Chapter 5

Short overview on the moment problem

In this chapter we are going to consider always *Radon measures* on Hausdorff topological spaces, i.e. non-negative Borel measures which are locally finite and inner regular.

5.1 The classical finite-dimensional moment problem

Let μ be a Radon measure on \mathbb{R} . We define the *n*-th moment of μ as

$$m_n^{\mu} := \int_{\mathbb{R}} x^n \mu(dx)$$

If all moments of μ exist and are finite, then we can associate to μ the sequence of real numbers $(m_n^{\mu})_{n \in \mathbb{N}_0}$, which is said to be the *moment sequence* of μ . The moment problem exactly addresses the inverse question:

Problem 5.1.1 (The one-dimensional K-Moment Problem (KMP)). Given a closed subset K of \mathbb{R} and a sequence $m = (m_n)_{n \in \mathbb{N}_0}$ of real numbers, does there exist a Radon measure μ on \mathbb{R} s.t. for any $n \in \mathbb{N}_0$ we have $m_n = m_n^{\mu}$ and μ is supported on K, i.e.

$$m_n = \underbrace{\int_{\mathbb{R}} x^n \mu(dx)}_{n-th \ moment \ of \ \mu}, \forall n \in \mathbb{N}_0 \quad and \quad supp(\mu) \subseteq K?$$

If such a measure μ does exist we say that μ is a *K*-representing measure for *m* or that *m* is represented by μ on *K*.

Note that there is a bijective correspondence between the set $\mathbb{R}^{\mathbb{N}_0}$ of all sequences of real numbers and the set $(\mathbb{R}[x])^*$ of all linear functional from $\mathbb{R}[x]$ to \mathbb{R} .

In virtue of this correspondence, we can always reformulate the KMP in terms of linear functionals

Problem 5.1.2 (The one-dimensional K-Moment Problem (KMP)). Given a closed subset K of \mathbb{R} and a linear functional $L : \mathbb{R}[x] \to \mathbb{R}$, does there exists a Radon measure μ on \mathbb{R} s.t.

$$L(p) = \int_{\mathbb{R}} p(x)\mu(dx), \, \forall p \in \mathbb{R}[x] \quad and \quad supp(\mu) \subseteq K?$$

As before, if such a measure exists we say that μ is a *K*-representing measure for *L* and that it is a solution to the *K*-moment problem for *L*.

Clearly one can generalize the one-dimensional KMP to higher dimension by considering $\mathbb{R}[\mathbf{x}] := \mathbb{R}[x_1, \ldots, x_d]$ for some $d \in \mathbb{N}$ (see [15, Section 5.2.2]).

Problem 5.1.3 (The *d*-dimensional K-Moment Problem (KMP)). Given a closed subset K of \mathbb{R}^d and a linear functional $L : \mathbb{R}[\mathbf{x}] \to \mathbb{R}$, does there exists a Radon measure μ on \mathbb{R}^d s.t.

$$L(p) = \int_{\mathbb{R}^d} p(\mathbf{x}) \mu(d\mathbf{x}), \, \forall p \in \mathbb{R}[\mathbf{x}] \quad and \quad supp(\mu) \subseteq K?$$

It is then very natural to ask the following:

Questions

- What if we have infinitely many variables, i.e. we consider $\mathbb{R}[x_i : i \in \Omega]$ where Ω is an infinite index set?
- What if instead of real variables we consider variables in a generic \mathbb{R} -vector space V (even infinite dimensional)?
- What if instead of the polynomial ring ℝ[**x**] we take any unital commutative ℝ-algebra A?

All these possible generalization of the moment problem usually go under the name of *infinite dimensional moment problem*.

5.2 Moment problem for commutative \mathbb{R} -algebras

In this section we are going to give a formulation of the moment problem general enough to encompass all the possible generalizations addressed in the previous section. Let us start by introducing some notation and terminology.

Given a unital commutative \mathbb{R} -algebra A, we denote by $\mathcal{X}(A)$ the *char*acter space of A (see Definition 2.4.6). For any $a \in A$, we define the *Gelfand* transform $\hat{a} : \mathcal{X}(A) \to \mathbb{R}$ as $\hat{a}(\alpha) := \alpha(a), \forall \alpha \in \mathcal{X}(A)$. We endow the character space $\mathcal{X}(A)$ with the weakest topology $\tau_{\mathcal{X}(A)}$ s.t. all Gelfand transforms are continuous, i.e. \hat{a} is continuous for all $a \in A$.

Remark 5.2.1. $\mathcal{X}(A)$ can be seen as a subset of \mathbb{R}^A via the embedding:

$$\begin{array}{rccc} \pi: & \mathcal{X}(A) & \to & \mathbb{R}^A \\ & \alpha & \mapsto & \pi(\alpha) := (\alpha(a))_{a \in A} = (\hat{a}(\alpha))_{a \in A} \,. \end{array}$$

If we equip \mathbb{R}^A with the product topology τ_{prod} , then it can be showed (see [19, Section 5.7]) that $\tau_{\mathcal{X}(A)}$ coincides with the topology induced by π on $\mathcal{X}(A)$ from $(\mathbb{R}^A, \tau_{prod})$, i.e.

$$\tau_{\mathcal{X}(A)} \equiv \left\{ \pi^{-1}(O) : O \in \tau_{prod} \right\}.$$

The space $(\mathcal{X}(A), \tau_{\mathcal{X}(A)})$ is therefore Hausdorff.

Problem 5.2.2 (The *KMP* for unital commutative \mathbb{R} -algebras). Given a closed subset $K \subseteq \mathcal{X}(A)$ and a linear functional $L : A \to \mathbb{R}$, does there exist a Radon measure μ on $\mathcal{X}(A)$ s.t. we have

$$L(a) = \int_{\mathcal{X}(A)} \hat{a}(\alpha)\mu(d\alpha), \forall a \in A \quad and \quad supp(\mu) \subseteq K?$$

lc

$$\alpha(p) = \alpha \left(\sum_{\beta \in \mathbb{N}_0^d} p_\beta \mathbf{x}^\beta \right) = \sum_{\beta \in \mathbb{N}_0^d} \alpha(p_\beta) \alpha(x_1)^{\beta_1} \cdots \alpha(x_d)^{\beta_d}$$
$$= \sum_{\beta \in \mathbb{N}_0^d} p_\beta \alpha(x_1)^{\beta_1} \cdots \alpha(x_d)^{\beta_d} = p\left(\alpha(x_1), \dots, \alpha(x_d)\right).$$

Conversely, for any $\mathbf{y} \in \mathbb{R}^d$ we can define the functional $\alpha_{\mathbf{y}} : \mathbb{R}[\mathbf{x}] \to \mathbb{R}$ by $\alpha_{\mathbf{y}}(p) := p(\mathbf{y})$ for any $p \in \mathbb{R}[\mathbf{x}]$, which is clearly a \mathbb{R} -algebra homomorphism. Hence, we have showed that $X(\mathbb{R}[\mathbf{x}]) \cong \mathbb{R}^d$ and via this isomorphism we have that, for any $p \in \mathbb{R}[\mathbf{x}]$, the Gelfand transform \hat{p} is identified with the polynomial p itself. Using these identifications, we get that Problem 5.2.2 for $A = \mathbb{R}[\mathbf{x}]$ is nothing but Problem 5.1.3.

Let us come back to the general KMP 5.2.2. Fixed a subset K of $\mathcal{X}(A)$, we denote by

$$\operatorname{Pos}(K) := \{ a \in A : \hat{a} \ge 0 \text{ on } K \}.$$

A necessary condition for the existence of a solution to the KMP 5.2.2 is clearly that L is nonnegative on Pos(K). In fact, if there exists a K-representing measure μ for L then for all $a \in Pos(K)$ we have

$$L(a) = \int_{\mathcal{X}(A)} \hat{a}(\alpha) \mu(d\alpha) \ge 0$$

since μ is nonnegative and supported on K and \hat{a} is nonnegative on K.

It is then natural to ask if the nonnegativity of L on Pos(K) is also sufficient. For $A = \mathbb{R}[\mathbf{x}]$ a positive answer is provided by the so-called Riesz-Haviland theorem (see [15, Theorem 5.2.5]). An analogous result also holds in this general setting:

Theorem 5.2.3 (Generalized Riesz-Haviland Theorem). Let $K \subseteq \mathcal{X}(A)$ closed and $L : A \to \mathbb{R}$ linear. Suppose there exists $p \in A$ such that $\hat{p} \ge 0$ on Kand for all $n \in \mathbb{N}$ the set $\{\alpha \in K : \hat{p}(\alpha) \le n\}$ is compact. Then L has a K-representing measure if and only if $L(\operatorname{Pos}(K)) \subseteq [0, +\infty)$.

This theorem provides a complete solution for the K- moment problem 5.2.2 but it is somehow unpractical! In fact, it reduces the solvability of the K-moment problem to the problem of characterizing Pos(K). To approach to this problem we will try to approximate elements in Pos(K) with elements of A whose Gelfand transform is "more evidently" non-negative, e.g. sum of even powers of elements of A. In this spirit we consider 2d-power modules of the algebra A for $d \in \mathbb{N}$.

Definition 5.2.4 (2*d*-power module). Let $d \in \mathbb{N}$. A 2*d*-power module of A is a subset M of A satisfying $1 \in M$, $M + M \subseteq M$ and $a^{2d}M \subseteq M$ for each $a \in A$.

In the case d = 1, 2d-power modules are referred to as *quadratic modules*. We denote by $\sum A^{2d}$ the set of all finite sums $\sum a_i^{2d}$, $a_i \in A$. $\sum A^{2d}$ is the smallest 2d-power module of A.

Definition 5.2.5 (Generated 2*d*-power module).

Let $\{p_j\}_{j\in J}$ be an arbitrary subset of elements in A (J can have also infinite cardinality). The 2d-power module of A generated by $\{p_j\}_{j\in J}$ is defined as

$$M := \{\sigma_0 + \sigma_1 p_{j_1} + \ldots + \sigma_s p_{j_s} : s \in \mathbb{N}, j_1, \ldots, j_s \in J, \sigma_0, \ldots, \sigma_s \in \sum A^{2d} \}.$$

For any subset M of A, we set

$$X_M := \{ \alpha \in \mathcal{X}(A) : \hat{a}(\alpha) \ge 0, \ \forall a \in M \},\$$

which is a closed subset of $(\mathcal{X}(A), \tau_{\mathcal{X}(A)})$. If $M = \sum A^{2d}$ then $X_M = \mathcal{X}(A)$. If M is the 2*d*-power module of A generated by $\{p_j\}_{j \in J}$ then $X_M := \{\alpha \in \mathcal{X}(A) : \hat{p}_j(\alpha) \ge 0, \forall j \in J\}$.

Given a 2d-power module M, let us consider the X_M -moment problem for a linear functional $L : A \to \mathbb{R}$. If there exists a X_M -representing measure μ for L, then it is clear that $L(M) \subseteq [0, +\infty)$ since $M \subseteq \text{Pos}(X_M)$. Under which assumptions does the converse hold?

The answer is positive when the module M is Archimedean. The main ingredient of the proof of this result is the the so-called *Jacobi Positivstellensatz*, which holds for Archimedean power modules and provides that $Pos(X_M) \subseteq \overline{M}^{\varphi}$, where φ is the finest locally convex topology on A. This inclusion together with Proposition 2.4.8 allows to get the desired conclusion by applying of Hahn-Banach and Riesz-Haviland theorems.

Theorem 5.2.6. Let M be an archimedean 2d-power module of A and L: $A \to \mathbb{R}$ a linear functional. L has a X_M -representing measure if and only if $L(M) \subseteq [0, +\infty)$.

Proof. See [13, Corollary 2.6]. The conclusion can be also obtained as a consequence of [11, Theorem 5.5]. \Box

A 2d-power module M in A is said to be *archimedean* if for each $a \in A$ there exists an integer N such that $N \pm a \in M$. If M is a 2d-power module of A which is archimedean then X_M is compact. The converse is false in general (see [19, Section 7.3]).

Does Theorem 5.2.6 still hold when M is not Archimedean? Can we find other topologies τ rather than the finest lc topology φ on A such that $\operatorname{Pos}(X_M) \subseteq \overline{M}^{\tau}$ so that we can get a similar result for τ -continuous linear functionals on A? In order to attack those questions we are going to investigate the KMP for linear functionals on some special kind of topological \mathbb{R} -algebras.

5.3 Moment problem for submultiplicative seminormed **R**-algebras

In this section we are going to present some results about Problem 5.2.2 when A a submultiplicative seminormed \mathbb{R} -algebra (for more details see [12]).

Let A be a unital commutative \mathbb{R} -algebra and σ be a submultiplicative seminorm on an \mathbb{R} -algebra A, i.e. $\sigma(a \cdot b) \leq \sigma(a)\sigma(b)$ for all $a, b \in A$ (\cdot denotes the multiplication in A). The algebra A together with such a σ is called a submultiplicative seminormed \mathbb{R} -algebra and is denoted by (A, σ) .

We denote the set of all σ -continuous \mathbb{R} -algebra homomorphisms from A to \mathbb{R} by $\mathfrak{sp}(\sigma)$, which we refer to as the *Gelfand spectrum* of (A, σ) , i.e.

$$\mathfrak{sp}(\sigma) := \{ \alpha \in \mathcal{X}(A) : \alpha \text{ is } \sigma - \text{continuous} \}$$

We endow $\mathfrak{sp}(\sigma)$ with the subspace topology induced by $(\mathcal{X}(A), \tau_{\mathcal{X}(A)})$. Then one can show the following two results (see [12] for a proof).

Lemma 5.3.1.

For any submultiplicative seminormed \mathbb{R} -algebra (A, σ) we have:

$$\mathfrak{sp}(\sigma) = \{ \alpha \in \mathcal{X}(A) : |\alpha(a)| \le \sigma(a) \text{ for all } a \in A \}.$$

Corollary 5.3.2. The Gelfand spectrum of any submultiplicative seminormed \mathbb{R} -algebra (A, σ) is compact.

An important closure result useful for the Problem 5.2.2 when A a submultiplicative seminormed \mathbb{R} -algebra was proved by M. Ghasemi, S. Kuhlmann and M. Marshall in [12, Theorem 3.7]. We just state it here but we show in details how this result helps to get better conditions than the ones provided by the Generalized Riesz-Haviland theorem.

Theorem 5.3.3. Let (A, σ) be a submultiplicative seminormed \mathbb{R} -algebra and M is a 2d-power module of A (not necessarily Archimedean). Then

$$\overline{M}^{\rho} = \operatorname{Pos}(X_M \cap \mathfrak{sp}(\sigma)).$$

Corollary 5.3.4. Let (A, σ) be a submultiplicative seminormed \mathbb{R} -algebra, M is a 2d-power module of A and $L : A \to \mathbb{R}$ a linear functional. L has a representing measure supported on $X_M \cap \mathfrak{sp}(\sigma)$ if and only if L is σ -continuous and $L(M) \subseteq [0, +\infty)$.

Proof.

(\Leftarrow) By our hypothesis and Theorem 5.3.3, L is nonnegative on $\text{Pos}(X_M \cap \mathfrak{sp}(\sigma))$. Hence, by applying Theorem 5.2.3, L has a $(X_M \cap \mathfrak{sp}(\sigma))$ -representing measure.¹

¹ Note that we can apply the Generalized Riesz-Haviland Theorem since $X_M \cap \mathfrak{sp}(\sigma)$ is compact in $(\mathcal{X}(A), \tau_{\mathcal{X}(A)})$. (This is a direct consequence of Corollary 5.3.2 and of the fact that X_M is a closed subset of $(\mathcal{X}(A), \tau_{\mathcal{X}(A)})$).

 (\Rightarrow) Suppose that L has a representing measure μ supported on $X_M \cap \mathfrak{sp}(\sigma)$. Then for all $b \in M$ we have

$$L(b) = \int_{X_M \cap \mathfrak{sp}(\sigma)} \hat{b}(\alpha) \mu(d\alpha) \ge 0$$

since μ is nonnegative and supported on a subset of X_M . Therefore, we have got $L(M) \subseteq [0, +\infty)$. Also, we have that for all $a \in A$:

$$\begin{aligned} |L(a)| &\leq \int_{X_M \cap \mathfrak{sp}(\sigma)} |\hat{a}(\alpha)| \mu(d\alpha) \\ &= \int_{X_M \cap \mathfrak{sp}(\sigma)} |\alpha(a)| \mu(d\alpha) \\ &\stackrel{\text{Lemma 5.3.1}}{\leq} \int_{X_M \cap \mathfrak{sp}(\sigma)} \sigma(a) \mu(d\alpha) = \sigma(a) \mu\left(X_M \cap \mathfrak{sp}(\sigma)\right) \end{aligned}$$

Note that $\mu(X_M \cap \mathfrak{sp}(\sigma))$ is finite since μ is Radon and $X_M \cap \mathfrak{sp}(\sigma)$ compact. Hence, L is σ -continuous.

5.4 Moment problem for symmetric algebras of lc spaces

In this section we are going to present some results about Problem 5.2.2 when A is the symmetric algebra S(V) of a locally convex space V over \mathbb{R} (for more details see [14]).

Let us start with the simplest case, i.e. when V is a \mathbb{R} -vector space endowed with a seminorm ρ . In Section 5.2, we have showed how to extend the seminorm ρ to a seminorm $\overline{\rho}$ on S(V), which we proved to be submultiplicative by Proposition 4.4.1. Therefore, $(S(V), \overline{\rho})$ is a submultiplicative seminormed \mathbb{R} -algebra and so we can apply Corollary 5.3.4, obtaining the following result.

Proposition 5.4.1. Let (V, ρ) be a seminormed \mathbb{R} -vector space, M a 2d-power module of S(V) and $L : S(V) \to \mathbb{R}$ a linear functional. L is $\overline{\rho}$ -continuous and $L(M) \subseteq [0, +\infty)$ if and only if $\exists ! \mu$ on V^* : $L(f) = \int_{V^*} \hat{f}(\alpha)\mu(d\alpha)$ and

 $\sup \mu \subseteq X_M \cap \overline{B}_1^{\|\cdot\|_{\rho}}, \text{ where } \|\cdot\|_{\rho} \text{ denotes the operator norm on } V^*, \text{ i.e.} \\ \|\beta\|_{\rho} := \sup_{\substack{v \in V \\ \rho(v) \leq 1}} |\beta(v)| \text{ and } \overline{B}_1^{\|\cdot\|_{\rho}} := \{\beta \in V^* : \|\beta\|_{\rho} \leq 1\}.$

Proof.

By Proposition 4.4.1, we can apply Corollary 5.3.4 to $(S(V), \overline{\rho})$ and obtain that: L is $\overline{\rho}$ -continuous and $L(M) \subseteq [0, +\infty)$ if and only if $\exists ! \mu$ on X(S(V)): $L(f) = \int_{X(S(V))} \hat{f}(\alpha)\mu(d\alpha) \text{ and } \operatorname{supp} \mu \subseteq X_M \cap \mathfrak{sp}(\overline{\rho}). \text{ Now by Corollary 4.3.5 we}$ know that $\operatorname{Hom}(S(V), \mathbb{R}) \cong V^*$, i.e. $X(S(V)) \cong V^*$. Using this isomorphism we can get that $\mathfrak{sp}(\overline{\rho}) \cong \overline{B}_1^{\|\cdot\|_{\rho}}$ and so the desired conclusion.

Let us prove that $\mathfrak{sp}(\overline{\rho}) \cong \overline{B}_1^{\|\cdot\|_{\rho}}$. Suppose that $\alpha \in \mathfrak{sp}(\overline{\rho})$. Then by Lemma 5.3.1 we have that $|\alpha(f)| \leq \overline{\rho}(f) \forall f \in S(V)$. Clearly this implies that $|\alpha(v)| \leq \rho(v) \forall v \in V$, so $\|\alpha \upharpoonright_V \|_{\rho} \leq 1$, i.e. $\alpha \in \overline{B}_1^{\|\cdot\|_{\rho}}$. Conversely, suppose that $\beta \in V^*$ s.t. $\|\beta\|_{\rho} \leq 1$. Denote by $\overline{\beta}$ the unique extension of β to an \mathbb{R} -algebra homomorphism $\overline{\beta} : S(V) \to \mathbb{R}$. Then, by Proposition 4.4.4, we get that $\|\overline{\beta}\|_{\overline{\rho}} \leq 1$ and so that $|\overline{\beta}(f)| \leq \overline{\rho}(f) \forall f \in S(V)$. Thus $\overline{\beta} \in \mathfrak{sp}(\overline{\rho})$. \Box

We can generalize this result to (V, τ) locally convex TVS over \mathbb{R} by using Proposition 4.4.5, which provides an extension of τ to an lmc topology $\overline{\tau}$ to S(V).

Proposition 5.4.2. Let (V, τ) be a lmc TVS over \mathbb{R} whose topology is generated by a directed family of seminorms \mathcal{P} . Let M be a 2d-power module of S(V) and $L : S(V) \to \mathbb{R}$ a linear functional. L is $\overline{\tau}$ -continuous and $L(M) \subseteq [0, +\infty)$ if and only if $\exists ! \mu$ on V^* : $L(f) = \int_{V^*} \hat{f}(\alpha)\mu(d\alpha)$ and $\sup p \mu \subseteq X_M \cap \overline{B}_n^{\|\cdot\|_{\rho}}$, for some $n \in \mathbb{N}$ and $\rho \in \mathcal{P}$.

Proof.

By Proposition 4.4.5, we know that $\overline{\tau}$ is a lmc topology on S(V) generated by the family $\mathcal{Q} := \{\overline{n\rho} : \rho \in \mathcal{P}, n \in \mathbb{N}\}$. Then Proposition 4.6.1 in TVS-I guarantees that L is $\overline{\tau}$ -continuous if and only if there exists $q \in \mathcal{Q}$ s.t. L is q-continuous, i.e. there exists $n \in \mathbb{N}$ and $\rho \in \mathcal{P}$ s.t. L is $\overline{n\rho}$ -continuous. Thus we reduced to the case of one single seminorm and so we can apply Proposition 5.4.1 and get that: L is $\overline{\tau}$ -continuous and $L(M) \subseteq [0, +\infty)$ if and only if $\exists ! \mu$ on V^* : $L(f) = \int_{V^*} \hat{f}(\alpha)\mu(d\alpha)$ and $\operatorname{supp} \mu \subseteq X_M \cap \overline{B}_1^{\|\cdot\|_{n\rho}}$. This yields the conclusion as $\overline{B}_1^{\|\cdot\|_{n\rho}} = \overline{B}_n^{\|\cdot\|_{\rho}}$.

What happens when the assumption of continuity of L is weakened? Can we get results for this moment problem for measures which are not compactly supported? Some results in this direction have been obtained in [17] for the case when $V = C_c^{\infty}(\mathbb{R}^d)$ endowed with the projective topology introduced in Section 1.4. However, there are still many open questions concerning the moment problem in this general framework and we are still far from a complete understanding of the infinite dimensional moment problem.