
1.2. Definition and main properties of a topological algebra

2. Let S be a non-emptyset and KS be the set of all functions from S to
K equipped with pointwise operations and the topology ! of pointwise
convergence (or simple convergence), i.e. the topology generated by

B := {W"(x1, . . . , xn) : n 2 N, x1, . . . , xn 2 S, " > 0},

where W"(x1, . . . , xn) := {f 2 KS : f(xi) 2 B"(0), i = 1, . . . , n} and
B"(0) = {k 2 K : |k|  "}. Then (KS ,!) is a TA with continuous
multiplication. Indeed, for any n 2 N, x1, . . . , xn 2 S, " > 0 we have that

Wp
"(x1, . . . , xn)Wp

"(x1, . . . , xn)={fg : f(xi), g(xi) 2 Bp
"(0), i = 1, . . . , n}

✓{h : h(xi) 2 B"(0), i = 1, . . . , n}
=W"(x1, . . . , xn).

As it is also easy to show that (KS ,!) is a TVS, the conclusion follows
by Theorem 1.2.10.

Two fundamental classes of TA are the following ones:

Definition 1.2.12 (Normed Algebra). A normed algebra is a K�algebra A
endowed with the topology induced by a submultiplicative norm k·k, i.e. kxyk 
kxkkyk, 8x, y 2 A.

Definition 1.2.13 (Banach Algebra). A normed algebra whose underlying
space is Banach (i.e. complete normed space) is said to be a Banach algebra.

Proposition 1.2.14. Any normed algebra is a TA with continuous multipli-
cation.

Proof.
Let (A, k · k) be a normed algebra. It is easy to verify that the topology
⌧ induced by the norm k · k (i.e. the topology generated by the collection
B := {B"(o) : " > 0}, where B"(o) := {x 2 A : kxk  "}) makes A into a
TVS. Moreover, the submultiplicativity of the norm k · k ensures that for any
" > 0 we have: Bp

"(o)Bp
"(o) ✓ B"(o). Hence, B fulfills both a) and b’) in

Theorem 1.2.10 and so we get the desired conclusion.

Examples 1.2.15.

1. Let n 2 N. Kn equipped with the componentwise operations of addi-
tion, scalar and vector multiplication, and endowed with the supremum
norm kxk := maxi=1,...,n |xi| for all x := (x1, . . . , xn) 2 Kn is a Banach
algebra.
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1. General Concepts

2. Let n 2 N. The algebra Rn⇥n of all real square matrices of order n
equipped with the following norm is a Banach algebra:

kAk := sup
x2Rn\{o}

|Ax|
|x| , 8A 2 Rn⇥n,

where | · | is the usual euclidean norm on Rn. Indeed, from the previous
example it is easy to see that (Rn⇥n, k · k) is a Banach space. Also, for
any A,B 2 Rn⇥n we have that:

kABk = sup
x2Rn\{o}

|A(Bx)|
|x|  kAk sup

x2Rn\{o}

|Bx|
|x| = kAkkBk.

3. Let (X, ⌧) be a topological space and Cc(X) the set of all K�valued con-
tinuous functions with compact support. If we equip Cc(X) with the
pointwise operations and the supremum norm kfk := supx2X |f(x)|, then
(Cc(X), k · k) is a Banach algebra.

Before coming back to general TA, let us observe a further nice property
of normed and so of Banach algebras, which will allow us to assume w.l.o.g.
that in a unital normed algebra the unit has always unitary norm.

Proposition 1.2.16. If (A, p) is a unital normed algebra with unit 1A, then
there always exists a subultiplicative norm q on A equivalent to p and such
that q(1A) = 1.

Proof. Suppose that p(1A) 6= 1 and define

q(a) := sup
x2A\{o}

p(ax)

p(x)
, 8a 2 A.

Immediately from the definition, we see that q(1A) = 1 and p(ay)  q(a)p(y)
for all a, y 2 A. The latter implies at once that

p(a) = p(a1A)  q(a)p(1A), 8a 2 A (1.1)

and

q(ab) = sup
x2A\{o}

p(abx)

p(x)
 sup

x2A\{o}

q(a)p(bx)

p(x)
= q(a)q(b), 8a, b 2 A. (1.2)

Moreover, since p is submultiplicative, we have that for all a 2 A

q(a)  sup
x2A\{o}

p(a)p(x)

p(x)
= p(a).

The latter together with (1.1) guarantees that q is equivalent to p, while (1.2)
its submultiplicativity.
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1.2. Definition and main properties of a topological algebra

So far we have seen only examples of TA with continuous multiplication.
In the following example, we will introduce a TA whose multiplication is sep-
arately continuous but not jointly continuous.

Example 1.2.17.

Let (H, h·, ·, i) be an infinite dimensional separable Hilbert space over K. De-
note by k · kH the norm on H defined as kxkH :=

p

hx, xi for all x 2 H, and
by L(H) the set of all linear and continuous maps from H to H. The set L(H)
equipped with the pointwise addition , the pointwise scalar multiplication
and the composition of maps � as multiplication is a K�algebra.

Let ⌧w be the weak operator topology on L(H), i.e. the coarsest topology
on L(H) such that all the maps Ex,y : L(H) ! H,T 7! hTx, yi (x, y 2 H) are
continuous. A basis of neighbourhoods of the origin in (L(H), ⌧w) is given by:

Bw := {V"(xi, yi, n) : " > 0, n 2 N, x1, . . . , xn, y1, . . . , yn 2 H} ,

where V"(xi, yi, n) := {W 2 L(H) : |hWxi, yii| < ", i = 1, . . . , n}.

• (L(H), ⌧w) is a TA.
For any " > 0, n 2 N, x1, . . . , xn, y1, . . . , yn 2 H, using the bilinearity of the
inner product we easily have:

V "
2

(xi, yi, n)⇥ V "
2

(xi, yi, n) =
n
\

i=1

n

(T, S) : |hTxi, yii| <
"

2
, |hSxi, yii| <

"

2

o

✓
n
\

i=1

{(T, S) : |h(T + S)xi, yii| < "}

= {(T, S) : (T + S) 2 V"(xi, yi, n)}
= �1(V"(xi, yi, n))

B1(0)⇥ V"(xi, yi, n) =
n
\

i=1

{(�, T ) 2 K⇥ L(H) : |�| < 1, |hTxi, yii| < "}

✓
n
\

i=1

{(�, T ) : |h(�T )xi, yii| < "} = �1(V"(xi, yi, n))

which prove that and are both continuous. Hence, (L(H), ⌧w) is a TVS.

Furthermore, we can show that the multiplication in (L(H), ⌧w) is sepa-
rately continuous. For a fixed T 2 L(H) denote by T ⇤ the adjoint of T and
set zi := T ⇤yi for i = 1, . . . , n. Then

T � V"(xi, zi, n) = {T � S : |hSxi, zii| < ", i = 1, . . . , n}
✓ {W 2 L(H) : |hWxi, yii| < ", i = 1, . . . , n} = V"(xi, yi, n),
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1. General Concepts

where in the latter inequality we used that

|h(T � S)xi, yii| = |hT (Sxi), yii| = |hSxi, T ⇤yii| = |hSxi, zii| < ".

Similarly, we can show that V"(xi, zi, n) � T ✓ V"(xi, yi, n). Hence, Bw fulfills
a) and b) in Theorem 1.2.9 and so we have that (L(H), ⌧w) is a TA.

• the multiplication in (L(H), ⌧w) is not jointly continuous.
Let us preliminarily observe that a sequence (Wj)j2N of elements in L(H)

converges to W 2 L(H) w.r.t. ⌧w, in symbols Wj
⌧w! W , if and only if for

all x, y 2 H we have hWjx, yi ! hWx, yi3. As H is separable, there exists
a countable orthonormal basis {ek}k2N for H. Define S 2 L(H) such that
S(e1) := o and S(ek) := ek�1 for all k 2 N with k � 2. Then for any n 2 N,

the operator Tn := Sn =

 

S � · · · � S
| {z }

n times

!

is such that Tn
⌧w! o as n ! 1. Indeed,

for any x 2 H there exist unique �k 2 K such that x =
P1

k=1 �kek 4 and so

kTnxk =

�

�

�

�

�

1
X

k=1

�kTn(ek)

�

�

�

�

�

=

�

�

�

�

�

1
X

k=n+1

�kTn(ek)

�

�

�

�

�

=

�

�

�

�

�

1
X

k=n+1

�kek�n

�

�

�

�

�

=

�

�

�

�

�

1
X

k=1

�k+nek

�

�

�

�

�

4
=

1
X

k=1

|�k+n|2 =
1
X

k=n+1

|�k|2!0, as n ! 1

which implies that hTnx, yi ! 0 as n ! 1 since |hTnx, yi|  kTnxkkyk.
Moreover, the adjoint of S is the continuous linear operator S⇤ : H ! H

such that S⇤(ek) = ek+1 for all k 2 N. Hence, for any n 2 N we have that
T ⇤
n = (Sn)⇤ = (S⇤)n and we can easily show that also T ⇤

n
⌧w! o. In fact, for

any x, y 2 Hwe have that |hT ⇤
nx, yi| = |hx, Tnyi|  kxkkTnyk ! 0 as n ! 1.

However, we have S⇤S = I where I denotes the identity map on H, which
gives in turn that T ⇤

n � Tn = I for any n 2 N. Hence, for any n 2 N and any
x, y 2 H we have that h(T ⇤

n � Tn)x, yi = hx, yi and so that T ⇤
n � Tn 6⌧w! o as

n ! 1, which proves that � is not jointly continuous.

3Indeed, we have

Wj
⌧w! W () 8" > 0, n 2 N, xi, yi 2 H, 9j̄ 2 N : 8j � j̄,Wj �W 2 V"(xi, yi, n)

() 8" > 0, n 2 N, xi, yi 2 H, 9j̄ 2 N : 8j � j̄, |h(Wj �W )xi, yii| < "

() 8n 2 N, xi, yi 2 H, h(Wj �W )xi, yii ! 0, as j ! 1
() 8x, y 2 H, h(Wj �W )x, yi ! 0, as j ! 1.

4Recall that if {hi}i2I is an orthonormal basis of a Hilbert space H then for each y 2 H
y =

P
i2Ihy, hiihi and kyk2 =

P
i2I |hy, hii|2 (see e.g. [13, Theorem II.6] for a proof)
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1.2. Definition and main properties of a topological algebra

Let ⌧s be the strong operator topology or topology of pointwise con-
vergence on L(H), i.e. the coarsest topology on L(H) such that all the maps
Ex : L(H) ! H,T 7! Tx (x 2 H) are continuous. A basis of neighbourhoods
of the origin in (L(H), ⌧s) is given by:

Bs := {U"(xi, n) : " > 0, n 2 N, x1, . . . , xn 2 H} ,

where U"(xi, n) := {T 2 L(H) : kTxikH < ", i = 1, . . . , n}.

• (L(H), ⌧s) is a TA.
For any r > 0, denote by Br(o) (resp. Br(0)) the open unit ball centered at o
in H (resp. at 0 in K). Then for any " > 0, n 2 N, x1, . . . , xn 2 H we have:

U "
2

(xi, n)⇥ U "
2

(xi, n) =
n

(T, S) : Txi, Sxi 2 B "
2

(o), i = 1, . . . , n
o

✓ {(T, S) : k(T + S)xikH < ", i = 1, . . . , n}
= {(T, S) : (T + S) 2 U"(xi, n)} = �1(U"(xi, n))

B1(0)⇥ U"(xi, n) = {(�, T ) 2 K⇥ L(H) : |�| < 1, kTxikH < ", i = 1, . . . , n}
✓ {(�, T ) : k(�T )xikH < ", i = 1, . . . , n} = �1(U"(xi, n))

which prove that and are both continuous.
Furthermore, we can show that the multiplication in (L(H), ⌧s) is sepa-

rately continuous. Fixed T 2 L(H), its continuity implies that T�1(B"(o)) is
a neighbourhood of o in H and so that there exists ⌘ > 0 such that B⌘(o) ✓
T�1(B"(o)). Therefore, we get:

T � U⌘(xi, n) = {T � S : S 2 L(H) with Sxi 2 B⌘(o), i = 1, . . . , n}
✓ {W 2 L(H) : Wxi 2 B"(o), i = 1, . . . , n}
= U"(xi, n),

where in the latter inequality we used that

(T � S)xi = T (Sxi) 2 T (B⌘(o)) ✓ T (T�1(B"(o))) ✓ B"(o).

Similarly, we can show that U⌘(xi, n) � T ✓ U"(xi, n). Hence, Bs fulfills a)
and b) in Theorem 1.2.9 and so we have that (L(H), ⌧s) is a TA.

• the multiplication in (L(H), ⌧s) is not jointly continuous
(proof in next lecture!)

Note that L(H) endowed with the operator norm k·k is instead a normed
algebra and so has jointly continuous multiplication. Recall that the operator
norm is defined by kTk := sup

x2H\{o}

kTxkH
kxkH , 8T 2 L(H).
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1. General Concepts

1.3 Hausdor↵ness and unitizations of a TA

Topological algebras are in particular topological spaces so their Hausdorfness
can be established just by verifying the usual definition of Hausdor↵ topolog-
ical space.

Definition 1.3.1. A topological space X is said to be Hausdor↵ or (T2) if
any two distinct points of X have neighbourhoods without common points; or
equivalently if two distinct points always lie in disjoint open sets.

However, a TA is more than a mere topological space but it is also a TVS.
This provides TAs with the following characterization of their Hausdorfness
which holds in general for any TVS.

Proposition 1.3.2. For a TVS X the following are equivalent:

a) X is Hausdor↵.

b) {o} is closed in X.

c) The intersection of all neighbourhoods of the origin o is just {o}.
d) 8 o 6= x 2 X, 9U 2 F(o) s.t. x /2 U .

Since the topology of a TVS is translation invariant, property (d) means
that the TVS is a (T1)5topological space. Recall for general topological spaces
(T2) always implies (T1), but the converse does not always hold (c.f. Exam-
ple 1.1.41-4 in [9]). However, Proposition 1.3.2 ensures that for TVS and so
for TAs the two properties are equivalent.

Proof.
Let us just show that (d) implies (a) (for a complete proof see [9, Proposi-
tion 2.2.3, Corollary 2.2.4] or even better try it yourself!).

Suppose that (d) holds and let x, y 2 X with x 6= y, i.e. x� y 6= o. Then
there exists U 2 F(o) s.t. x� y /2 U . By (2) and (5) of Theorem 1.2.6, there
exists V 2 F(o) balanced and s.t. V + V ⇢ U . Since V is balanced V = �V
then we have V �V ⇢ U . Suppose now that (V +x)\ (V +y) 6= ;, then there
exists z 2 (V + x) \ (V + y), i.e. z = v + x = w + y for some v, w 2 V . Then
x� y = w� v 2 V �V ⇢ U and so x� y 2 U which is a contradiction. Hence,
(V + x) \ (V + y) = ; and by Proposition 1.2.4 we know that V + x 2 F(x)
and V + y 2 F(y). Hence, X is Hausdor↵.

5 A topological space X is said to be (T1) if, given two distinct points of X, each lies
in a neighborhood which does not contain the other point; or equivalently if, for any two
distinct points, each of them lies in an open subset which does not contain the other point.
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1.3. Hausdor↵ness and unitizations of a TA

We have already seen that aK�algebra can be always embedded in a unital
one, called unitization see Definition 1.1.3-4) . In the rest of this section, we
will discuss about which topologies on the unitization of a K�algebra makes
it into a TA. To start with, let us look at normed algebras.

Proposition 1.3.3. If A is a normed algebra, then there always exists a norm
on its unitization A1 making both A1 into a normed algebra and the canonical
embedding an isometry. Such a norm is called a unitization norm.

Proof.
Let (A, k · k) be a normed algebra and A1 = K⇥A its unitization. Define

k(k, a)k1 := |k|+ kak, 8k 2 K, a 2 A.

Then k(1, o)k1 = 1 and it is straightforward that k · k1 is a norm on A1 since
| · | is a norm on K and k · k is a norm on A. Also, for any �, k 2 K, a, b 2 A
we have:

k(k, a)(�, b)k1 = k(k�, ka+ �b+ ab)k1 = |k�|+ kka+ �b+ abk
 |k||�|+ kkak+ �kbk+ kakkbk = |k|(|�|+ kbk) + kak(|�|+ kbk)
= (|k|+ kak)(|�|+ kbk) = k(k, a)k1k(�, b)k1.

This proves that (A1, k·k1) is a unital normed algebra. Moreover, the canonical
embedding : A ! A1, a 7! (0, a) is an isometry because k (a)k1 = |0|+kak =
kak for all a 2 A. This in turn gives that is continuous and so a topological
embedding.

Remark 1.3.4. Note that k · k1 induces the product topology on A1 given by
(K, | · |) and (A, k · k) but there might exist other unitization norms on A1 not
necessarily equivalent to k · k1 (see Sheet 1).

The latter remark suggests the following generalization of Proposition 1.3.3
to any TA.

Proposition 1.3.5. Let A be a TA. Its unitization A1 equipped with the cor-
responding product topology is a TA and A is topologically embedded in A1.
Note that A1 is Hausdor↵ if and only if A is Hausdor↵.

Proof. Suppose (A, ⌧) is a TA. By Proposition 1.1.4, we know that the unitiza-
tion A1 of A is a K�algebra. Moreover, since (K, |·|) and (A, ⌧) are both TVS,
we have that A1 := K⇥A endowed with the corresponding product topology
⌧prod is also a TVS. Then the definition of multiplication in A1 together with

13



1. General Concepts

the fact that the multiplication in A is separately continuous imply that the
multiplication in A1 is separately continuous, too. Hence, (A1, ⌧prod) is a TA.

The canonical embedding of A in A1 is then a continuous monomor-
phism, since for any U neighbourhood of (0, o) in (A1, ⌧prod) there exist " > 0
and a neighbourhood V of o in (A, ⌧) such that B"(0) ⇥ V ✓ U and so
V = �1(B"(0) ⇥ V ) ✓ �1(U). Hence, (A, ⌧) is topologically embedded
in (A1, ⌧prod).

Finally, recall that the cartesian product of topological spaces endowed
with the corresponding product topology is Hausdor↵ i↵ each of them is Haus-
dor↵. Then, as (K, | · |) is Hausdor↵, it is clear that (A1, ⌧prod) is Hausdor↵ i↵
(A, ⌧) is Hausdor↵. 6

If A is a TA with continuous multiplication, then A1 endowed with the
corresponding product topology is also a TA with continuous multiplication.
Moreover, from Remark 1.3.4, it is clear that the product topology is not the
unique one making the unitization of a TA into a TA itself.

1.4 Subalgebras and quotients of a TA

In this section we are going to see some methods which allow us to construct
new TAs from a given one. In particular, we will see under which conditions
the TA structure is preserved under taking subalgebras and quotients.

Let us start with an immediate application of Theorem 1.2.9.

Proposition 1.4.1. Let X be a K�algebra, (Y,!) a TA (resp. TA with con-
tinuous multiplication) over K and ' : X ! Y a homomorphism. Denote
by B! a basis of neighbourhoods of the origin in (Y,!). Then the collection
B := {'�1(U) : U 2 B!} is a basis of neighbourhoods of the origin for a
topology ⌧ on X such that (X, ⌧) is a TA (resp. TA with continuous multipli-
cation).

The topology ⌧ constructed in the previous proposition is usually called
initial topology or inverse image topology induced by '.

Corollary 1.4.2. Let (A,!) be a TA (resp. TA with continuous multiplica-
tion) and M a subalgebra of A. If we endow M with the relative topology ⌧M
induced by A, then (M, ⌧M ) is a TA.

6Alternative proof:

A Hausdor↵
1.3.2() {o} closed in A

{0}closed in K() {(0, o)} closed in A
1

1.3.2() (A
1

, ⌧prod) Hausdor↵.
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1.4. Subalgebras and quotients of a TA

Proof.
Consider the identity map id : M ! A and let B! a basis of neighbourhoods
of the origin in (A,!) Clearly, id is a homomorphism and the initial topology
induced by id on M is nothing but the relative topology ⌧M induced by A
since

{id�1(U) : U 2 B!} = {U \M : U 2 B!} = ⌧M .

Hence, Proposition 1.4.1 ensures that (M, ⌧M ) is a TA.
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