$ in I, there exists a unique homomorphism $\varphi: A \rightarrow E_{\mathcal{S}}$ such that $g_{\alpha}=f_{\alpha} \circ \varphi$ for all $\alpha \in I$, i.e. the diagram

commutes. In fact, the map $\varphi: A \rightarrow E_{\mathcal{S}}$ defined by $\varphi(a):=\left(g_{\alpha}(a)\right)_{\alpha \in I}$ for all $a \in A$ is a homomorphism such that $\left(f_{\alpha} \circ \varphi\right)(a)=(\varphi(a))_{\alpha}=g_{\alpha}(a)$, for all $a \in A$. Moreover, if there exists $\varphi^{\prime}: A \rightarrow E_{\mathcal{S}}$ such that $g_{\alpha}=f_{\alpha} \circ \varphi^{\prime}$ for all $\alpha \in I$, then for all $a \in A$ we get

$$
\varphi(a)=\left(g_{\alpha}(a)\right)_{\alpha \in I}=\left(\left(f_{\alpha} \circ \varphi^{\prime}\right)(a)\right)_{\alpha \in I}=\left(\left(\varphi^{\prime}(a)\right)_{\alpha}\right)_{\alpha \in I}=\varphi^{\prime}(a),
$$

i.e. $\varphi^{\prime} \equiv \varphi$ on A.

These considerations allows to easily see that one can give the following more general definition of projective limit algebra.
Definition 3.3.11. Given a projective system of algebras $\mathcal{S}:=\left\{E_{\alpha}, f_{\alpha \beta}, I\right\}$, a projective limit of \mathcal{S} (or a projective limit algebra associated with \mathcal{S}) is a triple $\left\{E, h_{\alpha}, I\right\}$, where E is a \mathbb{K}-algebra; for any $\alpha \in I, h_{\alpha}: E \rightarrow E_{\alpha}$ is a homomorphisms such that $h_{\alpha}=f_{\alpha \beta} \circ h_{\beta}, \forall \alpha \leq \beta$ in I; and the following universal property holds: for any \mathbb{K}-algebra A and any family of homomorphism $\left\{g_{\alpha}: A \rightarrow E_{\alpha}, \alpha \in I\right\}$ such that $g_{\alpha}=f_{\alpha \beta} \circ g_{\beta}$ for all $\alpha \leq \beta$ in I, there exists a unique homomorphism $\varphi: A \rightarrow E$ such that $g_{\alpha}=h_{\alpha} \circ \varphi$ for all $\alpha \in I$.

It is easy to show that $\left\{E, h_{\alpha}, I\right\}$ is unique up to (algebraic) isomorphisms, i.e. if $\left\{\tilde{E}, \tilde{h}_{\alpha}, I\right\}$ fulfills Definition 3.3.11 then there exists a unique isomorphism between E and \tilde{E}. This justifies why in Definition 3.3.10 we have called $\left\{E_{\mathcal{S}}, f_{\alpha}, I\right\}$ the projective limit of \mathcal{S}. (Indeed, we have already showed that $\left\{E_{\mathcal{S}}, f_{\alpha}, I\right\}$ fulfills Definition 3.3.11.)

The definitions introduced above for algebras can be easily adapted to the category of TAs.

Definition 3.3.12. Let $(I,<)$ be a directed partially ordered set. A projective system of TAs $\left\{\left(E_{\alpha}, \tau_{\alpha}\right), f_{\alpha \beta}, I\right\}$ is a family of \mathbb{K}-algebras $\left\{\left(E_{\alpha}, \tau_{\alpha}\right): \alpha \in I\right\}$ together with a family of continuous homomorphisms $f_{\alpha \beta}: E_{\beta} \rightarrow E_{\alpha}$ defined for all $\alpha \leq \beta$ in I such that $f_{\alpha \alpha}$ is the identity on E_{α} and $f_{\alpha \beta} \circ f_{\beta \gamma}=f_{\alpha \gamma}$ for all $\alpha \leq \beta \leq \gamma$, i.e. the diagram

commutes. Equivalently, a projective system of TAs is a projective system of algebras $\left\{E_{\alpha}, f_{\alpha \beta}, I\right\}$ in which each E_{α} is endowed with a topology τ_{α} making $\left(E_{\alpha}, \tau_{\alpha}\right)$ into a TA and all the homomorphisms $f_{\alpha \beta}$ continuous.
Definition 3.3.13. Given a projective system $\mathcal{S}:=\left\{\left(E_{\alpha}, \tau_{\alpha}\right), f_{\alpha \beta}, I\right\}$ of TAs, we define the projective limit of \mathcal{S} (or the projective limit TA associated with $\mathcal{S})$ to be the triple $\left\{\left(E_{\mathcal{S}}, \tau_{\text {proj }}\right), f_{\alpha}, I\right\}$ where $\left\{E_{\mathcal{S}}, f_{\alpha}, I\right\}$ is the projective limit algebra associated with $\left\{E_{\alpha}, f_{\alpha \beta}, I\right\}$ and $\tau_{\text {proj }}$ is the projective topology on $E_{\mathcal{S}}$ w.r.t. the family $\left\{\left(E_{\alpha}, \tau_{\alpha}\right), f_{\alpha}: \alpha \in I\right\}$.

Similarly, to the algebraic case, one could give the following more general definition of projective limit TA.

Definition 3.3.14. Given a projective system of $T A s \mathcal{S}:=\left\{\left(E_{\alpha}, \tau_{\alpha}\right), f_{\alpha \beta}, I\right\}$, a projective limit of \mathcal{S} (or a projective limit TA associated with \mathcal{S}) is a triple $\left\{(E, \tau), h_{\alpha}, I\right\}$ where (E, τ) is a TA; for any $\alpha \in I, h_{\alpha}: E \rightarrow E_{\alpha}$ is a continuous homomorphism such that $h_{\alpha}=f_{\alpha \beta} \circ h_{\beta}$, for all $\alpha \leq \beta$ in I; and the following universal property holds: for any $T A(A, \omega)$ and any family of continuous homomorphism $\left\{g_{\alpha}: A \rightarrow E_{\alpha}, \alpha \in I\right\}$ such that $g_{\alpha}=f_{\alpha \beta} \circ g_{\beta}$ for all $\alpha \leq \beta$ in I, there exists a unique continuous homomorphism $\varphi: A \rightarrow E$ such that $g_{\alpha}=h_{\alpha} \circ \varphi$ for all $\alpha \in I$.

It is easy to show that $\left\{(E, \tau), h_{\alpha}, I\right\}$ is unique up to topological isomorphisms. We have already showed that $E_{\mathcal{S}}$ is an algebra such that the family of all $f_{\alpha}:=\pi_{\alpha} \upharpoonright_{E_{\mathcal{S}}}(\alpha \in I)$ fulfills $f_{\alpha}=f_{\alpha \beta} \circ f_{\beta}, \forall \alpha \leq \beta$ in I. Endowing $E_{\mathcal{S}}$ with the projective topology $\tau_{\text {proj }}$ w.r.t. $\left\{\left(E_{\alpha}, \tau_{\alpha}\right), f_{\alpha}, I\right\}$, we get by Theorem 3.3.4 that $\left(E_{\mathcal{S}}, \tau_{p r o j}\right)$ is a TA and that all f_{α} 's are continuous. Also, for any TA (A, ω) and any family of continuous homomorphism $\left\{g_{\alpha}: A \rightarrow E_{\alpha}, \alpha \in I\right\}$ such that $g_{\alpha}=f_{\alpha \beta} \circ g_{\beta}$ for all $\alpha \leq \beta$ in I, we have already showed that $\varphi: A \rightarrow E_{\mathcal{S}}$ defined by $\varphi(a):=\left(g_{\alpha}(a)\right)_{\alpha \in I}$ for all $a \in A$ is the unique homomorphism such that $g_{\alpha}=f_{\alpha} \circ \varphi$ for all $\alpha \in I$. But φ is also continuous because for any $U \in \mathcal{B}_{\text {proj }}$ we have $U=\bigcap_{\alpha \in F} f_{\alpha}^{-1}\left(U_{\alpha}\right)$ for some $F \subset I$ finite and some $U_{\alpha} \in \mathcal{B}_{\alpha}$ for all $\alpha \in F$ and so $\varphi^{-1}(U)=\bigcap_{\alpha \in F} \varphi^{-1}\left(f_{\alpha}^{-1}\left(U_{\alpha}\right)\right)=$ $\bigcap_{\alpha \in F}\left(f_{\alpha} \circ \varphi\right)^{-1}\left(U_{\alpha}\right)=\bigcap_{\alpha \in F} g_{\alpha}^{-1}\left(U_{\alpha}\right) \in \mathcal{B}_{\omega}$. Hence, $\left\{\left(E_{\mathcal{S}}, \tau_{p r o j}\right), f_{\alpha}, I\right\}$ satisfies Definiton 3.3.14.

Remark 3.3.15.

From the previous definitions one can easily deduce the following:
a) the projective limit of a projective system of Hausdorff TAs is a Hausdorff TA (easily follows by Proposition 3.3.3).
b) the projective limit of a projective system of Hausdorff TAs $\left\{\left(E_{\alpha}, \tau_{\alpha}\right), f_{\alpha, \beta}, I\right\}$ is a closed subalgebra of $\left(\prod_{\alpha \in I} E_{\alpha}, \tau_{\text {prod }}\right)$ (see Sheet 6).
c) the projective limit of a projective system of complete Hausdorff TAs is a complete Hausdorff TA (see Sheet 6).

Corollary 3.3.16. A projective limit of lmc algebras is an lmc algebra.
Proof.
Let $\left\{\left(E_{\alpha}, \tau_{\alpha}\right), f_{\alpha, \beta}, I\right\}$ be a projective system of lmc algebras. Then its projective limit $\left\{\left(E_{\mathcal{S}}, \tau_{\text {proj }}\right), f_{\alpha}, I\right\}$ is an lmc algebra by Proposition 3.3.5.

This easy corollary brings us to a very natural but fundamental question: can any lmc algebra be written as a projective limit of a projective system of lmc algebras or at least as a subalgebra of such a projective limit? The whole next section will be devoted to show a positive answer to this question.

[^0]: ${ }^{2}$ We could have also directly showed that the equivalence of the two topologies using their basis of neighbourhoods of the origin. Indeed

 $$
 \begin{aligned}
 & \mathcal{B}_{\text {proj }} \stackrel{(3.7)}{=} \\
 &=\left\{\bigcap_{\alpha \in F} \pi_{\alpha}^{-1}\left(U_{\alpha}\right): F \subseteq I \text { finite, } U_{\alpha} \in \mathcal{B}_{\alpha}, \forall \alpha \in F\right\} \\
 &=\left\{\prod_{\alpha \in F} U_{\alpha} \times \prod_{\alpha \in I \backslash F} E_{\alpha}: F \subseteq I \text { finite, } U_{\alpha} \in \mathcal{B}_{\alpha}, \forall \alpha \in F\right\}=\mathcal{B}_{\text {prod }} .
 \end{aligned}
 $$

