2. Let S be a non-emptyset and \mathbb{K}^S be the set of all functions from S to \mathbb{K} equipped with pointwise operations and the topology ω of pointwise convergence (or simple convergence), i.e. the topology generated by

$$\mathcal{B} := \{ W_{\varepsilon}(x_1, \dots, x_n) : n \in \mathbb{N}, x_1, \dots, x_n \in S, \varepsilon > 0 \},\$$

where $W_{\varepsilon}(x_1, \ldots, x_n) := \{ f \in \mathbb{K}^S : f(x_i) \in B_{\varepsilon}(0), i = 1, \ldots, n \}$ and $B_{\varepsilon}(0) = \{ k \in \mathbb{K} : |k| \leq \varepsilon \}$. Then (\mathbb{K}^S, ω) is a TA with continuous multiplication. Indeed, for any $n \in \mathbb{N}, x_1, \ldots, x_n \in S, \varepsilon > 0$ we have that

$$W_{\sqrt{\varepsilon}}(x_1, \dots, x_n) W_{\sqrt{\varepsilon}}(x_1, \dots, x_n) = \{ fg : f(x_i), g(x_i) \in B_{\sqrt{\varepsilon}}(0), i = 1, \dots, n \}$$
$$\subseteq \{ h : h(x_i) \in B_{\varepsilon}(0), i = 1, \dots, n \}$$
$$= W_{\varepsilon}(x_1, \dots, x_n).$$

As it is also easy to show that (\mathbb{K}^S, ω) is a TVS, the conclusion follows by Theorem 1.2.10.

Two fundamental classes of TA are the following ones:

Definition 1.2.12 (Normed Algebra). A normed algebra is a \mathbb{K} -algebra A endowed with the topology induced by a submultiplicative norm $\|\cdot\|$, i.e. $\|xy\| \leq \|x\|\|y\|$, $\forall x, y \in A$.

Definition 1.2.13 (Banach Algebra). A normed algebra whose underlying space is Banach (i.e. complete normed space) is said to be a Banach algebra.

Proposition 1.2.14. Any normed algebra is a TA with continuous multiplication.

Proof.

Let $(A, \|\cdot\|)$ be a normed algebra. It is easy to verify that the topology τ induced by the norm $\|\cdot\|$ (i.e. the topology generated by the collection $\mathcal{B} := \{B_{\varepsilon}(o) : \varepsilon > 0\}$, where $B_{\varepsilon}(o) := \{x \in A : \|x\| \le \varepsilon\}$) makes A into a TVS. Moreover, the submultiplicativity of the norm $\|\cdot\|$ ensures that for any $\varepsilon > 0$ we have: $B_{\sqrt{\varepsilon}}(o)B_{\sqrt{\varepsilon}}(o) \subseteq B_{\varepsilon}(o)$. Hence, \mathcal{B} fulfills both a) and b') in Theorem 1.2.10 and so we get the desired conclusion.

Examples 1.2.15.

1. Let $n \in \mathbb{N}$. \mathbb{K}^n equipped with the componentwise operations of addition, scalar and vector multiplication, and endowed with the supremum norm $||x|| := \max_{i=1,...,n} |x_i|$ for all $x := (x_1,...,x_n) \in \mathbb{K}^n$ is a Banach algebra. 2. Let $n \in \mathbb{N}$. The algebra $\mathbb{R}^{n \times n}$ of all real square matrices of order n equipped with the following norm is a Banach algebra:

$$||A|| := \sup_{x \in \mathbb{R}^n \setminus \{o\}} \frac{|Ax|}{|x|}, \forall A \in \mathbb{R}^{n \times n},$$

where $|\cdot|$ is the usual euclidean norm on \mathbb{R}^n . Indeed, from the previous example it is easy to see that $(\mathbb{R}^{n \times n}, \|\cdot\|)$ is a Banach space. Also, for any $A, B \in \mathbb{R}^{n \times n}$ we have that:

$$||AB|| = \sup_{x \in \mathbb{R}^n \setminus \{o\}} \frac{|A(Bx)|}{|x|} \le ||A|| \sup_{x \in \mathbb{R}^n \setminus \{o\}} \frac{|Bx|}{|x|} = ||A|| ||B||.$$

3. Let (X, τ) be a topological space and $C_c(X)$ the set of all \mathbb{K} -valued continuous functions with compact support. If we equip $C_c(X)$ with the pointwise operations and the supremum norm $||f|| := \sup_{x \in X} |f(x)|$, then $(C_c(X), ||\cdot||)$ is a Banach algebra.

Before coming back to general TA, let us observe a further nice property of normed and so of Banach algebras, which will allow us to assume w.l.o.g. that in a unital normed algebra the unit has always unitary norm.

Proposition 1.2.16. If (A, p) is a unital normed algebra with unit 1_A , then there always exists a subultiplicative norm q on A equivalent to p and such that $q(1_A) = 1$.

Proof. Suppose that $p(1_A) \neq 1$ and define

$$q(a) := \sup_{x \in A \setminus \{o\}} \frac{p(ax)}{p(x)}, \, \forall a \in A.$$

Immediately from the definition, we see that $q(1_A) = 1$ and $p(ay) \le q(a)p(y)$ for all $a, y \in A$. The latter implies at once that

$$p(a) = p(a1_A) \le q(a)p(1_A), \ \forall a \in A$$

$$(1.1)$$

and

$$q(ab) = \sup_{x \in A \setminus \{o\}} \frac{p(abx)}{p(x)} \le \sup_{x \in A \setminus \{o\}} \frac{q(a)p(bx)}{p(x)} = q(a)q(b), \ \forall a, b \in A.$$
(1.2)

Moreover, since p is submultiplicative, we have that for all $a \in A$

$$q(a) \le \sup_{x \in A \setminus \{o\}} \frac{p(a)p(x)}{p(x)} = p(a)$$

The latter together with (1.1) guarantees that q is equivalent to p, while (1.2) its submultiplicativity.

So far we have seen only examples of TA with continuous multiplication. In the following example, we will introduce a TA whose multiplication is separately continuous but not jointly continuous.

Example 1.2.17.

Let $(H, \langle \cdot, \cdot, \rangle)$ be an infinite dimensional separable Hilbert space over \mathbb{K} . Denote by $\|\cdot\|_H$ the norm on H defined as $\|x\|_H := \sqrt{\langle x, x \rangle}$ for all $x \in H$, and by L(H) the set of all linear and continuous maps from H to H. The set L(H) equipped with the pointwise addition \mathfrak{a} , the pointwise scalar multiplication \mathfrak{m} and the composition of maps \circ as multiplication is a \mathbb{K} -algebra.

Let τ_w be the **weak operator topology** on L(H), i.e. the coarsest topology on L(H) such that all the maps $E_{x,y} : L(H) \to H, T \mapsto \langle Tx, y \rangle$ $(x, y \in H)$ are continuous. A basis of neighbourhoods of the origin in $(L(H), \tau_w)$ is given by:

$$\mathcal{B}_w := \left\{ V_{\varepsilon}(x_i, y_i, n) : \varepsilon > 0, n \in \mathbb{N}, x_1, \dots, x_n, y_1, \dots, y_n \in H \right\},\$$

where $V_{\varepsilon}(x_i, y_i, n) := \{ W \in L(H) : |\langle W x_i, y_i \rangle| < \varepsilon, i = 1, \dots, n \}.$

•
$$(L(H), \tau_w)$$
 is a TA.

For any $\varepsilon > 0$, $n \in \mathbb{N}$, $x_1, \ldots, x_n, y_1, \ldots, y_n \in H$, using the bilinearity of the inner product we easily have:

$$\begin{split} V_{\frac{\varepsilon}{2}}(x_i, y_i, n) \times V_{\frac{\varepsilon}{2}}(x_i, y_i, n) &= \bigcap_{i=1}^n \left\{ (T, S) : |\langle Tx_i, y_i \rangle| < \frac{\varepsilon}{2}, |\langle Sx_i, y_i \rangle| < \frac{\varepsilon}{2} \right\} \\ &\subseteq \bigcap_{i=1}^n \left\{ (T, S) : |\langle (T+S)x_i, y_i \rangle| < \varepsilon \right\} \\ &= \left\{ (T, S) : (T+S) \in V_{\varepsilon}(x_i, y_i, n) \right\} \\ &= a^{-1}(V_{\varepsilon}(x_i, y_i, n)) \end{split}$$
$$B_1(0) \times V_{\varepsilon}(x_i, y_i, n) &= \bigcap_{i=1}^n \left\{ (\lambda, T) \in \mathbb{K} \times L(H) : |\lambda| < 1, |\langle Tx_i, y_i \rangle| < \varepsilon \right\} \\ &\subseteq \bigcap_{i=1}^n \left\{ (\lambda, T) : |\langle (\lambda T)x_i, y_i \rangle| < \varepsilon \right\} = m^{-1}(V_{\varepsilon}(x_i, y_i, n)) \end{split}$$

which prove that a and m are both continuous. Hence, $(L(H), \tau_w)$ is a TVS.

Furthermore, we can show that the multiplication in $(L(H), \tau_w)$ is separately continuous. For a fixed $T \in L(H)$ denote by T^* the adjoint of T and set $z_i := T^*y_i$ for i = 1, ..., n. Then

$$T \circ V_{\varepsilon}(x_i, z_i, n) = \{T \circ S : |\langle Sx_i, z_i \rangle| < \varepsilon, i = 1, \dots, n\}$$
$$\subseteq \{W \in L(H) : |\langle Wx_i, y_i \rangle| < \varepsilon, i = 1, \dots, n\} = V_{\varepsilon}(x_i, y_i, n),$$

9

where in the latter inequality we used that

 $|\langle (T \circ S)x_i, y_i \rangle| = |\langle T(Sx_i), y_i \rangle| = |\langle Sx_i, T^*y_i \rangle| = |\langle Sx_i, z_i \rangle| < \varepsilon.$

Similarly, we can show that $V_{\varepsilon}(x_i, z_i, n) \circ T \subseteq V_{\varepsilon}(x_i, y_i, n)$. Hence, \mathcal{B}_w fulfills a) and b) in Theorem 1.2.9 and so we have that $(L(H), \tau_w)$ is a TA.

• the multiplication in $(L(H), \tau_w)$ is not jointly continuous.

Let us preliminarily observe that a sequence $(W_j)_{j\in\mathbb{N}}$ of elements in L(H)converges to $W \in L(H)$ w.r.t. τ_w , in symbols $W_j \xrightarrow{\tau_w} W$, if and only if for all $x, y \in H$ we have $\langle W_j x, y \rangle \to \langle W x, y \rangle^3$. As H is separable, there exists a countable orthonormal basis $\{e_k\}_{k\in\mathbb{N}}$ for H. Define $S \in L(H)$ such that $S(e_1) := o$ and $S(e_k) := e_{k-1}$ for all $k \in \mathbb{N}$ with $k \ge 2$. Then for any $n \in \mathbb{N}$, the operator $T_n := S^n = \left(\underbrace{S \circ \cdots \circ S}_{n \text{ times}}\right)$ is such that $T_n \xrightarrow{\tau_w} o$ as $n \to \infty$. Indeed,

for any $x \in H$ there exist unique $\lambda_k \in \mathbb{K}$ such that $x = \sum_{k=1}^{\infty} \lambda_k e_k^4$ and so

$$\|T_n x\| = \left\|\sum_{k=1}^{\infty} \lambda_k T_n(e_k)\right\| = \left\|\sum_{k=n+1}^{\infty} \lambda_k T_n(e_k)\right\| = \left\|\sum_{k=n+1}^{\infty} \lambda_k e_{k-n}\right\|$$
$$= \left\|\sum_{k=1}^{\infty} \lambda_{k+n} e_k\right\| \stackrel{4}{=} \sum_{k=1}^{\infty} |\lambda_{k+n}|^2 = \sum_{k=n+1}^{\infty} |\lambda_k|^2 \to 0, \text{ as } n \to \infty$$

which implies that $\langle T_n x, y \rangle \to 0$ as $n \to \infty$ since $|\langle T_n x, y \rangle| \le ||T_n x|| ||y||$.

Moreover, the adjoint of S is the continuous linear operator $S^* : H \to H$ such that $S^*(e_k) = e_{k+1}$ for all $k \in \mathbb{N}$. Hence, for any $n \in \mathbb{N}$ we have that $T_n^* = (S^n)^* = (S^*)^n$ and we can easily show that also $T_n^* \xrightarrow{\tau_w} o$. In fact, for any $x, y \in H$ we have that $|\langle T_n^* x, y \rangle| = |\langle x, T_n y \rangle| \leq ||x|| ||T_n y|| \to 0$ as $n \to \infty$. However, we have $S^*S = I$ where I denotes the identity map on H, which gives in turn that $T_n^* \circ T_n = I$ for any $n \in \mathbb{N}$. Hence, for any $n \in \mathbb{N}$ and any $x, y \in H$ we have that $\langle (T_n^* \circ T_n)x, y \rangle = \langle x, y \rangle$ and so that $T_n^* \circ T_n \xrightarrow{\tau_w} o$ as $n \to \infty$, which proves that \circ is not jointly continuous.

³Indeed, we have

$$\begin{split} W_j \xrightarrow{\tau_W} W &\iff \forall \varepsilon > 0, n \in \mathbb{N}, x_i, y_i \in H, \exists \overline{j} \in \mathbb{N} : \forall j \ge \overline{j}, W_j - W \in V_{\varepsilon}(x_i, y_i, n) \\ &\iff \forall \varepsilon > 0, n \in \mathbb{N}, x_i, y_i \in H, \exists \overline{j} \in \mathbb{N} : \forall j \ge \overline{j}, |\langle (W_j - W) x_i, y_i \rangle| < \varepsilon \\ &\iff \forall n \in \mathbb{N}, x_i, y_i \in H, \langle (W_j - W) x_i, y_i \rangle \to 0, \text{ as } j \to \infty \\ &\iff \forall x, y \in H, \langle (W_j - W) x, y \rangle \to 0, \text{ as } j \to \infty. \end{split}$$

⁴Recall that if $\{h_i\}_{i \in I}$ is an orthonormal basis of a Hilbert space H then for each $y \in H$ $y = \sum_{i \in I} \langle y, h_i \rangle h_i$ and $\|y\|^2 = \sum_{i \in I} |\langle y, h_i \rangle|^2$ (see e.g. [13, Theorem II.6] for a proof) Let τ_s be the **strong operator topology** or topology of pointwise convergence on L(H), *i.e.* the coarsest topology on L(H) such that all the maps $E_x : L(H) \to H, T \mapsto Tx \ (x \in H)$ are continuous. A basis of neighbourhoods of the origin in $(L(H), \tau_s)$ is given by:

$$\mathcal{B}_s := \left\{ U_{\varepsilon}(x_i, n) : \varepsilon > 0, n \in \mathbb{N}, x_1, \dots, x_n \in H \right\},$$

where $U_{\varepsilon}(x_i, n) := \{T \in L(H) : ||Tx_i||_H < \varepsilon, i = 1, \dots, n\}.$

•
$$(L(H), \tau_s)$$
 is a TA.

For any r > 0, denote by $B_r(o)$ (resp. $B_r(0)$) the open unit ball centered at o in H (resp. at 0 in \mathbb{K}). Then for any $\varepsilon > 0$, $n \in \mathbb{N}$, $x_1, \ldots, x_n \in H$ we have:

$$U_{\frac{\varepsilon}{2}}(x_i, n) \times U_{\frac{\varepsilon}{2}}(x_i, n) = \left\{ (T, S) : Tx_i, Sx_i \in B_{\frac{\varepsilon}{2}}(o), i = 1, \dots, n \right\}$$
$$\subseteq \left\{ (T, S) : \| (T+S)x_i \|_H < \varepsilon, i = 1, \dots, n \right\}$$
$$= \left\{ (T, S) : (T+S) \in U_{\varepsilon}(x_i, n) \right\} = a^{-1}(U_{\varepsilon}(x_i, n))$$

$$B_1(0) \times U_{\varepsilon}(x_i, n) = \{ (\lambda, T) \in \mathbb{K} \times L(H) : |\lambda| < 1, ||Tx_i||_H < \varepsilon, i = 1, \dots, n \}$$
$$\subseteq \{ (\lambda, T) : ||(\lambda T)x_i||_H < \varepsilon, i = 1, \dots, n \} = \mathrm{m}^{-1}(U_{\varepsilon}(x_i, n))$$

which prove that a and m are both continuous.

Furthermore, we can show that the multiplication in $(L(H), \tau_s)$ is separately continuous. Fixed $T \in L(H)$, its continuity implies that $T^{-1}(B_{\varepsilon}(o))$ is a neighbourhood of o in H and so that there exists $\eta > 0$ such that $B_{\eta}(o) \subseteq$ $T^{-1}(B_{\varepsilon}(o))$. Therefore, we get:

$$T \circ U_{\eta}(x_i, n) = \{T \circ S : S \in L(H) \text{ with } Sx_i \in B_{\eta}(o), i = 1, \dots, n\}$$
$$\subseteq \{W \in L(H) : Wx_i \in B_{\varepsilon}(o), i = 1, \dots, n\}$$
$$= U_{\varepsilon}(x_i, n),$$

where in the latter inequality we used that

$$(T \circ S)x_i = T(Sx_i) \in T(B_{\eta}(o)) \subseteq T(T^{-1}(B_{\varepsilon}(o))) \subseteq B_{\varepsilon}(o).$$

Similarly, we can show that $U_{\eta}(x_i, n) \circ T \subseteq U_{\varepsilon}(x_i, n)$. Hence, \mathcal{B}_s fulfills a) and b) in Theorem 1.2.9 and so we have that $(L(H), \tau_s)$ is a TA.

• the multiplication in $(L(H), \tau_s)$ is not jointly continuous (proof in next lecture!)

Note that L(H) endowed with the **operator norm** $\|\cdot\|$ is instead a normed algebra and so has jointly continuous multiplication. Recall that the operator norm is defined by $\|T\| := \sup_{x \in H \setminus \{o\}} \frac{\|Tx\|_H}{\|x\|_H}, \ \forall T \in L(H).$

11

1.3 Hausdorffness and unitizations of a TA

Topological algebras are in particular topological spaces so their Hausdorfness can be established just by verifying the usual definition of Hausdorff topological space.

Definition 1.3.1. A topological space X is said to be Hausdorff or (T2) if any two distinct points of X have neighbourhoods without common points; or equivalently if two distinct points always lie in disjoint open sets.

However, a TA is more than a mere topological space but it is also a TVS. This provides TAs with the following characterization of their Hausdorfness which holds in general for any TVS.

Proposition 1.3.2. For a TVS X the following are equivalent:

- a) X is Hausdorff.
- b) $\{o\}$ is closed in X.
- c) The intersection of all neighbourhoods of the origin o is just $\{o\}$.
- d) $\forall o \neq x \in X, \exists U \in \mathcal{F}(o) \ s.t. \ x \notin U.$

Since the topology of a TVS is translation invariant, property (d) means that the TVS is a $(T1)^5$ topological space. Recall for general topological spaces (T2) always implies (T1), but the converse does not always hold (c.f. Example 1.1.41-4 in [9]). However, Proposition 1.3.2 ensures that for TVS and so for TAs the two properties are equivalent.

Proof.

Let us just show that (d) implies (a) (for a complete proof see [9, Proposition 2.2.3, Corollary 2.2.4] or even better try it yourself!).

Suppose that (d) holds and let $x, y \in X$ with $x \neq y$, i.e. $x - y \neq o$. Then there exists $U \in \mathcal{F}(o)$ s.t. $x - y \notin U$. By (2) and (5) of Theorem 1.2.6, there exists $V \in \mathcal{F}(o)$ balanced and s.t. $V + V \subset U$. Since V is balanced V = -Vthen we have $V - V \subset U$. Suppose now that $(V + x) \cap (V + y) \neq \emptyset$, then there exists $z \in (V + x) \cap (V + y)$, i.e. z = v + x = w + y for some $v, w \in V$. Then $x - y = w - v \in V - V \subset U$ and so $x - y \in U$ which is a contradiction. Hence, $(V + x) \cap (V + y) = \emptyset$ and by Proposition 1.2.4 we know that $V + x \in \mathcal{F}(x)$ and $V + y \in \mathcal{F}(y)$. Hence, X is Hausdorff. \Box

⁵ A topological space X is said to be (T1) if, given two distinct points of X, each lies in a neighborhood which does not contain the other point; or equivalently if, for any two distinct points, each of them lies in an open subset which does not contain the other point.

We have already seen that a \mathbb{K} -algebra can be always embedded in a unital one, called unitization see Definition 1.1.3-4). In the rest of this section, we will discuss about which topologies on the unitization of a \mathbb{K} -algebra makes it into a TA. To start with, let us look at normed algebras.

Proposition 1.3.3. If A is a normed algebra, then there always exists a norm on its unitization A_1 making both A_1 into a normed algebra and the canonical embedding an isometry. Such a norm is called a unitization norm.

Proof.

Let $(A, \|\cdot\|)$ be a normed algebra and $A_1 = \mathbb{K} \times A$ its unitization. Define

$$||(k,a)||_1 := |k| + ||a||, \ \forall k \in \mathbb{K}, a \in A.$$

Then $||(1, o)||_1 = 1$ and it is straightforward that $|| \cdot ||_1$ is a norm on A_1 since $|\cdot|$ is a norm on \mathbb{K} and $|| \cdot ||$ is a norm on A. Also, for any $\lambda, k \in \mathbb{K}, a, b \in A$ we have:

$$\begin{aligned} \|(k,a)(\lambda,b)\|_{1} &= \|(k\lambda,ka+\lambda b+ab)\|_{1} = |k\lambda| + \|ka+\lambda b+ab\| \\ &\leq |k||\lambda|+k\|a\|+\lambda\|b\|+\|a\|\|b\| = |k|(|\lambda|+\|b\|) + \|a\|(|\lambda|+\|b\|) \\ &= (|k|+\|a\|)(|\lambda|+\|b\|) = \|(k,a)\|_{1}\|(\lambda,b)\|_{1}. \end{aligned}$$

This proves that $(A_1, \|\cdot\|_1)$ is a unital normed algebra. Moreover, the canonical embedding $\mathfrak{e} : A \to A_1, a \mapsto (0, a)$ is an isometry because $\|\mathfrak{e}(a)\|_1 = |0| + \|a\| = \|a\|$ for all $a \in A$. This in turn gives that \mathfrak{e} is continuous and so a topological embedding.

Remark 1.3.4. Note that $\|\cdot\|_1$ induces the product topology on A_1 given by $(\mathbb{K}, |\cdot|)$ and $(A, \|\cdot\|)$ but there might exist other unitization norms on A_1 not necessarily equivalent to $\|\cdot\|_1$ (see Sheet 1).

The latter remark suggests the following generalization of Proposition 1.3.3 to any TA.

Proposition 1.3.5. Let A be a TA. Its unitization A_1 equipped with the corresponding product topology is a TA and A is topologically embedded in A_1 . Note that A_1 is Hausdorff if and only if A is Hausdorff.

Proof. Suppose (A, τ) is a TA. By Proposition 1.1.4, we know that the unitization A_1 of A is a \mathbb{K} -algebra. Moreover, since $(\mathbb{K}, |\cdot|)$ and (A, τ) are both TVS, we have that $A_1 := \mathbb{K} \times A$ endowed with the corresponding product topology τ_{prod} is also a TVS. Then the definition of multiplication in A_1 together with

the fact that the multiplication in A is separately continuous imply that the multiplication in A_1 is separately continuous, too. Hence, (A_1, τ_{prod}) is a TA.

The canonical embedding \mathfrak{e} of A in A_1 is then a continuous monomorphism, since for any U neighbourhood of (0, o) in (A_1, τ_{prod}) there exist $\varepsilon > 0$ and a neighbourhood V of o in (A, τ) such that $B_{\varepsilon}(0) \times V \subseteq U$ and so $V = \mathfrak{e}^{-1}(B_{\varepsilon}(0) \times V) \subseteq \mathfrak{e}^{-1}(U)$. Hence, (A, τ) is topologically embedded in (A_1, τ_{prod}) .

Finally, recall that the cartesian product of topological spaces endowed with the corresponding product topology is Hausdorff iff each of them is Hausdorff. Then, as $(\mathbb{K}, |\cdot|)$ is Hausdorff, it is clear that (A_1, τ_{prod}) is Hausdorff iff (A, τ) is Hausdorff. \Box

If A is a TA with continuous multiplication, then A_1 endowed with the corresponding product topology is also a TA with continuous multiplication. Moreover, from Remark 1.3.4, it is clear that the product topology is not the unique one making the unitization of a TA into a TA itself.

1.4 Subalgebras and quotients of a TA

In this section we are going to see some methods which allow us to construct new TAs from a given one. In particular, we will see under which conditions the TA structure is preserved under taking subalgebras and quotients.

Let us start with an immediate application of Theorem 1.2.9.

Proposition 1.4.1. Let X be a \mathbb{K} -algebra, (Y, ω) a TA (resp. TA with continuous multiplication) over \mathbb{K} and $\varphi : X \to Y$ a homomorphism. Denote by \mathcal{B}_{ω} a basis of neighbourhoods of the origin in (Y, ω) . Then the collection $\mathcal{B} := \{\varphi^{-1}(U) : U \in \mathcal{B}_{\omega}\}$ is a basis of neighbourhoods of the origin for a topology τ on X such that (X, τ) is a TA (resp. TA with continuous multiplication).

The topology τ constructed in the previous proposition is usually called *initial topology* or *inverse image topology* induced by φ .

Corollary 1.4.2. Let (A, ω) be a TA (resp. TA with continuous multiplication) and M a subalgebra of A. If we endow M with the relative topology τ_M induced by A, then (M, τ_M) is a TA.

⁶Alternative proof:

 $A \operatorname{Hausdorff} \stackrel{1.3.2}{\longleftrightarrow} \{o\} \operatorname{closed} \operatorname{in} A \stackrel{\{0\} \operatorname{closed} \operatorname{in} \mathbb{K}}{\longleftrightarrow} \{(0, o)\} \operatorname{closed} \operatorname{in} A_1 \stackrel{1.3.2}{\longleftrightarrow} (A_1, \tau_{prod}) \operatorname{Hausdorff}.$

Proof.

Consider the identity map $id: M \to A$ and let \mathcal{B}_{ω} a basis of neighbourhoods of the origin in (A, ω) Clearly, id is a homomorphism and the initial topology induced by id on M is nothing but the relative topology τ_M induced by Asince

$$\{id^{-1}(U): U \in \mathcal{B}_{\omega}\} = \{U \cap M: U \in \mathcal{B}_{\omega}\} = \tau_M.$$

Hence, Proposition 1.4.1 ensures that (M, τ_M) is a TA.

Bibliography

- [1] R. Arens, The space L^{ω} and convex topological rings, Bull. Amer. Math. Soc. 52, (1946), 931–935.
- V. K. Balachandran, Topological algebras. Reprint of the 1999 original. North-Holland Mathematics Studies, 185. North-Holland Publishing Co., Amsterdam, 2000.
- [3] E. Beckenstein, L. Narici, C. Suffel, Topological algebras. North-Holland Mathematics Studies, Vol. 24. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.
- [4] I. Gelfand, On normed rings, C. R. (Doklady) Acad. Sci. URSS (N.S.) 25, (1939), 430–432.
- [5] I. Gelfand, To the theory of normed rings. II: On absolutely convergent trigonometrical series and integrals, C. R. (Doklady) Acad. Sci. URSS (N.S.) 25, (1939). 570?572.
- [6] I. Gelfand, To the theory of normed rings. III. On the ring of almost periodic functions. C. R. (Doklady) Acad. Sci. URSS (N.S.) 25, (1939). 573?574.
- [7] I. Gelfand, Normierte Ringe, (German) Rec. Math. [Mat. Sbornik] N. S. 9 (51), (1941), 3–24.
- [8] I. Gelfand, D. Raikov and G. Silov, Commutative normed rings (Chelsea 1964), Russian edition 1960.
- M. Infusino, Lecture notes on topological vector spaces I, Universität Konstanz, Summer Semester 2017, http://www.math.uni-konstanz.de/ infusino/TVS-SS17/Note2017(July29).pdf.

- [10] M. Infusino, Lecture notes on topological vector spaces II, Universität Konstanz, Winter Semester 2017-2017, http://www.math.unikonstanz.de/ infusino/TVS-WS17-18/Note2017-TVS-II.pdf.
- [11] A. Mallios, Topological algebras. Selected topics. 109. North-Holland Publishing Co.1986.
- [12] E. Michael, Locally multiplicatively-convex topological algebras, Mem. Amer. Math. Soc., No. 11 (1952), 79 pp.
- [13] M. Reed, B, Simon, Methods of modern mathematical physics. I. Functional analysis. Second edition. Academic Press, Inc., New York, 1980.
- [14] W. Zelazko, Selected topics in topological algebras. Lecture Notes Series, No. 31. Matematisk Institut, Aarhus Universitet, Aarhus, 1971.