
3.3. Projective limit algebras

3.3.3 Arens-Michael decomposition

This section will be devoted to the Arens-Michael decomposition theorem,
which was independently conceived by Arens and Michael in the early days
of the theory of TAs (1952). This result is so important because it provides a
device to reduce basic questions about lmc algebra to analogous ones for the
corresponding factor Banach algebras. Since the theory of Banach algebras
has been heavily studied, being able to reduce to Banach algebras is very
advantageous and so much desirable.

Before stating the Arens-Michael decomposition theorem, let us recall the
completion theorem for TVS and two useful lemmas about projective limit
algebras.

Theorem 3.3.17.

Let X be a Haudor↵ TVS. Then there exists a complete Hausdor↵ TVS X̂
and a mapping i : X ! X̂ with the following properties:

a) The mapping i is a topological monomorphism.

b) The image of X under i is dense in X̂.

c) For every complete Hausdor↵ TVS Y and for every continuous linear map
f : X ! Y , there is a continuous linear map f̂ : X̂ ! Y such that the
diagram

X Y

X̂

i

f

ˆf

is commutative. Furthermore:

I) Any other pair (X̂
1

, i
1

), consisting of a complete Hausdor↵ TVS X̂
1

and of a mapping i
1

: X ! X̂
1

such that properties (a) and (b) hold
substituting X̂ with X̂

1

and i with i
1

, is topologically isomorphic to (X̂, i).
This means that there is a topological isomorphism j of X̂ onto X̂

1

such
that the diagram

X X̂
1

X̂

i

i
1

j

is commutative.

II) Given Y and f as in property (c), the continuous linear map f̂ is unique.

Lemma 3.3.18. Let {(AS , ⌧proj), g↵, J} be the projective limit of the projective
system S := {(A↵, ⌧↵), g↵� , J} of TAs. Then a basis of neighbourhoods of the
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3. Further special classes of topological algebras

origin in (AS , ⌧proj) is given by

eBproj := {g�1

↵ (V↵) : V↵ 2 B↵,↵ 2 J},

where each B↵ is a basis of neighbourhoods of the origin in (A↵, ⌧↵).

Proof.
By the continuity of the g↵’s, we know that eBproj is a collection of neighbour-
hoods of the origin in (AS , ⌧proj). We want to show that it is a basis.

By (3.7), we have that a basis of neighbourhoods of the origin in (AS , ⌧proj)
is given by

Bproj :=

8

<

:

\

�2F
g�1

� (V�) : F ✓ I finite, V� 2 B� , 8� 2 F

9

=

;

.

As J is directed, for any finite subset F of I there exists ↵ 2 J such that
�  ↵ for all � 2 F . Then we have that g� = g�↵ � g↵ for all � 2 F and so

\

�2F
g�1

� (V�) =
\

�2F
(g�↵�g↵)�1(V�) =

\

�2F
g�1

↵ (g�1

�↵(V�)) = g�1

↵

0

@

\

�2F
g�1

�↵(V�)

1

A .

Set W↵ :=
T

�2F g�1

�↵(V�). Since for all � 2 F the map g�↵ : A↵ ! A� is

continuous, we get that for all � 2 F the set g�1

�↵(V�) is a neighbourhood of
the origin in (A↵, ⌧↵) and so is W↵. Then there exists V↵ 2 B↵ such that
V↵ ✓ W↵. Hence, we obtain

\

�2F
g�1

� (V�) = g�1

↵ (W↵) ◆ g�1

↵ (V↵)

and so we have showed that for anyM 2 Bproj there exists fM 2 eBproj such that
fM ✓ M , i.e. eBproj is a basis of neighbourhoods of the origin in (AS , ⌧proj).

Lemma 3.3.19. Let {(AS , ⌧proj), g↵, J} be the projective limit of the projective
system S := {(A↵, ⌧↵), g↵� , J} of TAs and W a linear subspace of AS . Then

W
⌧proj =

\

↵2J
g�1

↵

⇣

g↵(W )
⌧↵
⌘

= projlim(S
1

),

where S
1

denotes the projective system
n

g↵(W )
⌧↵
, g↵� �

g�(W )

, J
o

of TAs (here

g↵(W )
⌧↵

is intended as endowed with the relative topology induced by ⌧↵).

70



3.3. Projective limit algebras

In particular, if W is closed in (AS , ⌧proj) then

W = projlim(S
2

) = projlim(S
1

),

where S
2

denotes the projective system
n

g↵(W ), g↵� �g�(W )

, J
o

of TAs (here

g↵(W ) is intended as endowed with the relative topology induced by ⌧↵).

Proof.
Since S is a projective system of TAs, by Definition 3.3.12, we have that for
any ↵  � the map g↵� : A� ! A↵ is a continuous homomorphism fulfilling

g↵↵ = id, 8↵ 2 J (3.9)

and
g↵� � g�� = g↵� , 8↵  �  � in J. (3.10)

Also, by Definition 3.3.14 we have that for any ↵ 2 J the map g↵ : AS ! A↵
is a continuous homomorphism such that

g↵ = g↵� � g� , 8↵  � in J. (3.11)

For any ↵ 2 J , we have that g↵(W ) ✓ A↵ and so (3.9) provides that
g↵↵ �g↵(W )

= id �g↵(W )

. Moreover, for any ↵  �  � in J , the relation
(3.11) implies that g��(g�(W )) ✓ g�(W ), which in turn gives that for any
x 2 g�(W ):

g↵� �g�(W )

�

g�� �g�(W )

(x)
�

= g↵�(g��(x))
(3.10)

= g↵�(x) = g↵� �g�(W )

(x).

Endowing each g�(W ) with the subspace topology induced by ⌧� , we have
that g↵� �g�(W )

is continuous for any ↵  � in J . Hence, we have showed that
S
2

is a projective system of TAs.
By the continuity of the g↵� ’s for all ↵  � in J , we also get that

g��(g�(W )) ✓ g��(g�(W ))
(3.11)

= g�(W ), 8�  � in J (3.12)

Therefore, for any ↵  �  � in J and for any x 2 g�(W ) we obtain that

g↵� �
g�(W )

⇣

g�� �
g�(W )

(x)
⌘

= g↵�(g��(x))
(3.10)

= g↵�(x) = g↵� �
g�(W )

(x).

Hence, we have showed that S
1

is a projective system of TAs, too.
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3. Further special classes of topological algebras

Then

projlim(S
1

) =
n

x := (x↵)↵2J : x↵ 2 g↵(W ), 8↵ 2 J and

x↵ = g↵�(x�), 8↵  � in J}
(3.12)

=
n

x := (x↵)↵2J : x↵ 2 g↵(W ),↵ 2 J
o

= {x 2 AS : g↵(x) 2 g↵(W ), 8↵ 2 J} =
\

↵2J
g�1

↵ (g↵(W ))

and similarly projlim(S
2

) =
T

↵2J g
�1

↵ (g↵(W )).

For any ↵ 2 J , the continuity of g↵ provides that g↵(W ) ✓ g↵(W ) and so
W ✓ g�1

↵ (g↵(W ))). Hence,

W ✓
\

↵2J
g�1

↵ (g↵(W ))) = projlim(S
1

).

Conversely, suppose that x 2 projlim(S
1

). Then x 2 g�1

↵ (g↵(W ))) for all
↵ 2 J , that means g↵(x) 2 g↵(W ) for all ↵ 2 J . Hence, for each ↵ 2 J , we
have that for any neighbourhood V↵ of the origin in (A↵, ⌧↵), the following
holds (g↵(x) + V↵)\ g↵(W ) 6= ; and so (x+ g�1

↵ (V↵))\W 6= ;. This gives by
Lemma 3.3.18 that for any U neighbourhood of the origin in (AS , ⌧proj) the
sets x+U and W have non-empty intersection, i.e. x 2 W . We have therefore
showed that W = projlim(S

1

).
If W is closed, then W = W . However, we have

W ✓
\

↵2J
g�1

↵ (g↵(W )) ✓
\

↵2J
g�1

↵ (g↵(W )) = projlim(S
1

) = W = W

i.e. W = projlim(S
2

) = projlim(S
1

).

Suppose now that (E, ⌧) is a Hausdor↵ lmc algebra. Then, by Theo-
rem 2.1.11 there exists a basis M := {U↵}↵2I of neighbourhoods of the
origin in (E, ⌧) consisting of m-barrels. For each ↵ 2 I, let p↵ be the
Minkowski functional of U↵. Then we have showed in Section 2.2 that {p↵}↵2I
is a family of submultiplicative seminorms on E generating ⌧ . For each
↵ 2 I, we define N↵ := ker(p↵) which is a closed ideal in (E, ⌧). Then
we can take the quotient E↵ := E/N↵ and endow it with the quotient norm
q↵(⇢↵(x)) := infy2N↵ p↵(x � y) where ⇢↵ : E ! E↵ denotes the correspond-
ing quotient map. With a similar proof to the one of Proposition 1.4.9
we can prove that is (E↵, q↵) is a normed algebra. Taking the completion
(Ê↵, q̂↵) of each (E↵, q↵), we get a family of Banach algebras. If we denote
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3.3. Projective limit algebras

by i↵ : E↵ ! Ê↵ the canonical injection (which is an injective continuous and
open homomorphism), then ⇢↵ := i↵�⇢↵ is a continuous open homomorphism.
For convenience, from now on we will just denote (E↵, q↵) by E↵ and (Ê↵, q̂↵)
by Ê↵.

We define a partial order on I by setting:

↵  � , U� ✓ U↵ , p↵(x)  p�(x), 8x 2 X.

Then (I,) is directed because M is a basis and so for any ↵,� 2 I we have
U↵ \U� 2 M, i.e. there exists � 2 I such that U� ✓ U↵ \U� and so U� ✓ U↵
and U� ✓ U� , i.e. ↵  � and �  �. Also, for any ↵  � in I we have
N� ✓ N↵ and hence

f↵� : E� ! E↵
x+N� 7! x+N↵

is a well-defined surjective homomorphism and the following holds

⇢↵ = f↵� � ⇢� , 8↵  � in I. (3.13)

Then all f↵� ’s are continuous homomorphisms and for any ↵  �  � in I
and any x 2 E� , we have

f↵�(f��(x+N�)) = f↵�(x+N�) = x+N↵ = f↵�(x+N�),

i.e. f↵� = f↵� � f�� .
Hence, {(E↵, q↵), f↵� , I} is a projective system of normed algebras. More-

over, for any ↵  � in I there exists f↵� : Ê� ! Ê↵ continuous and linear
such that f↵� � i� = i↵ � f↵� where i↵ (resp. i�) denotes the embedding of E↵
(resp. E�) in Ê↵ (resp. Ê�). Then it is easy to check that {(Ê↵, q̂↵), f↵� , I}
is a projective system of Banach algebras.

We are ready now for the Arens-Michael decomposition theorem.

Theorem 3.3.20. Let (E, ⌧) be a Hausdor↵ lmc algebra and M := {U↵}↵2I
a basis of neighbourhoods of the origin in (E, ⌧) consisting of m-barrels. Con-
sider the projective system {E↵, f↵� , I} of normed algebras and the projective

system {Ê↵, f↵� , I} of Banach algebras introduced above. Then there exist the
following topological monomorphisms

E ,! projlim{(E↵, q↵), f↵� , I} ,! projlim{(Ê↵, q↵), f↵� , I} ⇠= Ê. (3.14)

If in addition (E, ⌧) is complete, then the maps in (3.14) are all topological
isomorphisms. In this case, the expression E = projlim{(Ê↵, q↵), f↵� , I} is
called the Arens-Michael decomposition of E w.r.t. M.
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3. Further special classes of topological algebras

Proof.
For convenience, let us denote by P and P̂ the projective systems {E↵, f↵� , I}
and {Ê↵, f↵� , I}, respectively.

For any x 2 E, let us define �(x) := (⇢↵(x))↵2I . Then �(E) ✓ projlim(P).
Indeed, for any x 2 E and ↵  � in I we have

⇣

�(x)
⌘

↵
= ⇢↵(x)

(3.13)

= f↵�(⇢�(x)) = f↵�

✓

⇣

�(x)
⌘

�

◆

.

Then the following hold:
• � is a homomorphism, as each ⇢↵ is a homomorphism and projlim(P) is
equipped with coordinatewise operations. Let us just show that � is multi-
plicative: for all x, y 2 E,

�(xy) = (⇢↵(xy))↵2I = (⇢↵(x)⇢↵(y))↵2I = (⇢↵(x))↵2I (⇢↵(y))↵2I = �(x)�(y).

• � is injective, because

�(x) = 0 ) ⇢↵(x) = 0, 8↵ 2 I ) x 2 N↵, 8↵ 2 I ) p↵(x) = 0, 8↵ 2 I ) x = 0,

where in the last implication we used that E is Hausdor↵ and so {p↵}↵2I is
a separating family of seminorms.
• � is continuous, because Lemma 3.3.18 guarantees that for any neighbour-
hood U of the origin in projlim(P), there exist ↵ 2 I and a neighbourhood V↵
of the origin in E↵ such that f�1

↵ (V↵) ✓ U . Then ⇢1↵(V↵) = ��1(f�1

↵ (V↵)) ✓
��1(U) and so, by the continuity of ⇢↵ we have that ��1(U) is a neighborhood
of the origin in E.
• � is an open map. Indeed, recalling that M := {U↵}↵2I is a basis of
neighbourhoods of the origin in (E, ⌧), we can show that for any ↵ 2 I the

set V :=
⇣

⇢↵
�

1

2

U↵
�

⇥
Q

�2I\{↵}E�
⌘

\ �(E) is a neighbourhood of the ori-

gin in projlim(P) such that V ✓ �(U↵). Fix ↵ 2 I. Then the openness
of ⇢↵ implies that ⇢↵(

1

2

U↵) is a neighbourhood of the origin in E↵ and so
⇢↵

�

1

2

U↵
�

⇥
Q

�2I\{↵}E� is a neighbourhood of the origin in
Q

�2I E� endowed
with the product topology. Hence, V is a neighbourhood of the origin in
projlim(P).

Moreover, for any x := (x�)�2I 2 V we have that:
a) x 2 �(E), i.e. there exists y 2 E such that �(y) = x
b) x↵ 2 ⇢↵

�

1

2

U↵
�

c) x� 2 E� for all � 6= ↵ in I.
Then

⇢↵(y) = f↵(�(y))
(a)
= f↵(x) = x↵

(b)
2 ⇢↵

✓

1

2
U↵

◆

,
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3.3. Projective limit algebras

which implies that there exists z 2 1

2

U↵ such that ⇢↵(y) = ⇢↵(z). Therefore,
y = z + w for some w 2 N↵, which gives in turn

|p↵(y)� p↵(z)|  p↵(y � z)  p↵(w) = 0,

and so p↵(y) = p↵(z)  1

2

< 1, i.e. y 2 U↵. Hence, x
(a)
= �(y) 2 �(U↵), that

gives V ✓ �(U↵).

We have then just showed that � : E ,! projlim(P) is a topological
monomorphism.

Now, by using Theorem 3.3.17, we get that for any ↵  � in I the diagram

E� Ê�

E↵ Ê↵

f↵�

i�

f↵�

i↵

commutes, where i↵ and i� are topological monomorphisms such that i↵(E↵) =

Ê↵ and i�(E�) = Ê� . Then [4, E.III.53, Corollary 1] ensures that there exists

a unique topological monomorphism j : projlim(P) ,! projlim(P̂) such that
the following diagram commutes

projlim(P) projlim(P̂)

E↵ Ê↵

f↵

j

f↵

i↵
(3.15)

Setting  = j � � we get a topological monomorphism from E to projlim(P̂)
and so  (E) is a linear subspace of projlim(P̂). Therefore, Lemma 3.3.19

provides that  (E) = projlim(Q), where Q :=
n

f↵( (E)), f↵� �
f�( (E))

, I
o

.

By the commutativity of the diagram (3.15), we know that

f↵( (E)) = f↵(j(�(E))) = i↵(f↵(�(E))) = i↵(⇢↵(E)) = i↵(E↵).

Hence, f↵( (E)) = i↵(E↵) = Ê↵ and so

 (E) = projlim(Q) = projlim(P̂).
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3. Further special classes of topological algebras

This together with the fact that projlim(P̂) is complete (see Remark 3.3.15-c))
implies that Ê is topologically isomorphic to projlim(P̂) by Theorem 3.3.17-I).
Therefore, we have proved that

E
�
,! projlim(P)

j
,! projlim(P̂) ⇠= Ê.

If in addition E is complete, then E = Ê and so � and j must be also
isomorphisms.

Using Remark 3.3.15, we can easily derive from Theorem 3.3.20 the fol-
lowing

Corollary 3.3.21.

a) Every Hausdor↵ lmc algebra can be topologically embedded in a cartesian
product of Banach algebras.

b) Every Fréchet lmc algebra is topologically isomorphic to the projective limit
of a sequence of Banach algebras.

Theorem 3.3.22. Let (E, ⌧) be a Hausdor↵ complete lmc algebra and M :=
{U↵}↵2I a basis of neighbourhoods of the origin in (E, ⌧) consisting of m-
barrels. Then:
a) E is unital if and only if each component of its Arens-Michael decomposi-

tion w.r.t. M is a unital Banach algebra.
b) x 2 E is invertible if and only if its image into each component of the its

Arens-Michael decomposition of E w.r.t. M is invertible.

Proof.
Let E = projlim{Ê↵, f↵� , I} be theArens-Michael decomposition of E w.r.t.M
(see Theorem 3.3.20).

a) Suppose that there exists u 2 E s.t. for all y 2 E we have u·y = y = y·u.
For any ↵ 2 I, set u↵ := ⇢↵(u) 2 Ê↵. By the surjectivity of ⇢↵ , we know that
for any x↵ 2 Ê↵ there exists x 2 E such that ⇢↵(x) = x↵ and so we get that:

x↵ · u↵ = ⇢↵(x)⇢↵(u) = ⇢↵(x · u) = ⇢↵(x) = x↵

and similarly we obtain u↵x↵ = x↵, i.e. each Ê↵ is unital.
Conversely, suppose that for any ↵ 2 I there exists u↵ 2 Ê↵ s.t. y · u↵ =

y = u↵ · y for all y 2 Ê↵. Then u := (u↵)↵2I belongs to projlim{Ê↵, f↵� , I}
since for all ↵  � in I and for all x↵ 2 Ê↵ we get:

x↵ · f↵�(u�) = ⇢↵(x) · f↵�(u�) = f↵�(⇢�(x)) · f↵�(u�)
= f↵�(⇢�(x) · u�) = f↵�(⇢�(x)) = ⇢↵(x) = x↵,
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3.3. Projective limit algebras

i.e. f↵�(u�) = u↵. As the multiplication in projlim{Ê↵, f↵� , I} is defined
coordinatewise, it is then clear that u := (u↵)↵2I is the identity element of
the multiplication in projlim{Ê↵, f↵� , I}, which is therefore a unital algebra.

b) Suppose that u is the identity element of the multiplication in E and
that x 2 E is invertible, i.e. there exists y 2 E s.t. x · y = u = y · x. For each
↵ 2 I, we have already showed that u↵ := ⇢↵(u) is the identity element of the
multiplication in Ê↵. Hence, we have

⇢↵(x) · ⇢↵(y) = ⇢↵(x · y) = ⇢↵(u) = u↵,

i.e. ⇢↵(x) is invertible in Ê↵.
Conversely, suppose that x 2 projlim{Ê↵, f↵� , I} is s.t. for each ↵ 2 I

the element ⇢↵(x) is invertible. Then for each ↵ 2 I there exists y↵ 2 Ê↵
s.t. ⇢↵(x) · y↵ = u↵ = y↵ · ⇢↵(x), where u↵ is the identity element of the
multiplication in Ê↵. Now as we have already showed that u := (u↵)↵2I is the
identity element of the (coordinatewise) multiplication in projlim{Ê↵, f↵� , I},
it is enough to prove that (y↵)↵2I 2 projlim{Ê↵, f↵� , I}. This is indeed true
since for all ↵  � in I the following holds

⇢↵(x) · f↵�(y�) = f↵�(⇢�(x)) · f↵�(y�) = f↵�(⇢�(x) · y�) = f↵�(u�) = y↵,

and, hence, f↵�(y�) = y↵.
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