
1.2. Definition and main properties of a topological algebra

So far we have seen only examples of TA with continuous multiplication.
In the following example, we will introduce a TA whose multiplication is sep-
arately continuous but not jointly continuous.

Example 1.2.17.

Let (H, h·, ·, i) be an infinite dimensional separable Hilbert space over K. De-
note by k · kH the norm on H defined as kxkH :=

p

hx, xi for all x 2 H, and
by L(H) the set of all linear and continuous maps from H to H. The set L(H)
equipped with the pointwise addition , the pointwise scalar multiplication
and the composition of maps � as multiplication is a K�algebra.

Let ⌧w be the weak operator topology on L(H), i.e. the coarsest topology
on L(H) such that all the maps Ex,y : L(H) ! H,T 7! hTx, yi (x, y 2 H) are
continuous. A basis of neighbourhoods of the origin in (L(H), ⌧w) is given by:

Bw := {V"(xi, yi, n) : " > 0, n 2 N, x1, . . . , xn, y1, . . . , yn 2 H} ,

where V"(xi, yi, n) := {W 2 L(H) : |hWxi, yii| < ", i = 1, . . . , n}.

• (L(H), ⌧w) is a TA.
For any " > 0, n 2 N, x1, . . . , xn, y1, . . . , yn 2 H, using the bilinearity of the
inner product we easily have:

V "
2

(xi, yi, n)⇥ V "
2

(xi, yi, n) =
n
\

i=1

n

(T, S) : |hTxi, yii| <
"

2
, |hSxi, yii| <

"

2

o

✓
n
\

i=1

{(T, S) : |h(T + S)xi, yii| < "}

= {(T, S) : (T + S) 2 V"(xi, yi, n)}
= �1(V"(xi, yi, n)),

B1(0)⇥ V"(xi, yi, n) =
n
\

i=1

{(�, T ) 2 K⇥ L(H) : |�| < 1, |hTxi, yii| < "}

✓
n
\

i=1

{(�, T ) : |h(�T )xi, yii| < "} = �1(V"(xi, yi, n))

which prove that and are both continuous. Hence, (L(H), ⌧w) is a TVS.

Furthermore, we can show that the multiplication in (L(H), ⌧w) is sepa-
rately continuous. For a fixed T 2 L(H) denote by T ⇤ the adjoint of T and
set zi := T ⇤yi for i = 1, . . . , n. Then

T � V"(xi, zi, n) = {T � S : |hSxi, zii| < ", i = 1, . . . , n}
✓ {W 2 L(H) : |hWxi, yii| < ", i = 1, . . . , n} = V"(xi, yi, n),
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1. General Concepts

where in the latter inequality we used that

|h(T � S)xi, yii| = |hT (Sxi), yii| = |hSxi, T ⇤yii| = |hSxi, zii| < ".

Similarly, we can show that V"(xi, zi, n) � T ✓ V"(xi, yi, n). Hence, Bw fulfills
a) and b) in Theorem 1.2.9 and so we have that (L(H), ⌧w) is a TA.

• the multiplication in (L(H), ⌧w) is not jointly continuous.
Let us preliminarily observe that a sequence (Wj)j2N of elements in L(H)

converges to W 2 L(H) w.r.t. ⌧w, in symbols Wj
⌧w! W , if and only if for

all x, y 2 H we have hWjx, yi ! hWx, yi3. As H is separable, there exists
a countable orthonormal basis {ek}k2N for H. Define S 2 L(H) such that
S(e1) := o and S(ek) := ek�1 for all k 2 N with k � 2. Then the operator

Tn := Sn =

 

S � · · · � S
| {z }

n times

!

, n 2 N (1.3)

is s.t. Tn
⌧w! o as n ! 1. Indeed, 8x 2 H, 9!�k 2 K : x =

P1
k=1 �kek 4 so

kTnxk =

�

�

�

�

�

1
X

k=1

�kTn(ek)

�

�

�

�

�

=

�

�

�

�

�

1
X

k=n+1

�kTn(ek)

�

�

�

�

�

=

�

�

�

�

�

1
X

k=n+1

�kek�n

�

�

�

�

�

=

�

�

�

�

�

1
X

k=1

�k+nek

�

�

�

�

�

4
=

1
X

k=1

|�k+n|2 =
1
X

k=n+1

|�k|2!0, as n ! 1

which implies that hTnx, yi ! 0 as n ! 1 since |hTnx, yi|  kTnxkkyk.
Moreover, the adjoint of S is the continuous linear operator S⇤ : H ! H

such that S⇤(ek) = ek+1 for all k 2 N. Hence, for any n 2 N we have that
T ⇤
n = (Sn)⇤ = (S⇤)n and we can easily show that also T ⇤

n
⌧w! o. In fact, for

any x, y 2 Hwe have that |hT ⇤
nx, yi| = |hx, Tnyi|  kxkkTnyk ! 0 as n ! 1.

However, we have S⇤S = I where I denotes the identity map on H, which
gives in turn that T ⇤

n � Tn = I for any n 2 N. Hence, for any n 2 N and any
x, y 2 H we have that h(T ⇤

n � Tn)x, yi = hx, yi and so that T ⇤
n � Tn 6⌧w! o as

n ! 1, which proves that � is not jointly continuous.

3Indeed, we have

Wj
⌧w! W () 8" > 0, n 2 N, xi, yi 2 H, 9j̄ 2 N : 8j � j̄,Wj �W 2 V"(xi, yi, n)

() 8" > 0, n 2 N, xi, yi 2 H, 9j̄ 2 N : 8j � j̄, |h(Wj �W )xi, yii| < "

() 8n 2 N, xi, yi 2 H, h(Wj �W )xi, yii ! 0, as j ! 1
() 8x, y 2 H, h(Wj �W )x, yi ! 0, as j ! 1.

4Recall that if {hi}i2I is an orthonormal basis of a Hilbert space H then for each y 2 H
y =

P
i2Ihy, hiihi and kyk2 =

P
i2I |hy, hii|2 (see e.g. [13, Theorem II.6] for a proof)
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1.2. Definition and main properties of a topological algebra

Let ⌧s be the strong operator topology or topology of pointwise con-
vergence on L(H), i.e. the coarsest topology on L(H) such that all the maps
Ex : L(H) ! H,T 7! Tx (x 2 H) are continuous. A basis of neighbourhoods
of the origin in (L(H), ⌧s) is given by:

Bs := {U"(xi, n) : " > 0, n 2 N, x1, . . . , xn 2 H} ,

where U"(xi, n) := {T 2 L(H) : kTxikH < ", i = 1, . . . , n}.

• (L(H), ⌧s) is a TA.
For any r > 0, denote by Br(o) (resp. Br(0)) the open unit ball centered at o
in H (resp. at 0 in K). Then for any " > 0, n 2 N, x1, . . . , xn 2 H we have:

U "
2

(xi, n)⇥ U "
2

(xi, n) =
n

(T, S) : Txi, Sxi 2 B "
2

(o), i = 1, . . . , n
o

✓ {(T, S) : k(T + S)xikH < ", i = 1, . . . , n}
= {(T, S) : (T + S) 2 U"(xi, n)} = �1(U"(xi, n))

B1(0)⇥ U"(xi, n) = {(�, T ) 2 K⇥ L(H) : |�| < 1, kTxikH < ", i = 1, . . . , n}
✓ {(�, T ) : k(�T )xikH < ", i = 1, . . . , n} = �1(U"(xi, n))

which prove that and are both continuous.
Furthermore, we can show that the multiplication in (L(H), ⌧s) is sepa-

rately continuous. Fixed T 2 L(H), its continuity implies that T�1(B"(o)) is
a neighbourhood of o in H and so that there exists ⌘ > 0 such that B⌘(o) ✓
T�1(B"(o)). Therefore, we get:

T � U⌘(xi, n) = {T � S : S 2 L(H) with Sxi 2 B⌘(o), i = 1, . . . , n}
✓ {W 2 L(H) : Wxi 2 B"(o), i = 1, . . . , n}
= U"(xi, n),

where in the latter inequality we used that

(T � S)xi = T (Sxi) 2 T (B⌘(o)) ✓ T (T�1(B"(o))) ✓ B"(o).

Similarly, we can show that U⌘(xi, n) � T ✓ U"(xi, n). Hence, Bs fulfills a)
and b) in Theorem 1.2.9 and so we have that (L(H), ⌧s) is a TA.

• the multiplication in (L(H), ⌧s) is not jointly continuous
It is enough to show that there exists a neighbourhood of the origin in (L(H), ⌧s)
which does not contain the product of any other two such neighbourhoods.
More precisely, we will show 9 " > 0, 9x0 2 H s.t. 8"1, "2 > 0, 8p, q 2 N,
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1. General Concepts

8x1, . . . , xp, y1, . . . , yq 2 H we have U"
1

(xi, p) � U"
2

(yi, q) 6✓ U"(x0), i.e. there
exist A 2 U"

1

(xi, p) and B 2 U"
2

(yi, q) with B �A /2 U"(x0).
Choose 0 < " < 1 and x0 2 H s.t. kx0k = 1. For any "1, "2 > 0, p, q 2 N,

x1, . . . , xp, y1, . . . , yq 2 H, take

0 < � <
"2

max
i=1,...,q

kyik
(1.4)

and n 2 N such that

kTn(xk)k < �"1, for k = 1, . . . , p, (1.5)

where Tn is defined as in (1.3). (Note that we can choose such an n as we
showed above that kTjxk ! 0 as j ! 1). Setting A := 1

�Tn and B := �T ⇤
n we

get that:

kAxkk =
1

�
kTnxkk

(1.5)
< "1, for k = 1, . . . , p

and

kByik = �kT ⇤
nyik

(4)
= �kyik

(1.4)
< "2, for i = 1, . . . , q.

Hence, A 2 U"
1

(xi, p) and B 2 U"
2

(yi, q) but B �A /2 U"(x0) because

k(B �A)x0k = k(T ⇤
nTn)x0k = kx0k = 1 > ".

Note that L(H) endowed with the operator norm k·k is instead a normed
algebra and so has jointly continuous multiplication. Recall that the operator
norm is defined by kTk := sup

x2H\{o}

kTxkH
kxkH , 8T 2 L(H).

1.3 Hausdor↵ness and unitizations of a TA

Topological algebras are in particular topological spaces so their Hausdorfness
can be established just by verifying the usual definition of Hausdor↵ topolog-
ical space.

Definition 1.3.1. A topological space X is said to be Hausdor↵ or (T2) if
any two distinct points of X have neighbourhoods without common points; or
equivalently if two distinct points always lie in disjoint open sets.

However, a TA is more than a mere topological space but it is also a TVS.
This provides TAs with the following characterization of their Hausdorfness
which holds in general for any TVS.
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1.3. Hausdor↵ness and unitizations of a TA

Proposition 1.3.2. For a TVS X the following are equivalent:

a) X is Hausdor↵.

b) {o} is closed in X.

c) The intersection of all neighbourhoods of the origin o is just {o}.
d) 8 o 6= x 2 X, 9U 2 F(o) s.t. x /2 U .

Since the topology of a TVS is translation invariant, property (d) means
that the TVS is a (T1)5topological space. Recall for general topological spaces
(T2) always implies (T1), but the converse does not always hold (c.f. Exam-
ple 1.1.41-4 in [9]). However, Proposition 1.3.2 ensures that for TVS and so
for TAs the two properties are equivalent.

Proof.
Let us just show that (d) implies (a) (for a complete proof see [9, Proposi-
tion 2.2.3, Corollary 2.2.4] or even better try it yourself!).

Suppose that (d) holds and let x, y 2 X with x 6= y, i.e. x� y 6= o. Then
there exists U 2 F(o) s.t. x� y /2 U . By (2) and (5) of Theorem 1.2.6, there
exists V 2 F(o) balanced and s.t. V + V ⇢ U . Since V is balanced V = �V
then we have V �V ⇢ U . Suppose now that (V +x)\ (V +y) 6= ;, then there
exists z 2 (V + x) \ (V + y), i.e. z = v + x = w + y for some v, w 2 V . Then
x� y = w� v 2 V �V ⇢ U and so x� y 2 U which is a contradiction. Hence,
(V + x) \ (V + y) = ; and by Proposition 1.2.4 we know that V + x 2 F(x)
and V + y 2 F(y). Hence, X is Hausdor↵.

We have already seen that aK�algebra can be always embedded in a unital
one, called unitization see Definition 1.1.3-4) . In the rest of this section, we
will discuss about which topologies on the unitization of a K�algebra makes
it into a TA. To start with, let us look at normed algebras.

Proposition 1.3.3. If A is a normed algebra, then there always exists a norm
on its unitization A1 making both A1 into a normed algebra and the canonical
embedding an isometry. Such a norm is called a unitization norm.

Proof.
Let (A, k · k) be a normed algebra and A1 = K⇥A its unitization. Define

k(k, a)k1 := |k|+ kak, 8k 2 K, a 2 A.

5 A topological space X is said to be (T1) if, given two distinct points of X, each lies
in a neighborhood which does not contain the other point; or equivalently if, for any two
distinct points, each of them lies in an open subset which does not contain the other point.
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1. General Concepts

Then k(1, o)k1 = 1 and it is straightforward that k · k1 is a norm on A1 since
| · | is a norm on K and k · k is a norm on A. Also, for any �, k 2 K, a, b 2 A
we have:

k(k, a)(�, b)k1 = k(k�, ka+ �b+ ab)k1 = |k�|+ kka+ �b+ abk
 |k||�|+ kkak+ �kbk+ kakkbk = |k|(|�|+ kbk) + kak(|�|+ kbk)
= (|k|+ kak)(|�|+ kbk) = k(k, a)k1k(�, b)k1.

This proves that (A1, k·k1) is a unital normed algebra. Moreover, the canonical
embedding : A ! A1, a 7! (0, a) is an isometry because k (a)k1 = |0|+kak =
kak for all a 2 A. This in turn gives that is continuous and so a topological
embedding.

Remark 1.3.4. Note that k · k1 induces the product topology on A1 given by
(K, | · |) and (A, k · k) but there might exist other unitization norms on A1 not
necessarily equivalent to k · k1 (see Sheet 1, Exercise 3).

The latter remark suggests the following generalization of Proposition 1.3.3
to any TA.

Proposition 1.3.5. Let A be a TA. Its unitization A1 equipped with the cor-
responding product topology is a TA and A is topologically embedded in A1.
Note that A1 is Hausdor↵ if and only if A is Hausdor↵.

Proof. Suppose (A, ⌧) is a TA. By Proposition 1.1.4, we know that the unitiza-
tion A1 of A is a K�algebra. Moreover, since (K, |·|) and (A, ⌧) are both TVS,
we have that A1 := K⇥A endowed with the corresponding product topology
⌧prod is also a TVS. Then the definition of multiplication in A1 together with
the fact that the multiplication in A is separately continuous imply that the
multiplication in A1 is separately continuous, too. Hence, (A1, ⌧prod) is a TA.

The canonical embedding of A in A1 is then a continuous monomor-
phism, since for any U neighbourhood of (0, o) in (A1, ⌧prod) there exist " > 0
and a neighbourhood V of o in (A, ⌧) such that B"(0) ⇥ V ✓ U and so
V = �1(B"(0) ⇥ V ) ✓ �1(U). Hence, (A, ⌧) is topologically embedded
in (A1, ⌧prod).

Finally, recall that the cartesian product of topological spaces endowed
with the corresponding product topology is Hausdor↵ i↵ each of them is Haus-
dor↵. Then, as (K, | · |) is Hausdor↵, it is clear that (A1, ⌧prod) is Hausdor↵ i↵
(A, ⌧) is Hausdor↵. 6

6Alternative proof:

A Hausdor↵
1.3.2() {o} closed in A

{0}closed in K() {(0, o)} closed in A
1

1.3.2() (A
1

, ⌧prod) Hausdor↵.
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1.4. Subalgebras and quotients of a TA

If A is a TA with continuous multiplication, then A1 endowed with the
corresponding product topology is also a TA with continuous multiplication.
Moreover, from Remark 1.3.4, it is clear that the product topology is not the
unique one making the unitization of a TA into a TA itself.

1.4 Subalgebras and quotients of a TA

In this section we are going to see some methods which allow us to construct
new TAs from a given one. In particular, we will see under which conditions
the TA structure is preserved under taking subalgebras and quotients.

Let us start with an immediate application of Theorem 1.2.9.

Proposition 1.4.1. Let X be a K�algebra, (Y,!) a TA (resp. TA with con-
tinuous multiplication) over K and ' : X ! Y a homomorphism. Denote
by B! a basis of neighbourhoods of the origin in (Y,!). Then the collection
B := {'�1(U) : U 2 B!} is a basis of neighbourhoods of the origin for a
topology ⌧ on X such that (X, ⌧) is a TA (resp. TA with continuous multipli-
cation).

The topology ⌧ constructed in the previous proposition is usually called
initial topology or inverse image topology induced by '.

Proof.
We first show that B is a basis for a filter in X.

For any B1, B2 2 B, we have B1 = '�1(U1) and B2 = '�1(U2) for some
U1, U2 2 B!. Since B! is a basis of the filter of neighbourhoods of the origin in
(Y,!), there exists U3 2 B! such that U3 ✓ U1 \ U2 and so B3 := '�1(U3) ✓
'�1(U1) \ '�1(U2) = B1 \B2 and clearly B3 2 B.

Now consider the filter F generated by B. For any M 2 F , there exists
U 2 B! such that '�1(U) ✓ M and so we have the following:

1. oY 2 U and so oX 2 '�1(oY ) 2 '�1(U) = M .
2. by Theorem 1.2.6-2 applied to the TVS (Y,!), we have that there exists

V 2 B! such that V + V ✓ U . Hence, setting N := '�1(V ) 2 F we
have N +N ✓ '�1(V + V ) ✓ '�1(U) = M .

3. by Theorem 1.2.6-3 applied to the TVS (Y,!), we have that for any
� 2 K \ {0} there exists V 2 B! such that V ✓ �U . Therefore, setting
N := '�1(V ) 2 B we have N ✓ '�1(�U) = �'�1(U) ✓ �M , and so
�M 2 F .

4. For any x 2 X there exists y 2 Y such that x = '�1(y). As U is
absorbing (by Theorem 1.2.6-4 applied to the TVS (Y,!)), we have
that there exists ⇢ > 0 such that �y 2 U for all � 2 K with |�|  ⇢.
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This yields �x = �'�1(y) = '�1(�y) 2 '�1(U) = M and hence, M is
absorbing in X.

5. by Theorem 1.2.6-5 applied to the TVS (Y,!), we have that there exists
V 2 B! balanced such that V ✓ U . By the linearity of ' also '�1(V ) is
balanced and so, setting N := '�1(V ) we have N ✓ '�1(U) = M .

Therefore, we have showed that F fulfills itself all the 5 properties of Theorem
1.2.6 and so it is a filter of neighbourhoods of the origin for a topology ⌧ making
(X, ⌧) a TVS.

Furthermore, for any x 2 X and any B 2 B we have that there exist
y 2 Y and U 2 B! such that x = '�1(y) and B = '�1(U). Then, as (Y,!)
is a TA, Theorem 1.2.9 guarantees that there exist V1, V2 2 B! such that
yV1 ✓ U and V2y ✓ U . Setting N1 := '�1(V1) and N2 := '�1(V2), we obtain
that N1, N2 2 B and xN1 = '�1(y)'�1(V1) = '�1(yV1) ✓ '�1(U) = B and
xN2 = '�1(y)'�1(V2) = '�1(yV2) ✓ '�1(U) = B. (Similarly, if (Y,!) is a
TA with continuous multiplication, then one can show that for any B 2 B
there exists N 2 B such that NN ✓ B.)

Hence, by Theorem 1.2.9 (resp. Theorem 1.2.10) , (X, ⌧) is a TA (resp.
TA with continuous multiplication).

Corollary 1.4.2. Let (A,!) be a TA (resp. TA with continuous multiplica-
tion) and M a subalgebra of A. If we endow M with the relative topology ⌧M
induced by A, then (M, ⌧M ) is a TA (resp. TA with continuous multiplication).

Proof.
Consider the identity map id : M ! A and let B! a basis of neighbourhoods
of the origin in (A,!) Clearly, id is a homomorphism and the initial topology
induced by id on M is nothing but the relative topology ⌧M induced by A
since

{id�1(U) : U 2 B!} = {U \M : U 2 B!} = ⌧M .

Hence, Proposition 1.4.1 ensures that (M, ⌧M ) is a TA (resp. TA with contin-
uous multiplication).

With similar techniques to the ones used in Proposition 1.4.1 one can show:

Proposition 1.4.3. Let (X,!) be a TA (resp. TA with continuous multi-
plication) over K, Y a K�algebra and ' : X ! Y a surjective homomor-
phism. Denote by B! a basis of neighbourhoods of the origin in (X,!). Then
B := {'(U) : U 2 B!} is a basis of neighbourhoods of the origin for a topology
⌧ on Y such that (Y, ⌧) is a TA (resp. TA with continuous multiplication).

Proof. (Sheet 2)
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Using the latter result one can show that the quotient of a TA over an
ideal endowed with the quotient topology is a TA (Sheet 2). However, in the
following we are going to give a direct proof of this fact without making use of
bases. Before doing that, let us briefly recall the notion of quotient topology.

Given a topological space (X,!) and an equivalence relation ⇠ on X. The
quotient set X/⇠ is defined to be the set of all equivalence classes w.r.t. to
⇠. The map � : X ! X/⇠ which assigns to each x 2 X its equivalence class
�(x) w.r.t. ⇠ is called the canonical map or quotient map. Note that � is
surjective. Thequotient topology on X/ ⇠ is the collection of all subsets U of
X/⇠ such that ��1(U) 2 !. Hence, the quotient map � is continuous and
actually the quotient topology on X/⇠ is the finest topology on X/⇠ such
that � is continuous.

Note that the quotient map � is not necessarily open or closed.

Example 1.4.4. Consider R with the standard topology given by the modulus
and define the following equivalence relation on R:

x ⇠ y , (x = y _ {x, y} ⇢ Z).

Let R/⇠ be the quotient set w.r.t ⇠ and � : R ! R/⇠ the correspondent
quotient map. Let us consider the quotient topology on R/⇠. Then � is not
an open map. In fact, if U is an open proper subset of R containing an integer,
then ��1(�(U)) = U [ Z which is not open in R with the standard topology.
Hence, �(U) is not open in R/⇠ with the quotient topology.

For an example of not closed quotient map see e.g. [9, Example 2.3.3].
Let us consider now a K�algebra A and an ideal I of A. We denote by

A/I the quotient set A/⇠I , where ⇠I is the equivalence relation on A defined
by x ⇠I y i↵ x� y 2 I. The canonical (or quotient) map � : A ! A/I which
assigns to each x 2 A its equivalence class �(x) w.r.t. the relation ⇠I is clearly
surjective.

Using the fact that I is an ideal of the algebra A (see Definition 1.1.3-2),
it is easy to check that:

1. if x ⇠I y, then 8� 2 K we have �x ⇠I �y.
2. if x ⇠I y, then 8 z 2 A we have x+ z ⇠I y + z.
3. if x ⇠I y, then 8 z 2 A we have xz ⇠I yz and zx ⇠I zy .

These three properties guarantee that the following operations are well-defined
on A/I:

• vector addition: 8�(x),�(y) 2 A/I, �(x) + �(y) := �(x+ y)
• scalar multiplication: 8� 2 K, 8�(x) 2 A/I, ��(x) := �(�x)
• vector multiplication: 8�(x),�(y) 2 A/I, �(x) · �(y) := �(xy)
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1. General Concepts

A/I equipped with the three operations defined above is a K�algebra which
is often called quotient algebra. Then the quotient map � is clearly a homo-
morphism.

Moreover, if A is unital and I proper then also the quotient algebra A/I
is unital. Indeed, as I is a proper ideal of A, the unit 1A does not belong to
I and so we have �(1A) 6= o and for all x 2 A we get �(x)�(1A) = �(x · 1A) =
�(x) = �(1A · x) = �(1A)�(x).

Suppose now that (A,!) is a TA and I an ideal of A. Since A is in
particular a topological space, we can endow it with the quotient topology
w.r.t. the equivalence relation ⇠I . We already know that in this setting � is a
continuous homomorphism but actually the structure of TA on A guarantees
also that it is open. Indeed, the following holds for any TVS and so for any TA:

Proposition 1.4.5. For a linear subspace M of a t.v.s.X, the quotient map-
ping � : X ! X/M is open (i.e. carries open sets in X to open sets in X/M)
when X/M is endowed with the quotient topology.

Proof. Let V be open in X. Then we have

��1(�(V )) = V +M =
[

m2M
(V +m).

Since X is a t.v.s, its topology is translation invariant and so V +m is open
for any m 2 M . Hence, ��1(�(V )) is open in X as union of open sets. By
definition, this means that �(V ) is open in X/M endowed with the quotient
topology.

Theorem 1.4.6. Let (A,!) be a TA (resp. TA with continuous multiplica-
tion) and I an ideal of A. Then the quotient algebra A/I endowed with the
quotient topology is a TA (resp. TA with continuous multiplication).

Proof.
(in the next lecture!)

Proposition 1.4.7. Let A be a TA and I an ideal of A. Consider A/I
endowed with the quotient topology. Then the two following properties are
equivalent:

a) I is closed

b) A/I is Hausdor↵
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1.4. Subalgebras and quotients of a TA

Proof.
In view of Proposition 1.3.2, (b) is equivalent to say that the complement of
the origin in A/I is open w.r.t. the quotient topology. But the complement
of the origin in A/I is exactly the image under the canonical map � of the
complement of I in A. Since � is an open continuous map, the image under
� of the complement of I in X is open in A/I i↵ the complement of I in A is
open, i.e. (a) holds.

Corollary 1.4.8. If A is a TA, then A/{o} endowed with the quotient topology
is a Hausdor↵ TA. A/{o} is said to be the Hausdor↵ TA associated with A.
When A is a Hausdor↵ TA, A and A/{o} are topologically isomorphic.

Proof.
First of all, let us observe that {o} is a closed ideal of A. Indeed, since A is
a TA, the multiplication is separately continuous and so for all x, y 2 A we
have x{o} ✓ {x · o} = {o} and {o}y ✓ {o · y} = {o} is a linear subspace of X.
Then, by Theorem 1.4.6 and Proposition 1.4.7, A/{o} is a Hausdor↵ TA. If in
addition A is also Hausdor↵, then Proposition 1.3.2 guarantees that {o} = {o}
in A. Therefore, the quotient map � : A ! A/{o} is also injective because in
this case Ker(�) = {o}. Hence, � is a topological isomorphism (i.e. bijective,
continuous, open, linear) between A and A/{o} which is indeed A/{o}.

Let us finally focus on quotients of normed algebra. If (A, k ·k) is a normed
(resp. Banach) algebra and I an ideal of A, then Theorem 1.4.6 guarantees
that A/I endowed with the quotient topology is a TA with continuous mul-
tiplication but, actually, the latter is also a normed (resp. Banach) algebra.
Indeed, one can easily show that the quotient topology is generated by the
so-called quotient norm defined by

q(�(x)) := inf
y2I

kx+ yk, 8x 2 A

which has the nice property to be submultiplicative (Sheet 2).

Proposition 1.4.9. If (A, k · k) is a normed (resp. Banach) algebra and I
a closed ideal of A, then A/I equipped with the quotient norm is a normed
(resp. Banach) algebra.

Proof. (Sheet 2)
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