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Proposition 3.3.3. Let E be a vector space over K endowed with the pro-
jective topology Tproj w.r.t. the family {(Eq,Ta), fa, 1}, where each (Eqy,Ta)
is a TVS over K and each f, a linear mapping from E to E,. Then Tp.oj
is Hausdorff if and only if for each 0 # x € E, there exists an o € I and a
neighbourhood U, of the origin in (Ey,Ta) such that fo(x) ¢ U,.

Proof.

Suppose that (E, 7p..;) is Hausdorff and let 0 # « € E. By Proposition 1.3.2,
there exists a neighbourhood U of the origin in E not containing x. Then, by
(3.7), there exists a finite subset F' C I and, for any a € F, there exists U,
neighbourhood of the origin in (Ey, 7o) 8.t. Naep fa ' (Ua) € U. Hence, as z ¢
U, there exists a € F s.t. x ¢ f,1(Ua), ie. fa(z) ¢ U,. Conversely, suppose
that there exists @ € I and a neighbourhood V,, of the origin in (E,,7,)
such that f,(x) ¢ V,. Let B, be a basis of neighbourhoods of the origin in
(Ew,7s). Then there exists U, € B, such that U, C V. Hence, = ¢ f1(Uy,)
and f, 1 (Ua) € Bproj (see (3.7)), that is, we have found a neighbourhood of
the origin in (E, 7pro;) not containing x. This implies, by Proposition 1.3.2,
that 7,..; is a Hausdorff topology. O

Coming back to the context of TAs, we have the following result.

Theorem 3.3.4. Let E be a K—algebra endowed with the projective topology
Tproj W.r.t. the family {(Eq,Ta), fa, I}, where each (Eq,7q) is a TA over K
(resp. a TA with continuous multiplication) and each fo a homomorphism
from E to Eo. Then (E, Tproj) is a TA (resp. a TA with continuous multipli-
cation).

Proof.

As each (Eq, 7o) is a TVS, it is easy to verify that (E, 7p.;) is a TVS. There-
fore, it remains to show that left and right multiplication are both continuous.
For any x € F, consider the left multiplication ¢, : E — E. For each a € T
we get that:

Vy € B, (faola)(y) = fa(zy) = fa(x) fa(y) = L1, @) (fa(y) = 1) Ofag(y))-

3.8
Since f,(z) € E, and (Fq,7) is a TA, we have that Ur@) + Ba — Eq is
continuous and so £y () © fo is continuous. Hence, by (3.8), we have that
fa 04, is continuous for all o € I and so by the previous lemma we have that
l, is continuous. Similarly, we get the continuity of the right multiplication
in E. Hence, (F, Tproj) is a TA.
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If each (E,, 7o) is a TA with continuous multiplication, then by combining
Remark 3.3.1 and Proposition 1.4.1 we can conclude that (E, 7r0;) is a TA.
O

Proposition 3.3.5. Let E be a K—algebra endowed with the projective topol-
09Y Tproj w.r.t. the family {(Eq, Ta), fa, I}, where each (Eq,Tq) is an lc (Tesp.
Ime) algebra over K and each f, a homomorphism from E to E,. Then
(E, Tproj) is an lc (resp. Imc) algebra.

Proof.

By assumption, we know that each (E,,7,) is a TA and so Theorem 3.3.4
ensures that (E, Tpr;) is a TA, too. Moreover, as each (Ey, 7o) is an lc (resp.
Imc) algebra, there exists a basis B, of convex (resp. m-convex) neighbour-
hoods of the origin in (Ey, 7). Then the corresponding Byro; (see (3.7)) also
consists of convex (resp. m-convex) neighbourhoods of the origin in (E, 7).
In fact, any B € Byoj is of the form B = (1 cp 21 (U,) for some F C I finite
and U, € By, Vo € F. Since all the U, ’s are convex (resp. m-convex) and the
preimage of a convex (resp. m-convex) set under a homomorphism is convex
(resp. m-convex by Proposition 2.1.3-d)), we get that B is a finite intersection
of convex (resp. m-convex) sets and so it is convex (resp. m-convex). O

Corollary 3.3.6. Let (A, 7) be an lc (resp. lmc) algebra and M a subalgebra
of A. If we endow M with the relative topology Tar induced by A, then (M, )
is an lc (resp. Imc) algebra.

Proof.

Recalling that 7); coincides with the projective topology on M induced by
id : M — A (see Corollary 1.4.2), the conclusion easily follows from the
previous proposition (applied for I = {1}, By = Aand 7y =7, E = M and
fi=id). O

Corollary 3.3.7. Any subalgebra of a Hausdorff TA is a Hausdorff TA.

Proof. This is a direct application of Proposition 3.3.3 and Corollary 1.4.2. [

Example 3.3.8. Let {(E,,70) : a € I} be a family of TAs over K. Then
the Cartesian product F' = [[,c; Ea equipped with coordinatewise operation
is a K—algebra. Consider the canonical projections mo : F — E, defined
by mo(x) = 2o for any x = (v8)ger € F, which are all homomorphisms.
Then the product topology Tproa on F' is the coarsest topology for which all
the canonical projections are continuous and so coincides with the projective
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topology on F w.r.t. {(Ea,Ta),Ta : o € I} 2. Hence, by Theorem 3.5.4 we
have that (F, Tproa) is a TA.

Recalling that a cartesian product of complete Hausdorff TAs endowed
with the product topology is a complete Hausdorff TA and applying Proposi-
tion 3.3.5, Corollary 3.3.6 and Proposition 3.3.3 to the previous example, we
can easily prove the following properties

e any Cartesian product of lc (resp. lmc) algebras endowed with the prod-

uct topology is an lc (resp. lmc) algebra

e any subalgebra of a Cartesian product of lc (resp. lmc) endowed with

the relative topology is a TA of the same type

e a cartesian product of Hausdorff TAs endowed with the product topology

is a Hausdorff TA.

Projective systems of TAs and their projective limit

In this section we are going to discuss the concept of projective system (resp.
projective limit) first for just K-algebras and then for TAs.

Definition 3.3.9. Let (I,<) be a directed partially ordered set (i.e. for all
a, B € I there exists v € I such that « < and 8 < ). A projective system
of algebras {Eq, fas, I} is a family of K—algebras {E,,a € I} together with
a family of homomorphisms fog : Eg — Eq defined for all o < 8 in I such
that fao is the identity on Eo and fog o fgy = fay for alla < 8 <7y, d.e. the
diagram

Ey

Ep fas E,

commutes.

2We could have also directly showed that the equivalence of the two topologies using
their basis of neighbourhoods of the origin. Indeed

(3.7)

Boroj = { () 7a'(Ua) : F C Ifinite, Ua € Ba,Va € F}

ackF

= {HUQX [[ E.: F C Ifinite, UaeBa,VaeF}—Bpmd.

acl a€l\F

65



3.

FURTHER SPECIAL CLASSES OF TOPOLOGICAL ALGEBRAS

66

Definition 3.3.10. Given a projective system of algebras S := {Ey, fos, 1},
we define the projective limit of S (or the projective limit algebra associated
with §) to be the triple {Es, fa, I}, where

Es := {73 = (xa)ael € HEa P la = faﬁ(xﬁ)v Va < B in I}

acl

and, for any o € I, fo 1 Es — E, is defined by fo = 7o [gs (where
Ty HBGI Eg — E, is the canonical projection, see Example 3.3.8).

It is easy to see from the previous definitions that Eg is a subalgebra of
[Iocr Eo- Indeed, for any z,y € Es and for any A € K we have that for all
a < [ in I the following hold

ATq + Yo = )\faﬁ(xﬁ) + faﬁ(y,é’) = faﬁ()‘xﬂ + yﬁ)

and
TalYa = faﬂ(mﬁ)faﬁ(yﬁ) = faﬁ(xﬁyﬁ)v

i.e. \x+y,ry € Es. Note that the f,’s are not necessarily surjective and also
that

fa:faﬁofﬁavagﬁ iIlI,

since for all z := (2q)acr € Es we have fo(z) = xa = fap(2g) = fap(fs(x)).
Also, we can show that {Es, fa, I} satisfies the following universal prop-
erty: given a K—algebra A and a family of homomorphism {g, : A — E,,a €
I'} such that go = fap 0 gp for all a < 3 in I, there exists a unique homomor-
phism ¢ : A — FEg such that g, = f, o ¢ for all a € I, i.e. the diagram

A

It

9B ES Ja

SN

commutes. In fact, the map ¢ : A — Es defined by ¢(a) := (ga(a))acr for
all a € A is a homomorphism such that (f, o ¢)(a) = (¢(a))a = ga(a), for all
a € A. Moreover, if there exists ¢’ : A — Eg such that g, = f, o ¢’ for all
«a € I, then for all a € A we get

¢(a) = (9ala))aer = ((fa 0 ¥')(a) e = ((¥'(@))a) e ; = ¥'(a),

focﬁ

Ej E,
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ie. ¢ = pon A.
These considerations allows to easily see that one can give the following
more general definition of projective limit algebra.

Definition 3.3.11. Given a projective system of algebras S := {Ey, fop, 1},
a projective limit of S (or a projective limit algebra associated with S) is a
triple {E, ho, I}, where E is a K—algebra; for any o € I, hy : E — E, is a
homomorphisms such that ho = fogohg, Voo < B in I and the following uni-
versal property holds: for any K—algebra A and any family of homomorphism
{ga : A = Eq, a0 € I} such that go = fap o gp for all o < 3 in I, there exists
a unique homomorphism ¢ : A — E such that go, = hq o @ for all a € I.

It is easy to show that {F, hy, [} is unique up to (algebraic) isomorphisms,
ie. if {E, ho, I } fulfills Definition 3.3.11 then there exists a unique isomor-
phism between E and E. This justifies why in Definition 3.3.10 we have called
{Es, fa, I} the projective limit of S. (Indeed, we have already showed that
{Es, fa, I} fulfills Definition 3.3.11.)

The definitions introduced above for algebras can be easily adapted to the
category of TAs.

Definition 3.3.12. Let (I, <) be a directed partially ordered set. A projective
system of TAs {(Eq, 7o), fap, 1} is a family of K-algebras {(Eq, 7o) : o € I}
together with a family of continuous homomorphisms fop : Eg — E, defined
for all o < 8 in I such that foq is the identity on Eo and fogo fay = fay for
all a < B <, i.e. the diagram

£y

Ep fas E,

commutes. Equivalently, a projective system of TAs is a projective system of
algebras {Eq, fap, I} in which each E is endowed with a topology 7o making
(Eqa,Ta) into a TA and all the homomorphisms fuz continuous.

Definition 3.3.13. Given a projective system S := {(Eq, 7o), fap, I} of TAs,
we define the projective limit of S (or the projective limit TA associated with
S) to be the triple {(Es, Tproj); fa, I} where {Es, fo, I} is the projective limit
algebra associated with {Eq, fag, I} and Tpo; is the projective topology on Es
w.r.t. the family {(Eq,Ta), fo : o € I}.

Similarly, to the algebraic case, one could give the following more general
definition of projective limit TA.
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Definition 3.3.14. Given a projective system of TAs S := {(Ea, Ta), fas, 1},
a projective limit of S (or a projective limit TA associated with S) is a
triple {(E,T), ha, I} where (E,T) is a TA; for any o € I, hy : E — E4 is a
continuous homomorphism such that ho = fop © hg, for all « < B in I; and
the following universal property holds: for any TA (A,w) and any family of
continuous homomorphism {go : A = Eqo, o € I} such that go = fop © gs for
all < B in I, there exists a unique continuous homomorphism ¢ : A — F
such that go, = he 0 @ for all a € I.

It is easy to show that {(E,7), hq, I} is unique up to topological isomor-
phisms. We have already showed that Eg is an algebra such that the family
of all fo =7y [Es (o € I) fulfills fo, = fop o fg, Vo < B in I. Endowing Es
with the projective topology Tproj W.r.t. {(Eqa, 7o), fa, I}, we get by Theorem
3.3.4 that (Es, Tproj) is a TA and that all f,’s are continuous. Also, for any
TA (A,w) and any family of continuous homomorphism {g, : A — E,,a € I}
such that g, = fap 0 gs for all @ < 8 in I, we have already showed that
¢ : A — Eg defined by ¢(a) := (ga(a))acr for all a € A is the unique ho-
momorphism such that g, = fo 0 ¢ for all & € I. But ¢ is also continuous
because for any U € Bp,oj we have U = (o fa ' (Ua) for some F C I finite
and some U, € B, for all @ € F and so ¢ 1 (U) = Nyep e H(fa'(Ua)) =
Nacr(fa© ©)"'(Ua) = Naer 9o (Ua) € B, Hence, {(Es, Tproj), fa, I} satis-
fies Definiton 3.3.14.

Remark 3.3.15.

From the previous definitions one can easily deduce the following:

a) the projective limit of a projective system of Hausdorff TAs is a Hausdorff
TA (easily follows by Proposition 3.3.3).

b) the projective limit of a projective system of Hausdorff TAs {(Eua,Ta), fa,8,1}
is a closed subalgebra of (I],c; EasTprod) (see Sheet 6).

¢) the projective limit of a projective system of complete Hausdorff TAs is a
complete Hausdorff TA (see Sheet 6).

Corollary 3.3.16. A projective limit of Imc algebras is an Imc algebra.

Proof.
Let {(Ea,Ta), fa,8, 1} be a projective system of Imc algebras. Then its pro-
jective limit {(Es, Tproj); fa, I} is an Imc algebra by Proposition 3.3.5. O

This easy corollary brings us to a very natural but fundamental question:
can any Imc algebra be written as a projective limit of a projective system of
Imc algebras or at least as a subalgebra of such a projective limit? The whole
next section will be devoted to show a positive answer to this question.
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