
Chapter 5

Short overview on the moment problem

In this chapter we are going to consider always Radon measures on Hausdor↵
topological spaces, i.e. non-negative Borel measures which are locally finite
and inner regular.

5.1 The classical finite-dimensional moment problem

Let µ be a Radon measure on R. We define the n�th moment of µ as

mµ
n :=

Z

R
xnµ(dx)

If all moments of µ exist and are finite, then we can associate to µ the sequence
of real numbers (mµ

n)n2N
0

, which is said to be the moment sequence of µ. The
moment problem exactly addresses the inverse question:

Problem 5.1.1 (The one-dimensional K�Moment Problem (KMP)).
Given a closed subset K of R and a sequence m = (mn)n2N

0

of real numbers,
does there exist a Radon measure µ on R s.t. for any n 2 N

0

we have mn = mµ
n

and µ is supported on K, i.e.

mn =

Z

R
xnµ(dx)

| {z }

n-th moment of µ

, 8n 2 N
0

and supp(µ) ✓ K ?

If such a measure µ does exist we say that µ is a K�representing measure
for m or that m is represented by µ on K.
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5. Short overview on the moment problem

Note that there is a bijective correspondence between the set RN
0 of all

sequences of real numbers and the set (R[x])⇤ of all linear functional from R[x]
to R.

RN
0 ! (R[x])⇤

(mn)n2N
0

7! Lm : R[x] ! R
p(x) :=

P

j
pjxj 7! Lm(p) :=

P

j
pjmj .

(L(xn))n2N
0

 [ L

In virtue of this correspondence, we can always reformulate the KMP in terms
of linear functionals

Problem 5.1.2 (The one-dimensional K�Moment Problem (KMP)).
Given a closed subset K of R and a linear functional L : R[x]! R, does there
exists a Radon measure µ on R s.t.

L(p) =

Z

R
p(x)µ(dx), 8p 2 R[x] and supp(µ) ✓ K ?

As before, if such a measure exists we say that µ is a K�representing
measure for L and that it is a solution to the K�moment problem for L.

Clearly one can generalize the one-dimensional KMP to higher dimension
by considering R[x] := R[x

1

, . . . , xd] for some d 2 N (see [15, Section 5.2.2]).

Problem 5.1.3 (The d-dimensional K�Moment Problem (KMP)).
Given a closed subset K of Rd and a linear functional L : R[x] ! R, does
there exists a Radon measure µ on Rd s.t.

L(p) =

Z

Rd

p(x)µ(dx), 8p 2 R[x] and supp(µ) ✓ K ?

It is then very natural to ask the following:

Questions
• What if we have infinitely many variables, i.e. we consider R[xi : i 2 ⌦]

where ⌦ is an infinite index set?
• What if instead of real variables we consider variables in a generic

R�vector space V (even infinite dimensional)?
• What if instead of the polynomial ring R[x] we take any unital commu-

tative R�algebra A?
All these possible generalization of the moment problem usually go under the
name of infinite dimensional moment problem.
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5.2. Moment problem for commutative R�algebras

5.2 Moment problem for commutative R�algebras
In this section we are going to give a formulation of the moment problem
general enough to encompass all the possible generalizations addressed in the
previous section. Let us start by introducing some notation and terminology.

Given a unital commutative R�algebra A, we denote by X (A) the char-
acter space of A (see Definition 2.4.6). For any a 2 A, we define the Gelfand
transform â : X (A) ! R as â(↵) := ↵(a), 8↵ 2 X (A). We endow the char-
acter space X (A) with the weakest topology ⌧X (A)

s.t. all Gelfand transforms
are continuous, i.e. â is continuous for all a 2 A.

Remark 5.2.1. X (A) can be seen as a subset of RA via the embedding:

⇡ : X (A) ! RA

↵ 7! ⇡(↵) := (↵(a))a2A = (â(↵))a2A .

If we equip RA with the product topology ⌧prod, then it can be showed (see [19,
Section 5.7]) that ⌧X (A)

coincides with the topology induced by ⇡ on X (A) from

(RA, ⌧prod), i.e.
⌧X (A)

⌘
�

⇡�1(O) : O 2 ⌧prod
 

.

The space
�

X (A), ⌧X (A)

�

is therefore Hausdor↵.

Problem 5.2.2 (The KMP for unital commutative R�algebras).
Given a closed subset K ✓ X (A) and a linear functional L : A ! R, does
there exist a Radon measure µ on X (A) s.t. we have

L(a) =

Z

X (A)

â(↵)µ(d↵), 8a 2 A and supp(µ) ✓ K?

lc

↵(p) = ↵

0

@

X

�2Nd
0

p�x
�

1

A =
X

�2Nd
0

↵(p�)↵(x1)
�
1 · · ·↵(xd)�d

=
X

�2Nd
0

p�↵(x1)
�
1 · · ·↵(xd)�d = p (↵(x

1

), . . . ,↵(xd)) .

Conversely, for any y 2 Rd we can define the functional ↵y : R[x] ! R by
↵y(p) := p(y) for any p 2 R[x], which is clearly a R�algebra homomorphism.
Hence, we have showed that X(R[x]) ⇠= Rd and via this isomorphism we
have that, for any p 2 R[x], the Gelfand transform p̂ is identified with the
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5. Short overview on the moment problem

polynomial p itself. Using these identifications, we get that Problem 5.2.2 for
A = R[x] is nothing but Problem 5.1.3.

Let us come back to the general KMP 5.2.2. Fixed a subset K of X (A),
we denote by

Pos(K) := {a 2 A : â � 0 on K}.
A necessary condition for the existence of a solution to the KMP 5.2.2 is clearly
that L is nonnegative on Pos(K). In fact, if there exists a K�representing
measure µ for L then for all a 2 Pos(K) we have

L(a) =

Z

X (A)

â(↵)µ(d↵) � 0

since µ is nonnegative and supported on K and â is nonnegative on K.
It is then natural to ask if the nonnegativity of L on Pos(K) is also suf-

ficient. For A = R[x] a positive answer is provided by the so-called Riesz-
Haviland theorem (see [15, Theorem 5.2.5]). An analogous result also holds
in this general setting:

Theorem 5.2.3 (Generalized Riesz-Haviland Theorem). Let K ✓ X (A) closed
and L : A ! R linear. Suppose there exists p 2 A such that p̂ � 0 on K
and for all n 2 N the set {↵ 2 K : p̂(↵)  n} is compact. Then L has a
K�representing measure if and only if L(Pos(K)) ✓ [0,+1).

This theorem provides a complete solution for the K� moment problem
5.2.2 but it is somehow unpractical! In fact, it reduces the solvability of the
K�moment problem to the problem of characterizing Pos(K). To approach
to this problem we will try to approximate elements in Pos(K) with elements
of A whose Gelfand transform is “more evidently” non-negative, e.g. sum of
even powers of elements of A. In this spirit we consider 2d�power modules of
the algebra A for d 2 N.

Definition 5.2.4 (2d�power module).
Let d 2 N. A 2d�power module of A is a subset M of A satisfying 1 2
M, M +M ✓M and a2dM ✓M for each a 2 A.

In the case d = 1, 2d�power modules are referred to as quadratic modules.
We denote by

P

A2d the set of all finite sums
P

a2di , ai 2 A.
P

A2d is the
smallest 2d�power module of A.

Definition 5.2.5 (Generated 2d�power module).
Let {pj}j2J be an arbitrary subset of elements in A (J can have also infinite
cardinality). The 2d�power module of A generated by {pj}j2J is defined as

M := {�
0

+ �
1

pj
1

+ . . .+ �spjs : s 2 N, j
1

, . . . , js 2 J,�
0

, . . . ,�s 2
X

A2d}.
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5.3. Moment problem for submultiplicative seminormed R�algebras

For any subset M of A, we set

XM := {↵ 2 X (A) : â(↵) � 0, 8a 2M},

which is a closed subset of
�

X (A), ⌧X (A)

�

. If M =
P

A2d then XM = X (A).
If M is the 2d�power module of A generated by {pj}j2J then XM := {↵ 2
X (A) : p̂j(↵) � 0, 8 j 2 J}.

Given a 2d�power module M , let us consider the XM�moment problem
for a linear functional L : A! R. If there exists a XM�representing measure
µ for L, then it is clear that L(M) ✓ [0,+1) since M ✓ Pos(XM ). Under
which assumptions does the converse hold?

The answer is positive when the module M is Archimedean. The main in-
gredient of the proof of this result is the the so-called Jacobi Positivstellensatz,
which holds for Archimedean power modules and provides that Pos(XM ) ✓
M

'
, where ' is the finest locally convex topology on A. This inclusion to-

gether with Proposition 2.4.8 allows to get the desired conclusion by applying
of Hahn-Banach and Riesz-Haviland theorems.

Theorem 5.2.6. Let M be an archimedean 2d�power module of A and L :
A! R a linear functional. L has a XM�representing measure if and only if
L(M) ✓ [0,+1).

Proof. See [13, Corollary 2.6]. The conclusion can be also obtained as a con-
sequence of [11, Theorem 5.5].

A 2d�power module M in A is said to be archimedean if for each a 2 A
there exists an integer N such that N±a 2M . If M is a 2d�power module of
A which is archimedean then XM is compact. The converse is false in general
(see [19, Section 7.3]).

Does Theorem 5.2.6 still hold when M is not Archimedean? Can we
find other topologies ⌧ rather than the finest lc topology ' on A such that
Pos(XM ) ✓ M

⌧
so that we can get a similar result for ⌧�continuous linear

functionals on A? In order to attack those questions we are going to in-
vestigate the KMP for linear functionals on some special kind of topological
R�algebras.

5.3 Moment problem for submultiplicative seminormed
R�algebras
In this section we are going to present some results about Problem 5.2.2 when
A a submultiplicative seminormed R�algebra (for more details see [12]).
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5. Short overview on the moment problem

Let A be a unital commutative R�algebra and � be a submultiplicative
seminorm on an R�algebra A, i.e. �(a·b)  �(a)�(b) for all a, b 2 A (· denotes
the multiplication in A). The algebra A together with such a � is called a
submultiplicative seminormed R�algebra and is denoted by (A,�).

We denote the set of all ��continuous R�algebra homomorphisms from
A to R by sp(�), which we refer to as the Gelfand spectrum of (A,�), i.e.

sp(�) := {↵ 2 X (A) : ↵ is � � continuous}.

We endow sp(�) with the subspace topology induced by
�

X (A), ⌧X (A)

�

. Then
one can show the following two results (see [12] for a proof).

Lemma 5.3.1.

For any submultiplicative seminormed R�algebra (A,�) we have:

sp(�) = {↵ 2 X (A) : |↵(a)|  �(a) for all a 2 A}.

Corollary 5.3.2. The Gelfand spectrum of any submultiplicative seminormed
R�algebra (A,�) is compact.

An important closure result useful for the Problem 5.2.2 when A a submul-
tiplicative seminormed R�algebra was proved by M. Ghasemi, S. Kuhlmann
and M. Marshall in [12, Theorem 3.7]. We just state it here but we show in
details how this result helps to get better conditions than the ones provided
by the Generalized Riesz-Haviland theorem.

Theorem 5.3.3. Let (A,�) be a submultiplicative seminormed R�algebra and
M is a 2d�power module of A (not necessarily Archimedean). Then

M
⇢
= Pos(XM \ sp(�)).

Corollary 5.3.4. Let (A,�) be a submultiplicative seminormed R�algebra,
M is a 2d�power module of A and L : A ! R a linear functional. L has a
representing measure supported on XM\sp(�) if and only if L is ��continuous
and L(M) ✓ [0,+1).

Proof.
(() By our hypothesis and Theorem 5.3.3, L is nonnegative on Pos(XM \
sp(�)). Hence, by applying Theorem 5.2.3, L has a (XM\sp(�))�representing
measure.1

1 Note that we can apply the Generalized Riesz-Haviland Theorem since XM \ sp(�) is
compact in

�

X (A), ⌧X (A)

�

. (This is a direct consequence of Corollary 5.3.2 and of the fact
that XM is a closed subset of

�

X (A), ⌧X (A)

�

).
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5.4. Moment problem for symmetric algebras of lc spaces

()) Suppose that L has a representing measure µ supported on XM \ sp(�).
Then for all b 2M we have

L(b) =

Z

XM\sp(�)
b̂(↵)µ(d↵) � 0

since µ is nonnegative and supported on a subset of XM . Therefore, we have
got L(M) ✓ [0,+1). Also, we have that for all a 2 A:

|L(a)| 
Z

XM\sp(�)
|â(↵)|µ(d↵)

=

Z

XM\sp(�)
|↵(a)|µ(d↵)

Lemma5.3.1


Z

XM\sp(�)
�(a)µ(d↵) = �(a)µ (XM \ sp(�))

Note that µ (XM \ sp(�)) is finite since µ is Radon and XM \ sp(�) compact.
Hence, L is ��continuous.

5.4 Moment problem for symmetric algebras of lc spaces

In this section we are going to present some results about Problem 5.2.2 when
A is the symmetric algebra S(V ) of a locally convex space V over R (for more
details see [14]).

Let us start with the simplest case, i.e. when V is a R�vector space
endowed with a seminorm ⇢. In Section 5.2, we have showed how to extend the
seminorm ⇢ to a seminorm ⇢ on S(V ), which we proved to be submultiplicative
by Proposition 4.4.1. Therefore, (S(V ), ⇢) is a submultiplicative seminormed
R�algebra and so we can apply Corollary 5.3.4, obtaining the following result.

Proposition 5.4.1. Let (V, ⇢) be a seminormed R-vector space, M a 2d�power
module of S(V ) and L : S(V ) ! R a linear functional. L is ⇢-continuous
and L(M) ✓ [0,+1) if and only if 9 !µ on V ⇤: L(f) =

R

V ⇤
f̂(↵)µ(d↵) and

suppµ ✓ XM \ B
k·k⇢
1

, where k · k⇢ denotes the operator norm on V ⇤, i.e.

k�k⇢ := sup v2V

⇢(v)1

|�(v)| and B
k·k⇢
1

:= {� 2 V ⇤ : k�k⇢  1}.

Proof.
By Proposition 4.4.1, we can apply Corollary 5.3.4 to (S(V ), ⇢) and obtain
that: L is ⇢-continuous and L(M) ✓ [0,+1) if and only if 9 !µ on X(S(V )):
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5. Short overview on the moment problem

L(f) =
R

X(S(V ))

f̂(↵)µ(d↵) and suppµ ✓ XM\sp(⇢). Now by Corollary 4.3.5 we

know that Hom(S(V ),R) ⇠= V ⇤, i.e. X(S(V )) ⇠= V ⇤. Using this isomorphism

we can get that sp(⇢) ⇠= B
k·k⇢
1

and so the desired conclusion.

Let us prove that sp(⇢) ⇠= B
k·k⇢
1

. Suppose that ↵ 2 sp(⇢). Then by
Lemma 5.3.1 we have that |↵(f)|  ⇢(f) 8 f 2 S(V ). Clearly this implies

that |↵(v)|  ⇢(v) 8 v 2 V , so k↵ �V k⇢  1, i.e. ↵ 2 B
k·k⇢
1

. Conversely,
suppose that � 2 V ⇤ s.t. k�k⇢  1. Denote by � the unique extension of � to
an R-algebra homomorphism � : S(V ) ! R. Then, by Proposition 4.4.4, we
get that k�k⇢  1 and so that |�(f)|  ⇢(f) 8 f 2 S(V ). Thus � 2 sp(⇢).

We can generalize this result to (V, ⌧) locally convex TVS over R by using
Proposition 4.4.5, which provides an extension of ⌧ to an lmc topology ⌧ to
S(V ).

Proposition 5.4.2. Let (V, ⌧) be a lmc TVS over R whose topology is gen-
erated by a directed family of seminorms P. Let M be a 2d�power mod-
ule of S(V ) and L : S(V ) ! R a linear functional. L is ⌧ -continuous
and L(M) ✓ [0,+1) if and only if 9 !µ on V ⇤: L(f) =

R

V ⇤
f̂(↵)µ(d↵) and

suppµ ✓ XM \B
k·k⇢
n , for some n 2 N and ⇢ 2 P.

Proof.
By Proposition 4.4.5, we know that ⌧ is a lmc topology on S(V ) generated
by the family Q := {n⇢ : ⇢ 2 P, n 2 N}. Then Proposition 4.6.1 in TVS-I
guarantees that L is ⌧ -continuous if and only if there exists q 2 Q s.t. L is
q�continuous, i.e. there exists n 2 N and ⇢ 2 P s.t. L is n⇢�continuous.
Thus we reduced to the case of one single seminorm and so we can apply
Proposition 5.4.1 and get that: L is ⌧ -continuous and L(M) ✓ [0,+1) if and

only if 9 !µ on V ⇤: L(f) =
R

V ⇤
f̂(↵)µ(d↵) and suppµ ✓ XM \ B

k·kn⇢

1

. This

yields the conclusion as B
k·kn⇢

1

= B
k·k⇢
n .

What happens when the assumption of continuity of L is weakened? Can
we get results for this moment problem for measures which are not compactly
supported? Some results in this direction have been obtained in [17] for the
case when V = C1

c (Rd) endowed with the projective topology introduced
in Section 1.4. However, there are still many open questions concerning the
moment problem in this general framework and we are still far from a complete
understanding of the infinite dimensional moment problem.
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