
Chapter 4

Symmetric tensor algebras

As usual, we consider only vector spaces over the field K of real numbers or
of complex numbers. The aim of this section is to present a way to explicitly
construct an lmc algebra starting from the symmetric tensor algebra of a lc
TVS. For this purpose, we will preliminarily introduce the concept of tensor
product of vector spaces and then endow it with one of the many topologies
which can be defined when the starting space carries an lc structure.

4.1 Tensor product of vector spaces

Let us start with a notion which is central in the definition of tensor product.

Definition 4.1.1.

Let E,F,M be three vector spaces over K and � : E ⇥ F ! M be a bilinear
map. E and F are said to be ��linearly disjoint if:
(LD) For any r, s 2 N, x

1

, . . . , xr linearly independent in E and y
1

, . . . , ys
linearly independent in F , the set {�(xi, yj) : i = 1, . . . , r, j = 1, . . . , s}
consists of linearly independent vectors in M .

or equivalently if:
(LD)’ For any r 2 N, any {x

1

, . . . , xr} finite subset of E and any {y
1

, . . . , yr}
finite subset of F s.t.

Pr
i=1

�(xi, yj) = 0, we have that both the following
conditions hold:

• if x
1

, . . . , xr are linearly independent in E, then y
1

= · · · = yr = 0
• if y

1

, . . . , yr are linearly independent in F , then x
1

= · · · = xr = 0.

Definition 4.1.2. A tensor product of two vector spaces E and F over K is
a pair (M,�) consisting of a vector space M over K and of a bilinear map
� : E ⇥ F ! M (canonical map) s.t. the following conditions are satisfied:
(TP1) The image of E ⇥ F spans the whole space M .
(TP2) E and F are ��linearly disjoint.
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4. Symmetric tensor algebras

The following theorem guarantees that the tensor product of any two vec-
tor spaces always exists, satisfies the “universal property” and it is unique up
to isomorphisms. For this reason, the tensor product of E and F is usually
denoted by E ⌦ F and the canonical map by (x, y) 7! x⌦ y.

Theorem 4.1.3. Let E, F be two vector spaces over K.
(a) There exists a tensor product of E and F .
(b) Let (M,�) be a tensor product of E and F . Let G be any vector space over

K, and b any bilinear mapping of E ⇥ F into G. There exists a unique
linear map b̃ : M ! G such that the diagram

E ⇥ F G

M

�

b

˜b

is commutative.
(c) If (M

1

,�
1

) and (M
2

,�
2

) are two tensor products of E and F , then there
is a bijective linear map u such that the diagram

E ⇥ F M
2

M
1

�
1

�
2

u

is commutative.

Proof. (see [16, Theorem 4.1.4])

Examples 4.1.4.

1. Let n,m 2 N, E = Kn and F = Km. Then E ⌦ F = Knm is a tensor
product of E and F whose canonical bilinear map � is given by:

� : E ⇥ F ! Knm
⇣

(xi)ni=1

, (yj)mj=1

⌘

7! (xiyj)1in,1jm.

2. Let X and Y be two sets. For any functions f : X ! K and g : Y ! K,
we define:

f ⌦ g : X ⇥ Y ! K
(x, y) 7! f(x)g(y).

Let E (resp. F ) be the linear space of all functions from X (resp. Y ) to
K endowed with the pointwise addition and multiplication by scalars. We
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4.2. The ⇡�topology on the tensor product of lc TVS

denote by M the linear subspace of the space of all functions from X⇥Y
to K spanned by the elements of the form f ⌦g for all f 2 E and g 2 F .
Then M is actually a tensor product of E and F , i.e. M = E ⌦ F .

Similarly to how we defined the tensor product of two vector spaces we
can define the tensor product of an arbitrary number of vector spaces.

Definition 4.1.5. Let n 2 N with n � 2 and E
1

, . . . , En vector spaces over K.
A tensor product of E

1

, . . . , En is a pair (M,�) consisting of a vector space
M over K and of a multilinear map � : E

1

⇥ · · ·⇥ En ! M (canonical map)
s.t. the following conditions are satisfied:

(TP1) The image of E
1

⇥ · · ·⇥ En spans the whole space M .

(TP2) E
1

, . . . , En are ��linearly disjoint, i.e. for any r
1

, . . . , rn 2 N and for

any x(i)
1

, . . . , x(i)ri linearly independent in Ei (i = 1, . . . , n), the set

n

�
⇣

x(1)j
1

, . . . , x(n)jn

⌘

: j1 = 1, . . . , r1, . . . , jn = 1, . . . , rn

o

consists of linearly independent vectors in M .

Recall that a map is multilinear if it is linear in each of its variables. As
for the case n = 2 it is possible to show that:
(a) There always exists a tensor product of E

1

, . . . , En.
(b) The universal property holds for E

1

⌦ · · ·⌦ En.
(c) E

1

⌦ · · ·⌦ En is unique up to isomorphisms.

4.2 The ⇡�topology on the tensor product of lc TVS

Given two locally convex TVS E and F , there are various ways to construct
a topology on the tensor product E ⌦F which makes the vector space E ⌦F
in a TVS. Indeed, starting from the topologies on E and F , one can define a
topology on E ⌦ F either relying directly on the seminorms on E and F , or
using an embedding of E ⌦ F in some space related to E and F over which
a natural topology already exists. The first method leads to the so-called
⇡�topology. The second method may lead instead to a variety of topologies,
which we are not going to investigate in this course.

Definition 4.2.1 (⇡�topology).
Given two locally convex TVS E and F , we define the ⇡�topology (or projec-
tive topology) on E ⌦ F to be the finest locally convex topology on this vector
space for which the canonical mapping E ⇥ F ! E ⌦ F is continuous. The
space E ⌦ F equipped with the ⇡�topology will be denoted by E ⌦⇡ F .
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4. Symmetric tensor algebras

A basis of neighbourhoods of the origin in E ⌦⇡ F is given by the family:

B := {convb(U↵ ⌦ V�) : U↵ 2 BE , V� 2 BF } ,

where BE (resp. BF ) is a basis of neighbourhoods of the origin in E (resp.
in F ), U↵ ⌦ V� := {x⌦ y 2 E ⌦ F : x 2 U↵, y 2 V�}. In fact, on the one
hand, the ⇡�topology is by definition locally convex and so it has a basis
B of convex balanced neighbourhoods of the origin in E ⌦ F . Then, as the
canonical mapping � is continuous w.r.t. the ⇡�topology, we have that for
any C 2 B there exist U↵ 2 BE and V� 2 BF s.t. U↵ ⇥ V� ✓ ��1(C).
Hence, U↵ ⌦ V� = �(U↵ ⇥ V�) ✓ C and so convb(U↵ ⌦ V�) ✓ convb(C) = C
which yields that the topology generated by B⇡ is finer than the ⇡�topology.
On the other hand, the canonical map � is continuous w.r.t. the topology
generated by B⇡, because for any U↵ 2 BE and V� 2 BF we have that
��1(convb(U↵ ⌦ V�)) ◆ ��1(U↵ ⌦ V�) = U↵ ⇥ V� which is a neighbourhood of
the origin in E ⇥ F . Hence, the topology generated by B⇡ is coarser than the
⇡�topology.

The ⇡�topology on E ⌦ F can be described by means of the seminorms
defining the locally convex topologies on E and F .

Theorem 4.2.2. Let E and F be two locally convex TVS and let P (resp.Q)
be a family of seminorms generating the topology on E (resp. on F ). The
⇡�topology on E ⌦ F is generated by the family of seminorms

{p⌦ q : p 2 P, q 2 Q},

where for any p 2 P, q 2 Q, ✓ 2 E ⌦ F we define:

(p⌦ q)(✓) := inf

(

r
X

k=1

p(xk)q(yk) : ✓ =
r
X

k=1

xk ⌦ yk, , xk 2 E, yk 2 F, r 2 N

)

.

Proof. (see [16, Proposition 4.3.10 and Theorem 4.3.11])

The seminorm p⌦ q on E⌦F defined in the previous proposition is called
tensor product of the seminorms p and q (or projective cross seminorm)

Proposition 4.2.3. Let E and F be two locally convex TVS. E ⌦⇡ F is
Hausdor↵ if and only if E and F are both Hausdor↵.

In analogy with the algebraic case (see Theorem 4.1.3-b), we also have a
universal property for the space E ⌦⇡ F .
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4.3. Tensor algebra and symmetric tensor algebra of a vs

Proposition 4.2.4.

Let E,F be locally convex spaces. The ⇡�topology on E ⌦⇡ F is the unique
locally convex topology on E ⌦ F such that the following property holds:

(UP) For every locally convex space G, the algebraic isomorphism between
the space of bilinear mappings from E ⇥ F into G and the space of all
linear mappings from E ⌦F into G (given by Theorem 4.1.3-b) induces
an algebraic isomorphism between B(E,F ;G) and L(E ⌦ F ;G), where
B(E,F ;G) denotes the space of all continuous bilinear mappings from
E⇥F into G and L(E⌦F ;G) the space of all continuous linear mappings
from E ⌦ F into G.

Proof. Let ⌧ be a locally convex topology on E ⌦ F such that the property
(UP) holds. Then (UP) holds in particular for G = (E ⌦ F, ⌧). Therefore, by
Theorem 4.1.3-b) the identity id : E ⌦ F ! E ⌦ F is the unique linear map
such that the diagram

E ⇥ F E ⌦⌧ F

E ⌦⌧ F

�

�

id

commutes. Hence, we get that � : E ⇥ F ! E ⌦⌧ F has to be continuous.
This implies that ⌧ ✓ ⇡ by definition of ⇡�topology. On the other hand,

(UP) also holds for G = (E ⌦ F,⇡).

E ⇥ F E ⌦⇡ F

E ⌦⌧ F

�

�

id

Hence, since by definition of ⇡�topology � : E ⇥ F ! E ⌦⇡ F is continuous,
the id : E ⌦⌧ F ! E ⌦⇡ F has to be also continuous. This means that ⇡ ✓ ⌧ ,
which completes the proof.

4.3 Tensor algebra and symmetric tensor algebra of a vs

Let V be a vector space over K. For any k 2 N, we define the k�th tensor
power of V as

V ⌦k := V ⌦ · · ·⌦ V
| {z }

k-times
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4. Symmetric tensor algebras

and we take by convention V ⌦0 := K. Then it is possible to show that there
exists the following algebraic isomorphism:

8n,m 2 N, V ⌦n ⌦ V ⌦m ⇠= V ⌦(n+m) (4.1)

We can pack together all tensor powers of V in a unique vector space:

T (V ) :=
1
M

k=0

V ⌦k.

We define a multiplication over T (V ) which makes it into a unital K�algebra.
First of all, let us observe that for any k 2 N

0

there is a natural embedding
ik : V ⌦k ! T (V ). For sake of notational convenience, in the following we will
identify each g 2 V ⌦k with ik(g). Then every element f 2 T (V ) can be
expressed as f =

PN
k=0

fk for some N 2 N
0

and fk 2 V ⌦k for k = 0, . . . , N .
Using the isomorphism given by (4.1), for any j, k 2 N we can define the
following bilinear operation:

· : V ⌦k ⇥ V ⌦j ! V ⌦(k+j)

((v
1

⌦ · · ·⌦ vk), (w1

⌦ · · ·⌦ wj)) 7! v
1

⌦ · · ·⌦ vk ⌦ w
1

⌦ · · ·⌦ wj .
(4.2)

Hence, we get a multiplication · : T (V ) ⇥ T (V ) ! T (V ) just by defining for
all f, g 2 T (V ), say f =

PN
k=0

fk and g =
PM

j=0

gj for some N,M 2 N
0

,

fk 2 V ⌦k, gj 2 V ⌦j ,

f · g :=
N
X

k=0

M
X

j=0

fk · gj ,

where fk · gj is the one defined in (4.2). Then we easily see that:
a) · is bilinear on T (V ) ⇥ T (V ) as it is bilinear on each V ⌦k ⇥ V ⌦j for all

j, k 2 N
0

.
b) · is associative, i.e. 8f, g, h 2 T (V ), (f · g) · h = f · (g · h). Indeed, if

f =
PN

k=0

fk, g =
PM

j=0

gj , h =
PS

l=0

hl with N,M,S 2 N
0

, fk 2 V ⌦k,

gj 2 V ⌦j , hl 2 V ⌦l, then

(f · g) · h =
N
X

k=0

M
X

j=0

S
X

l=0

(fk · gj) · hl =
N
X

k=0

M
X

j=0

S
X

l=0

fk · (gj · hl) = f · (g · h),

where we have just used that V ⌦(k+j)⌦V ⌦l ⇠= V ⌦(k+j+l) ⇠= V ⌦k ⌦V ⌦(j+l)

by (4.1).
c) 1 2 K is the identity for the multiplication ·, since K = V ⌦0 and for all

f =
PN

k=0

fk 2 T (V ) we have 1 · f =
Pn

k=0

(1 · fk) =
PN

k=0

fk = f .
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4.3. Tensor algebra and symmetric tensor algebra of a vs

Hence, (T (V ), ·) is a unital K�algebra, which is usually called the tensor
algebra of V .

Remark 4.3.1. If {xi}i2⌦ is a basis of the vector space V , then each element
of V ⌦k can be identified with a polynomial of degree k in the non-commuting
variables {xi}i2⌦ and with coe�cients in K. Hence, T (V ) is identified with
the non-commutative polynomial ring Khxi, i 2 ⌦i.

Proposition 4.3.2. Let V be a vector space over K. For any unital K�algebra
(A, ⇤) and any linear map f : V ! A, there exists a unique K�algebra homo-
morphism f̄ : T (V ) ! A such that the following diagram commutes

V A

T (V )

i
1

f

¯f

where i
1

is the natural embedding of V = V ⌦1 into T (V ).

Proof.
For any k 2 N, we define

fk : V ⇥ · · ·⇥ V
| {z }

k times

! A

(v
1

, . . . , vk) 7! f(v
1

) ⇤ · · · ⇤ f(vk)

which is multilinear by the linearity of f . For k = 0 we define

f
0

: K ! A
r 7! r1A.

By the universal property of V ⌦k, we have that there exists a unique linear
map �k : V ⌦k ! A s.t. �k(v1 ⌦ · · ·⌦ vk) = fk(v1, . . . , vk) = f(v

1

) ⇤ · · · ⇤ f(vk)
and for k = 0 we have �

0

(r) = f
0

(r) = r1A, 8r 2 K. Then, by the universal
property of the direct sum, we get that there exists a unique linear map
f̄ : T (V ) ! A such that f̄(ik(v1 ⌦ · · ·⌦ vk)) = �k(v1 ⌦ · · ·⌦ vk)

V ⇥ · · ·⇥ V A

V ⌦k

T (V )

fk

ik

�k

¯f
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4. Symmetric tensor algebras

In particular, for k = 1 we obtain that f̄(i
1

(v)) = �
1

(v) = f(v).
It remains to show that f̄ is a K�algebra homomorphism from T (V ) to

A. By construction of f̄ , we clearly have that f̄ is linear and

f̄(1T (V )

) = f̄(i
0

(1)) = �
0

(1) = f
0

(1) = 1A.

Let us prove now that for any x, y 2 T (V ) we get f̄(x · y) = f̄(x) ⇤ f̄(y). As f̄
is linear, it is enough to show that for any n,m 2 N, any x

1

, . . . , xn 2 V and
any y

1

, . . . , ym 2 V , we get

f̄((x
1

⌦ · · ·⌦xn) · (y1⌦ · · ·⌦ ym)) = f̄(x
1

⌦ · · ·⌦xn) ⇤ f̄(y1⌦ · · ·⌦ ym). (4.3)

Indeed, by just applying the properties of f̄ , we obtain that:

f̄(x
1

⌦ · · ·⌦ xn) = �n(x1 ⌦ · · ·⌦ xn) = f(x
1

) ⇤ · · · ⇤ f(xn)

and
f̄(y

1

⌦ · · ·⌦ ym) = �m(y
1

⌦ · · ·⌦ ym) = f(y
1

) ⇤ · · · ⇤ f(ym).

These together with the definition of multiplication in T (V ) give that:

f̄(x
1

⌦ · · ·⌦ xn) ⇤ f̄(y1 ⌦ · · ·⌦ ym) = f(x
1

) ⇤ · · · ⇤ f(xn) ⇤ f(y1) ⇤ · · · ⇤ f(ym)

= f̄((x
1

⌦ · · ·⌦ xn) · (y1 ⌦ · · ·⌦ ym)).

Consider now the ideal I in (T (V ), ·) generated by the elements v ⌦ w �
w ⌦ v, for all v, w 2 V . The tensor algebra T (V ) factored by this ideal I
is denoted by S(V ) and called the symmetric (tensor) algebra of V . If we
denote by ⇡ the quotient map from T (V ) to S(V ), then for any k 2 N

0

and any element f =
Pn

i=1

fi1 ⌦ · · · ⌦ fik 2 V ⌦k (here n 2 N, fij 2 V for
i = 1, . . . , n, j = 1, . . . , k and n � 1) we have that

⇡

 

n
X

i=1

fi1 ⌦ · · ·⌦ fik

!

=
n
X

i=1

fi1 · · · fik.

We define the k�th homogeneous component of S(V ) to be the image of V ⌦k

under ⇡ and we denoted it by S(V )k. Note that S(V )
0

= K and S(V )
1

= V .
Hence, we have

S(V ) =
1
M

k=0

S(V )k

and so every element f 2 S(V ) can expressed as f =
PN

k=0

fk for some N 2 N,
fk 2 S(V )k for k = 0, . . . , N .
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4.4. An lmc topology on the symmetric algebra of a lc TVS

Remark 4.3.3. If {xi}i2⌦ is a basis of the vector space V , then each element
of S(V )k can be identified with a polynomial of degree k in the commuting
variables {xi}i2⌦ and with coe�cients in K. Hence, S(V ) is identified with
the commutative polynomial ring K[xi : i 2 ⌦].

The universal property of S(V ) easily follows from the universal property
of T (V ).

Proposition 4.3.4. Let V be a vector space over K. For any unital commu-
tative K�algebra (A, ⇤) and any linear map  : V ! A, there exists a unique
K�algebra homomorphism  ̄ : S(V ) ! A such that the following diagram
commutes

V A

S(V )

 

¯ 

i.e.  ̄ �V =  .

Corollary 4.3.5. Let V be a vector space over K. The algebraic dual V ⇤ of
V is algebraically isomorphic to Hom(S(V ),K).

Proof. For any ↵ 2 Hom(S(V ),K) we clearly have ↵ �V 2 V ⇤. On the
other hand, by Proposition 4.3.4, for any ` 2 V ⇤ there exists a unique ¯̀ 2
Hom(S(V ),K) such that ¯̀ �V = `.

4.4 An lmc topology on the symmetric algebra of a lc TVS

Let V be a vector space over K. In this section we are going to explain
how a locally convex topology ⌧ on V can be naturally extended to a locally
convex topology ⌧ on the symmetric algebra S(V ) (see [14]). Let us start by
considering the simplest possible case, i.e. when ⌧ is generated by a single
seminorm.

Suppose now that ⇢ is a seminorm on V . Starting from the seminorm ⇢
on V , we are going to construct a seminorm ⇢̄ on S(V ) in three steps:

1. For k 2 N, let us consider the projective tensor seminorm on V ⌦k see
Theorem 4.2.2, i.e.

⇢⌦k(g) := (⇢⌦ · · ·⌦ ⇢
| {z }

ktimes

)(g)

= inf

(

N
X

i=1

⇢(gi1) · · · ⇢k(gik) : g =
N
X

i=1

gi1 ⌦ · · ·⌦ gik, gij 2 V, N 2 N

)

.
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4. Symmetric tensor algebras

2. Denote by ⇡k : V ⌦k ! S(V )k the quotient map ⇡ restricted to V ⌦k and
define ⇢k to be the quotient seminorm on S(V )k induced by ⇢⌦k, i.e.

⇢k(f) := inf{⇢⌦k(g) : g 2 V ⌦k, ⇡k(g) = f}

= inf

(

N
X

i=1

⇢(fi1) · · · ⇢(fik) : f =
N
X

i=1

fi1 · · · fik, fij 2 V,N 2 N

)

.

Define ⇢
0

to be the usual absolute value on K.

3. For any h 2 S(V ), say h = h
0

+ · · ·+h`, fk 2 S(V )k, k = 0, . . . , `, define

⇢(f) :=
X̀

k=0

⇢k(fk).

We refer to ⇢ as the projective extension of ⇢ to S(V ).

Proposition 4.4.1. ⇢ is a seminorm on S(V ) extending the seminorm ⇢ on
V and ⇢ is also submultiplicative i.e. ⇢(f · g)  ⇢(f)⇢(g), 8f, g 2 S(V )

To prove this result we need an essential lemma:

Lemma 4.4.2. Let i, j 2 N, f 2 S(V )i and g 2 S(V )j. If k = i + j then
⇢k(fg)  ⇢i(f)⇢j(g).

Proof.
Let us consider a generic representation of f 2 S(V )i and g 2 S(V )j , i.e.
f =

P

p fp1 · · · fpi with fpk 2 V for k = 1, . . . , i and g =
P

q gq1 · · · gqj with
gql 2 V for l = 1, . . . , j. Then f · g =

P

p,q fp1 · · · fpigq1 · · · gqj , and so

⇢k(f · g) 
X

p,q

⇢(fp1) · · · ⇢(fpi)⇢(gq1) · · · ⇢(gqj)

=

 

X

p

⇢(fp1) · · · ⇢(fpi)
! 

X

q

⇢(gq1) · · · ⇢(gqj)
!

.

Since this holds for any representation of f and g, we get ⇢k(fg)  ⇢i(f)⇢j(g).

Proof. (of Proposition 4.4.1).
It is quite straightforward to show that ⇢ is a seminorm on S(V ). Indeed
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4.4. An lmc topology on the symmetric algebra of a lc TVS

• Let k 2 K and f 2 S(V ). Consider any representation of f , say we take
f =

Pn
j=0

fj with n 2 N and fj 2 S(V )j for j = 0, . . . , n. Then using
the definition of ⇢ and the fact that ⇢k is a seminorm on S(V )k we get:

⇢(kf) = ⇢

0

@

n
X

j=0

kfj

1

A =
n
X

j=0

⇢j(kfj) = |k|
n
X

j=0

⇢j(fj) = |k|⇢(f).

• Let f, g 2 S(V ). Consider any representation of f and g, say we take
f =

Pn
j=0

fj , g =
Pm

i=0

gi with n,m 2 N, fj 2 S(V )j for j = 0, . . . , n
and gi 2 S(V )i for i = 0, . . . ,m. Take N := max{n,m}. Then we can
rewrite f =

PN
j=0

fj and g =
PN

i=0

gi, where fj = 0 for j = n+1, . . . , N
and gi = 0 for i = m+1, . . . , N . Therefore, using the definition of ⇢ and
the fact that ⇢k is a seminorm on S(V )k, we have

⇢(f + g) = ⇢

0

@

N
X

j=0

(fj + gj)

1

A 
N
X

j=0

⇢j(fj) +
N
X

j=0

⇢j(gj) = ⇢(f) + ⇢(g).

Also, ⇢
1

= ⇢, so ⇢ restricted to V coincides with ⇢. Let us finally show that
⇢ is submultiplicative. Let f =

Pm
i=0

fi, g =
Pn

j=0

gj , fi 2 S(V )i, gj 2 S(V )j
and set T := {0, . . . ,m} ⇥ {0, . . . , n}. Then by using the definition of ⇢, the
fact that ⇢k is a seminorm on S(V )k and Lemma 4.4.2 we obtain

⇢(f · g) =⇢

0

@

m
X

i=0

n
X

j=0

figj

1

A = ⇢

0

B

B

@

m+n
X

k=0

X

(i,j)2T

i+j=k

figj

1

C

C

A

=
m+n
X

k=0

⇢k

0

B

B

@

X

(i,j)2T

i+j=k

figj

1

C

C

A


m+n
X

k=0

X

(i,j)2T

i+j=k

⇢k(figj) 
m+n
X

k=0

X

(i,j)2T

i+j=k

⇢i(fi)⇢j(gj) =
m
X

i=0

n
X

j=0

⇢i(fi)⇢j(gj)

=

 

m
X

i=0

⇢i(fi)

!

0

@

n
X

j=0

⇢j(gj)

1

A = ⇢(f)⇢(g).

Let us now consider (S(V ), ⇢) and any other submultiplicative seminormed
unital commutative K�algebra (A,�). If ↵ : (S(V ), ⇢) ! (A,�) is linear and
continuous, then clearly ↵ �V : (V, ⇢) ! (A,�) is also continuous. However,
if  : (V, ⇢) ! (A,�) is linear and continuous, then the unique extension  
given by Proposition 4.3.4 need not be continuous . All one can say in general
is the following lemma.
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4. Symmetric tensor algebras

Lemma 4.4.3. If  : (V, ⇢) ! (A,�) is linear and continuous, namely 9
C > 0 such that �( (v))  C⇢(v) 8 v 2 V , then for any k 2 N we have
�( (g))  Ck⇢k(g) 8 g 2 S(V )k.

Proof.
Let k 2 N and g 2 S(V )k. Suppose g =

PN
i=1

gi1 · · · gik with gij 2 V for

j = 1, . . . , N . Then  (g) =
PN

i=1

 (gi1) · · · (gik), and so

�( (g))  �

 

N
X

i=1

 (gi1) · · · (gik)
!


N
X

i=1

�( (fi1)) · · ·�( (gik))


N
X

i=1

C⇢(gi1) · · ·C⇢(gik) = Ck
N
X

i=1

⇢(gi1) · · · ⇢(gik).

As this holds for any representation of g, we get �( (g))  Ck⇢k(g).

Proposition 4.4.4. If  : (V, ⇢) ! (A,�) has operator norm  1, then the
induced algebra homomorphism  : (S(V ), ⇢) ! (A,�) has operator norm
 �(1).

Recall that given a linear operator L between two seminormed spaces
(W

1

, q
1

) and (W
2

, q
2

) we define the operator norm of L as follows:

kLk := sup
w2W

1

q
1

(w)1

q
2

(L(w)).

Proof.
Suppose � 6⌘ 0 on A (if this is the case then there is nothing to prove). Then
there exists a 2 A such that �(a) > 0. This together with the fact that � is a
submultiplicative seminorm gives that

�(1) � 1. (4.4)

Since k k  1, we have that �( (v))  ⇢(v), 8 v 2 V. Then we can apply
Lemma 4.4.3 and get that

8 k 2 N, g 2 S(V )k, �( (g))  ⇢k(g) (4.5)
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4.4. An lmc topology on the symmetric algebra of a lc TVS

Now let f 2 S(V ), i.e. f =
Pm

k=0

fk with fk 2 S(V )k for k = 0, . . . ,m. Then

�( (f)) = �

 

m
X

k=0

 (fk)

!


m
X

k=0

�( (fk))
(4.5)

 �( (f
0

)) +
m
X

k=1

⇢k(fk)

= �(f
0

) +
m
X

k=1

⇢k(fk)  �(1)⇢(f
0

) +
m
X

k=1

⇢k(fk)

(4.4)

 �(1)⇢(f
0

) +
m
X

k=1

�(1)⇢k(fk) = �(1)
m
X

k=0

⇢k(fk) = �(1)⇢(f).

Hence, k k  �(1).

Using the properties we have showed for the projective extension ⇢̄ of ⇢
to S(V ), we can easily pass to the case when V is endowed with a locally
convex topology ⌧ (generated by more than one seminorm) and to study how
to extend this topology to S(V ) in a such a way that the latter becomes an
lmc TA.

Let ⌧ be any locally convex topology on a vector space V over K and let
P be a directed family of seminorms generating ⌧ . Denote by ⌧ the topology
on S(V ) determined by the family of seminorms Q := {n⇢ : ⇢ 2 P, n 2 N}.

Proposition 4.4.5. ⌧ is an lmc topology on S(V ) extending ⌧ and is the
finest lmc topology on S(V ) having this property.

Proof. By definition of ⌧ and by Proposition 4.4.1, it is clear that Q is a di-
rected family of submultiplicative seminorms and so that ⌧ is an lmc topology
on S(V ) extending ⌧ .It remains to show that ⌧ is the finest lmc topology
with extending ⌧ to S(V ). Let µ an lmc topology on S(V ) s.t. µ �V = ⌧ , i.e.
µ extends ⌧ to S(V ). Suppose that µ is finer than ⌧ . Let S be a directed
family of submultiplicative seminorms generating µ and consider the identity
map id : (V, ⌧) ! (V, µ �V ). As by assumption µ �V = ⌧ , we have that id is
continuous and so by Theorem 4.6.3-TVS-I (applied for directed families of
seminorms) we get that:

8 s 2 S, 9n 2 N, 9 ⇢ 2 P : s(v) = s((id(v))  n⇢(v), 8 v 2 V.

Consider the embedding i : (V, n⇢) ! (S(V ), q). Then kik  1 and so, by
Proposition 4.4.4, the unique extension ī : (S(V ), n⇢) ! (S(V ), s) of i is
continuous with k̄ik  q(1). This gives that

s(f)  s(1)n⇢(f), 8 f 2 S(V ).

Hence, all s 2 F are continuous w.r.t. ⌧ and so µ must be coarser than ⌧ .
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