So far we have seen only examples of TA with continuous multiplication. In the following example, we will introduce a TA whose multiplication is separately continuous but not jointly continuous.

Example 1.2.17.

Let $(H, \langle \cdot, \cdot, \rangle)$ be an infinite dimensional separable Hilbert space over \mathbb{K} . Denote by $\|\cdot\|_H$ the norm on H defined as $\|x\|_H := \sqrt{\langle x, x \rangle}$ for all $x \in H$, and by L(H) the set of all linear and continuous maps from H to H. The set L(H) equipped with the pointwise addition \mathfrak{a} , the pointwise scalar multiplication \mathfrak{m} and the composition of maps \circ as multiplication is a \mathbb{K} -algebra.

Let τ_w be the **weak operator topology** on L(H), i.e. the coarsest topology on L(H) such that all the maps $E_{x,y} : L(H) \to H, T \mapsto \langle Tx, y \rangle$ $(x, y \in H)$ are continuous. A basis of neighbourhoods of the origin in $(L(H), \tau_w)$ is given by:

$$\mathcal{B}_w := \left\{ V_{\varepsilon}(x_i, y_i, n) : \varepsilon > 0, n \in \mathbb{N}, x_1, \dots, x_n, y_1, \dots, y_n \in H \right\},\$$

where $V_{\varepsilon}(x_i, y_i, n) := \{ W \in L(H) : |\langle W x_i, y_i \rangle| < \varepsilon, i = 1, \dots, n \}.$

•
$$(L(H), \tau_w)$$
 is a TA.

For any $\varepsilon > 0$, $n \in \mathbb{N}$, $x_1, \ldots, x_n, y_1, \ldots, y_n \in H$, using the bilinearity of the inner product we easily have:

$$V_{\frac{\varepsilon}{2}}(x_i, y_i, n) \times V_{\frac{\varepsilon}{2}}(x_i, y_i, n) = \bigcap_{i=1}^n \left\{ (T, S) : |\langle Tx_i, y_i \rangle| < \frac{\varepsilon}{2}, |\langle Sx_i, y_i \rangle| < \frac{\varepsilon}{2} \right\}$$
$$\subseteq \bigcap_{i=1}^n \left\{ (T, S) : |\langle (T+S)x_i, y_i \rangle| < \varepsilon \right\}$$
$$= \left\{ (T, S) : (T+S) \in V_{\varepsilon}(x_i, y_i, n) \right\}$$
$$= a^{-1}(V_{\varepsilon}(x_i, y_i, n)),$$
$$B_1(0) \times V_{\varepsilon}(x_i, y_i, n) = \bigcap_{i=1}^n \left\{ (\lambda, T) \in \mathbb{K} \times L(H) : |\lambda| < 1, |\langle Tx_i, y_i \rangle| < \varepsilon \right\}$$

$$\subseteq \bigcap_{i=1}^{n} \{ (\lambda, T) : |\langle (\lambda T) x_i, y_i \rangle| < \varepsilon \} = \operatorname{Im}^{-1}(V_{\varepsilon}(x_i, y_i, n))$$

which prove that a and m are both continuous. Hence, $(L(H), \tau_w)$ is a TVS.

Furthermore, we can show that the multiplication in $(L(H), \tau_w)$ is separately continuous. For a fixed $T \in L(H)$ denote by T^* the adjoint of T and set $z_i := T^*y_i$ for i = 1, ..., n. Then

$$T \circ V_{\varepsilon}(x_i, z_i, n) = \{T \circ S : |\langle Sx_i, z_i \rangle| < \varepsilon, i = 1, \dots, n\}$$
$$\subseteq \{W \in L(H) : |\langle Wx_i, y_i \rangle| < \varepsilon, i = 1, \dots, n\} = V_{\varepsilon}(x_i, y_i, n),$$

where in the latter inequality we used that

$$|\langle (T \circ S)x_i, y_i \rangle| = |\langle T(Sx_i), y_i \rangle| = |\langle Sx_i, T^*y_i \rangle| = |\langle Sx_i, z_i \rangle| < \varepsilon.$$

Similarly, we can show that $V_{\varepsilon}(x_i, z_i, n) \circ T \subseteq V_{\varepsilon}(x_i, y_i, n)$. Hence, \mathcal{B}_w fulfills a) and b) in Theorem 1.2.9 and so we have that $(L(H), \tau_w)$ is a TA.

• the multiplication in $(L(H), \tau_w)$ is not jointly continuous.

Let us preliminarily observe that a sequence $(W_j)_{j\in\mathbb{N}}$ of elements in L(H)converges to $W \in L(H)$ w.r.t. τ_w , in symbols $W_j \xrightarrow{\tau_w} W$, if and only if for all $x, y \in H$ we have $\langle W_j x, y \rangle \to \langle W x, y \rangle^3$. As H is separable, there exists a countable orthonormal basis $\{e_k\}_{k\in\mathbb{N}}$ for H. Define $S \in L(H)$ such that $S(e_1) := o$ and $S(e_k) := e_{k-1}$ for all $k \in \mathbb{N}$ with $k \geq 2$. Then the operator

$$T_n := S^n = \left(\underbrace{S \circ \cdots \circ S}_{n \text{ times}}\right), \quad n \in \mathbb{N}$$
(1.3)

is s.t. $T_n \xrightarrow{\tau_w} o$ as $n \to \infty$. Indeed, $\forall x \in H, \exists ! \lambda_k \in \mathbb{K} : x = \sum_{k=1}^{\infty} \lambda_k e_k^4$ so

$$\|T_n x\| = \left\|\sum_{k=1}^{\infty} \lambda_k T_n(e_k)\right\| = \left\|\sum_{k=n+1}^{\infty} \lambda_k T_n(e_k)\right\| = \left\|\sum_{k=n+1}^{\infty} \lambda_k e_{k-n}\right\|$$
$$= \left\|\sum_{k=1}^{\infty} \lambda_{k+n} e_k\right\| \stackrel{4}{=} \sum_{k=1}^{\infty} |\lambda_{k+n}|^2 = \sum_{k=n+1}^{\infty} |\lambda_k|^2 \to 0, \text{ as } n \to \infty$$

which implies that $\langle T_n x, y \rangle \to 0$ as $n \to \infty$ since $|\langle T_n x, y \rangle| \le ||T_n x|| ||y||$.

Moreover, the adjoint of S is the continuous linear operator $S^* : H \to H$ such that $S^*(e_k) = e_{k+1}$ for all $k \in \mathbb{N}$. Hence, for any $n \in \mathbb{N}$ we have that $T_n^* = (S^n)^* = (S^*)^n$ and we can easily show that also $T_n^* \xrightarrow{\tau_W} o$. In fact, for any $x, y \in H$ we have that $|\langle T_n^* x, y \rangle| = |\langle x, T_n y \rangle| \leq ||x|| ||T_n y|| \to 0$ as $n \to \infty$. However, we have $S^*S = I$ where I denotes the identity map on H, which gives in turn that $T_n^* \circ T_n = I$ for any $n \in \mathbb{N}$. Hence, for any $n \in \mathbb{N}$ and any $x, y \in H$ we have that $\langle (T_n^* \circ T_n) x, y \rangle = \langle x, y \rangle$ and so that $T_n^* \circ T_n \xrightarrow{\tau_W} o$ as $n \to \infty$, which proves that \circ is not jointly continuous.

³Indeed, we have

$$\begin{split} W_j \xrightarrow{\tau_W} W &\iff \forall \varepsilon > 0, n \in \mathbb{N}, x_i, y_i \in H, \exists \overline{j} \in \mathbb{N} : \forall j \ge \overline{j}, W_j - W \in V_{\varepsilon}(x_i, y_i, n) \\ &\iff \forall \varepsilon > 0, n \in \mathbb{N}, x_i, y_i \in H, \exists \overline{j} \in \mathbb{N} : \forall j \ge \overline{j}, |\langle (W_j - W) x_i, y_i \rangle| < \varepsilon \\ &\iff \forall n \in \mathbb{N}, x_i, y_i \in H, \langle (W_j - W) x_i, y_i \rangle \to 0, \text{ as } j \to \infty \\ &\iff \forall x, y \in H, \langle (W_j - W) x, y \rangle \to 0, \text{ as } j \to \infty. \end{split}$$

⁴Recall that if $\{h_i\}_{i \in I}$ is an orthonormal basis of a Hilbert space H then for each $y \in H$ $y = \sum_{i \in I} \langle y, h_i \rangle h_i$ and $\|y\|^2 = \sum_{i \in I} |\langle y, h_i \rangle|^2$ (see e.g. [13, Theorem II.6] for a proof) Let τ_s be the strong operator topology or topology of pointwise convergence on L(H), i.e. the coarsest topology on L(H) such that all the maps $E_x : L(H) \to H, T \mapsto Tx \ (x \in H)$ are continuous. A basis of neighbourhoods of the origin in $(L(H), \tau_s)$ is given by:

$$\mathcal{B}_s := \left\{ U_{\varepsilon}(x_i, n) : \varepsilon > 0, n \in \mathbb{N}, x_1, \dots, x_n \in H \right\},\$$

where $U_{\varepsilon}(x_i, n) := \{T \in L(H) : ||Tx_i||_H < \varepsilon, i = 1, \dots, n\}.$

• $(L(H), \tau_s)$ is a TA. For any r > 0 denote by $B_r(o)$ (rest

For any r > 0, denote by $B_r(o)$ (resp. $B_r(0)$) the open unit ball centered at o in H (resp. at 0 in \mathbb{K}). Then for any $\varepsilon > 0$, $n \in \mathbb{N}$, $x_1, \ldots, x_n \in H$ we have:

$$U_{\frac{\varepsilon}{2}}(x_i, n) \times U_{\frac{\varepsilon}{2}}(x_i, n) = \left\{ (T, S) : Tx_i, Sx_i \in B_{\frac{\varepsilon}{2}}(o), i = 1, \dots, n \right\}$$
$$\subseteq \left\{ (T, S) : \| (T + S)x_i \|_H < \varepsilon, i = 1, \dots, n \right\}$$
$$= \left\{ (T, S) : (T + S) \in U_{\varepsilon}(x_i, n) \right\} = a^{-1}(U_{\varepsilon}(x_i, n))$$

$$B_1(0) \times U_{\varepsilon}(x_i, n) = \{ (\lambda, T) \in \mathbb{K} \times L(H) : |\lambda| < 1, ||Tx_i||_H < \varepsilon, i = 1, \dots, n \}$$
$$\subseteq \{ (\lambda, T) : ||(\lambda T)x_i||_H < \varepsilon, i = 1, \dots, n \} = \mathfrak{m}^{-1}(U_{\varepsilon}(x_i, n))$$

which prove that a and m are both continuous.

Furthermore, we can show that the multiplication in $(L(H), \tau_s)$ is separately continuous. Fixed $T \in L(H)$, its continuity implies that $T^{-1}(B_{\varepsilon}(o))$ is a neighbourhood of o in H and so that there exists $\eta > 0$ such that $B_{\eta}(o) \subseteq$ $T^{-1}(B_{\varepsilon}(o))$. Therefore, we get:

$$T \circ U_{\eta}(x_i, n) = \{T \circ S : S \in L(H) \text{ with } Sx_i \in B_{\eta}(o), i = 1, \dots, n\}$$
$$\subseteq \{W \in L(H) : Wx_i \in B_{\varepsilon}(o), i = 1, \dots, n\}$$
$$= U_{\varepsilon}(x_i, n),$$

where in the latter inequality we used that

$$(T \circ S)x_i = T(Sx_i) \in T(B_{\eta}(o)) \subseteq T(T^{-1}(B_{\varepsilon}(o))) \subseteq B_{\varepsilon}(o).$$

Similarly, we can show that $U_{\eta}(x_i, n) \circ T \subseteq U_{\varepsilon}(x_i, n)$. Hence, \mathcal{B}_s fulfills a) and b) in Theorem 1.2.9 and so we have that $(L(H), \tau_s)$ is a TA.

• the multiplication in $(L(H), \tau_s)$ is not jointly continuous

It is enough to show that there exists a neighbourhood of the origin in $(L(H), \tau_s)$ which does not contain the product of any other two such neighbourhoods. More precisely, we will show $\exists \varepsilon > 0$, $\exists x_0 \in H \ s.t. \ \forall \varepsilon_1, \varepsilon_2 > 0$, $\forall p, q \in \mathbb{N}$, $\forall x_1, \ldots, x_p, y_1, \ldots, y_q \in H \text{ we have } U_{\varepsilon_1}(x_i, p) \circ U_{\varepsilon_2}(y_i, q) \not\subseteq U_{\varepsilon}(x_0), \text{ i.e. there}$ exist $A \in U_{\varepsilon_1}(x_i, p) \text{ and } B \in U_{\varepsilon_2}(y_i, q) \text{ with } B \circ A \notin U_{\varepsilon}(x_0).$

Choose $0 < \varepsilon < 1$ and $x_0 \in H$ s.t. $||x_0|| = 1$. For any $\varepsilon_1, \varepsilon_2 > 0, p, q \in \mathbb{N}$, $x_1, \ldots, x_p, y_1, \ldots, y_q \in H$, take

$$0 < \delta < \frac{\varepsilon_2}{\max_{i=1,\dots,q} \|y_i\|} \tag{1.4}$$

and $n \in \mathbb{N}$ such that

$$||T_n(x_k)|| < \delta \varepsilon_1, \text{ for } k = 1, \dots, p,$$
(1.5)

where T_n is defined as in (1.3). (Note that we can choose such an n as we showed above that $||T_jx|| \to 0$ as $j \to \infty$). Setting $A := \frac{1}{\delta}T_n$ and $B := \delta T_n^*$ we get that:

$$||Ax_k|| = \frac{1}{\delta} ||T_n x_k|| \stackrel{(1.5)}{<} \varepsilon_1, \text{ for } k = 1, \dots, p$$

and

$$||By_i|| = \delta ||T_n^* y_i|| \stackrel{(4)}{=} \delta ||y_i|| \stackrel{(1.4)}{<} \varepsilon_2, \text{ for } i = 1, \dots, q.$$

Hence, $A \in U_{\varepsilon_1}(x_i, p)$ and $B \in U_{\varepsilon_2}(y_i, q)$ but $B \circ A \notin U_{\varepsilon}(x_0)$ because

$$||(B \circ A)x_0|| = ||(T_n^*T_n)x_0|| = ||x_0|| = 1 > \varepsilon$$

Note that L(H) endowed with the **operator norm** $\|\cdot\|$ is instead a normed algebra and so has jointly continuous multiplication. Recall that the operator norm is defined by $\|T\| := \sup_{x \in H \setminus \{o\}} \frac{\|Tx\|_H}{\|x\|_H}, \ \forall T \in L(H).$

1.3 Hausdorffness and unitizations of a TA

Topological algebras are in particular topological spaces so their Hausdorfness can be established just by verifying the usual definition of Hausdorff topological space.

Definition 1.3.1. A topological space X is said to be Hausdorff or (T2) if any two distinct points of X have neighbourhoods without common points; or equivalently if two distinct points always lie in disjoint open sets.

However, a TA is more than a mere topological space but it is also a TVS. This provides TAs with the following characterization of their Hausdorfness which holds in general for any TVS.

Proposition 1.3.2. For a TVS X the following are equivalent:

- a) X is Hausdorff.
- b) $\{o\}$ is closed in X.
- c) The intersection of all neighbourhoods of the origin o is just $\{o\}$.
- d) $\forall o \neq x \in X, \exists U \in \mathcal{F}(o) \ s.t. \ x \notin U.$

Since the topology of a TVS is translation invariant, property (d) means that the TVS is a $(T1)^5$ topological space. Recall for general topological spaces (T2) always implies (T1), but the converse does not always hold (c.f. Example 1.1.41-4 in [9]). However, Proposition 1.3.2 ensures that for TVS and so for TAs the two properties are equivalent.

Proof.

Let us just show that (d) implies (a) (for a complete proof see [9, Proposition 2.2.3, Corollary 2.2.4] or even better try it yourself!).

Suppose that (d) holds and let $x, y \in X$ with $x \neq y$, i.e. $x - y \neq o$. Then there exists $U \in \mathcal{F}(o)$ s.t. $x - y \notin U$. By (2) and (5) of Theorem 1.2.6, there exists $V \in \mathcal{F}(o)$ balanced and s.t. $V + V \subset U$. Since V is balanced V = -Vthen we have $V - V \subset U$. Suppose now that $(V + x) \cap (V + y) \neq \emptyset$, then there exists $z \in (V + x) \cap (V + y)$, i.e. z = v + x = w + y for some $v, w \in V$. Then $x - y = w - v \in V - V \subset U$ and so $x - y \in U$ which is a contradiction. Hence, $(V + x) \cap (V + y) = \emptyset$ and by Proposition 1.2.4 we know that $V + x \in \mathcal{F}(x)$ and $V + y \in \mathcal{F}(y)$. Hence, X is Hausdorff. \Box

We have already seen that a \mathbb{K} -algebra can be always embedded in a unital one, called unitization see Definition 1.1.3-4). In the rest of this section, we will discuss about which topologies on the unitization of a \mathbb{K} -algebra makes it into a TA. To start with, let us look at normed algebras.

Proposition 1.3.3. If A is a normed algebra, then there always exists a norm on its unitization A_1 making both A_1 into a normed algebra and the canonical embedding an isometry. Such a norm is called a unitization norm.

Proof.

Let $(A, \|\cdot\|)$ be a normed algebra and $A_1 = \mathbb{K} \times A$ its unitization. Define

$$||(k,a)||_1 := |k| + ||a||, \ \forall k \in \mathbb{K}, a \in A.$$

⁵ A topological space X is said to be (T1) if, given two distinct points of X, each lies in a neighborhood which does not contain the other point; or equivalently if, for any two distinct points, each of them lies in an open subset which does not contain the other point.

Then $||(1, o)||_1 = 1$ and it is straightforward that $|| \cdot ||_1$ is a norm on A_1 since $| \cdot |$ is a norm on \mathbb{K} and $|| \cdot ||$ is a norm on A. Also, for any $\lambda, k \in \mathbb{K}, a, b \in A$ we have:

$$\begin{aligned} \|(k,a)(\lambda,b)\|_{1} &= \|(k\lambda,ka+\lambda b+ab)\|_{1} = |k\lambda| + \|ka+\lambda b+ab\| \\ &\leq |k||\lambda|+k\|a\|+\lambda\|b\|+\|a\|\|b\| = |k|(|\lambda|+\|b\|) + \|a\|(|\lambda|+\|b\|) \\ &= (|k|+\|a\|)(|\lambda|+\|b\|) = \|(k,a)\|_{1}\|(\lambda,b)\|_{1}. \end{aligned}$$

This proves that $(A_1, \|\cdot\|_1)$ is a unital normed algebra. Moreover, the canonical embedding $e: A \to A_1, a \mapsto (0, a)$ is an isometry because $\|e(a)\|_1 = |0| + \|a\| = \|a\|$ for all $a \in A$. This in turn gives that e is continuous and so a topological embedding.

Remark 1.3.4. Note that $\|\cdot\|_1$ induces the product topology on A_1 given by $(\mathbb{K}, |\cdot|)$ and $(A, \|\cdot\|)$ but there might exist other unitization norms on A_1 not necessarily equivalent to $\|\cdot\|_1$ (see Sheet 1, Exercise 3).

The latter remark suggests the following generalization of Proposition 1.3.3 to any TA.

Proposition 1.3.5. Let A be a TA. Its unitization A_1 equipped with the corresponding product topology is a TA and A is topologically embedded in A_1 . Note that A_1 is Hausdorff if and only if A is Hausdorff.

Proof. Suppose (A, τ) is a TA. By Proposition 1.1.4, we know that the unitization A_1 of A is a \mathbb{K} -algebra. Moreover, since $(\mathbb{K}, |\cdot|)$ and (A, τ) are both TVS, we have that $A_1 := \mathbb{K} \times A$ endowed with the corresponding product topology τ_{prod} is also a TVS. Then the definition of multiplication in A_1 together with the fact that the multiplication in A is separately continuous imply that the multiplication in A_1 is separately continuous, too. Hence, (A_1, τ_{prod}) is a TA.

The canonical embedding \mathfrak{e} of A in A_1 is then a continuous monomorphism, since for any U neighbourhood of (0, o) in (A_1, τ_{prod}) there exist $\varepsilon > 0$ and a neighbourhood V of o in (A, τ) such that $B_{\varepsilon}(0) \times V \subseteq U$ and so $V = \mathfrak{e}^{-1}(B_{\varepsilon}(0) \times V) \subseteq \mathfrak{e}^{-1}(U)$. Hence, (A, τ) is topologically embedded in (A_1, τ_{prod}) .

Finally, recall that the cartesian product of topological spaces endowed with the corresponding product topology is Hausdorff iff each of them is Hausdorff. Then, as $(\mathbb{K}, |\cdot|)$ is Hausdorff, it is clear that (A_1, τ_{prod}) is Hausdorff iff (A, τ) is Hausdorff. \Box

⁶Alternative proof:

 $A \text{ Hausdorff} \stackrel{1.3.2}{\longleftrightarrow} \{o\} \text{ closed in } A \stackrel{\{0\} \text{ closed in } \mathbb{K}}{\longleftrightarrow} \{(0, o)\} \text{ closed in } A_1 \stackrel{1.3.2}{\longleftrightarrow} (A_1, \tau_{prod}) \text{ Hausdorff.}$

If A is a TA with continuous multiplication, then A_1 endowed with the corresponding product topology is also a TA with continuous multiplication. Moreover, from Remark 1.3.4, it is clear that the product topology is not the unique one making the unitization of a TA into a TA itself.

1.4 Subalgebras and quotients of a TA

In this section we are going to see some methods which allow us to construct new TAs from a given one. In particular, we will see under which conditions the TA structure is preserved under taking subalgebras and quotients.

Let us start with an immediate application of Theorem 1.2.9.

Proposition 1.4.1. Let X be a \mathbb{K} -algebra, (Y, ω) a TA (resp. TA with continuous multiplication) over \mathbb{K} and $\varphi : X \to Y$ a homomorphism. Denote by \mathcal{B}_{ω} a basis of neighbourhoods of the origin in (Y, ω) . Then the collection $\mathcal{B} := \{\varphi^{-1}(U) : U \in \mathcal{B}_{\omega}\}$ is a basis of neighbourhoods of the origin for a topology τ on X such that (X, τ) is a TA (resp. TA with continuous multiplication).

The topology τ constructed in the previous proposition is usually called *initial topology* or *inverse image topology* induced by φ .

Proof.

We first show that \mathcal{B} is a basis for a filter in X.

For any $B_1, B_2 \in \mathcal{B}$, we have $B_1 = \varphi^{-1}(U_1)$ and $B_2 = \varphi^{-1}(U_2)$ for some $U_1, U_2 \in \mathcal{B}_{\omega}$. Since \mathcal{B}_{ω} is a basis of the filter of neighbourhoods of the origin in (Y, ω) , there exists $U_3 \in \mathcal{B}_{\omega}$ such that $U_3 \subseteq U_1 \cap U_2$ and so $B_3 := \varphi^{-1}(U_3) \subseteq \varphi^{-1}(U_1) \cap \varphi^{-1}(U_2) = B_1 \cap B_2$ and clearly $B_3 \in \mathcal{B}$.

Now consider the filter \mathcal{F} generated by \mathcal{B} . For any $M \in \mathcal{F}$, there exists $U \in \mathcal{B}_{\omega}$ such that $\varphi^{-1}(U) \subseteq M$ and so we have the following:

- 1. $o_Y \in U$ and so $o_X \in \varphi^{-1}(o_Y) \in \varphi^{-1}(U) = M$.
- 2. by Theorem 1.2.6-2 applied to the TVS (Y, ω) , we have that there exists $V \in \mathcal{B}_{\omega}$ such that $V + V \subseteq U$. Hence, setting $N := \varphi^{-1}(V) \in \mathcal{F}$ we have $N + N \subseteq \varphi^{-1}(V + V) \subseteq \varphi^{-1}(U) = M$.
- 3. by Theorem 1.2.6-3 applied to the TVS (Y, ω) , we have that for any $\lambda \in \mathbb{K} \setminus \{0\}$ there exists $V \in \mathcal{B}_{\omega}$ such that $V \subseteq \lambda U$. Therefore, setting $N := \varphi^{-1}(V) \in \mathcal{B}$ we have $N \subseteq \varphi^{-1}(\lambda U) = \lambda \varphi^{-1}(U) \subseteq \lambda M$, and so $\lambda M \in \mathcal{F}$.
- 4. For any $x \in X$ there exists $y \in Y$ such that $x = \varphi^{-1}(y)$. As U is absorbing (by Theorem 1.2.6-4 applied to the TVS (Y, ω)), we have that there exists $\rho > 0$ such that $\lambda y \in U$ for all $\lambda \in \mathbb{K}$ with $|\lambda| \leq \rho$.

This yields $\lambda x = \lambda \varphi^{-1}(y) = \varphi^{-1}(\lambda y) \in \varphi^{-1}(U) = M$ and hence, M is absorbing in X.

5. by Theorem 1.2.6-5 applied to the TVS (Y, ω) , we have that there exists $V \in \mathcal{B}_{\omega}$ balanced such that $V \subseteq U$. By the linearity of φ also $\varphi^{-1}(V)$ is balanced and so, setting $N := \varphi^{-1}(V)$ we have $N \subseteq \varphi^{-1}(U) = M$.

Therefore, we have showed that \mathcal{F} fulfills itself all the 5 properties of Theorem 1.2.6 and so it is a filter of neighbourhoods of the origin for a topology τ making (X, τ) a TVS.

Furthermore, for any $x \in X$ and any $B \in \mathcal{B}$ we have that there exist $y \in Y$ and $U \in \mathcal{B}_{\omega}$ such that $x = \varphi^{-1}(y)$ and $B = \varphi^{-1}(U)$. Then, as (Y, ω) is a TA, Theorem 1.2.9 guarantees that there exist $V_1, V_2 \in \mathcal{B}_{\omega}$ such that $yV_1 \subseteq U$ and $V_2y \subseteq U$. Setting $N_1 := \varphi^{-1}(V_1)$ and $N_2 := \varphi^{-1}(V_2)$, we obtain that $N_1, N_2 \in \mathcal{B}$ and $xN_1 = \varphi^{-1}(y)\varphi^{-1}(V_1) = \varphi^{-1}(yV_1) \subseteq \varphi^{-1}(U) = B$ and $xN_2 = \varphi^{-1}(y)\varphi^{-1}(V_2) = \varphi^{-1}(yV_2) \subseteq \varphi^{-1}(U) = B$. (Similarly, if (Y, ω) is a TA with continuous multiplication, then one can show that for any $B \in \mathcal{B}$ there exists $N \in \mathcal{B}$ such that $NN \subseteq B$.)

Hence, by Theorem 1.2.9 (resp. Theorem 1.2.10), (X, τ) is a TA (resp. TA with continuous multiplication).

Corollary 1.4.2. Let (A, ω) be a TA (resp. TA with continuous multiplication) and M a subalgebra of A. If we endow M with the relative topology τ_M induced by A, then (M, τ_M) is a TA (resp. TA with continuous multiplication).

Proof.

Consider the identity map $id: M \to A$ and let \mathcal{B}_{ω} a basis of neighbourhoods of the origin in (A, ω) Clearly, id is a homomorphism and the initial topology induced by id on M is nothing but the relative topology τ_M induced by Asince

 $\{id^{-1}(U): U \in \mathcal{B}_{\omega}\} = \{U \cap M: U \in \mathcal{B}_{\omega}\} = \tau_M.$

Hence, Proposition 1.4.1 ensures that (M, τ_M) is a TA (resp. TA with continuous multiplication).

With similar techniques to the ones used in Proposition 1.4.1 one can show:

Proposition 1.4.3. Let (X, ω) be a TA (resp. TA with continuous multiplication) over \mathbb{K} , Y a \mathbb{K} -algebra and $\varphi : X \to Y$ a surjective homomorphism. Denote by \mathcal{B}_{ω} a basis of neighbourhoods of the origin in (X, ω) . Then $\mathcal{B} := \{\varphi(U) : U \in \mathcal{B}_{\omega}\}$ is a basis of neighbourhoods of the origin for a topology τ on Y such that (Y, τ) is a TA (resp. TA with continuous multiplication).

Proof. (Sheet 2)
$$\Box$$

Using the latter result one can show that the quotient of a TA over an ideal endowed with the quotient topology is a TA (Sheet 2). However, in the following we are going to give a direct proof of this fact without making use of bases. Before doing that, let us briefly recall the notion of quotient topology.

Given a topological space (X, ω) and an equivalence relation \sim on X. The *quotient set* X/\sim is defined to be the set of all equivalence classes w.r.t. to \sim . The map $\phi: X \to X/\sim$ which assigns to each $x \in X$ its equivalence class $\phi(x)$ w.r.t. \sim is called the *canonical map* or *quotient map*. Note that ϕ is surjective. The *quotient topology* on X/\sim is the collection of all subsets U of X/\sim such that $\phi^{-1}(U) \in \omega$. Hence, the quotient map ϕ is continuous and actually the quotient topology on X/\sim is the finest topology on X/\sim such that ϕ is continuous.

Note that the quotient map ϕ is not necessarily open or closed.

Example 1.4.4. Consider \mathbb{R} with the standard topology given by the modulus and define the following equivalence relation on \mathbb{R} :

$$x \sim y \Leftrightarrow (x = y \lor \{x, y\} \subset \mathbb{Z}).$$

Let \mathbb{R}/\sim be the quotient set w.r.t \sim and $\phi : \mathbb{R} \to \mathbb{R}/\sim$ the correspondent quotient map. Let us consider the quotient topology on \mathbb{R}/\sim . Then ϕ is not an open map. In fact, if U is an open proper subset of \mathbb{R} containing an integer, then $\phi^{-1}(\phi(U)) = U \cup \mathbb{Z}$ which is not open in \mathbb{R} with the standard topology. Hence, $\phi(U)$ is not open in \mathbb{R}/\sim with the quotient topology.

For an example of not closed quotient map see e.g. [9, Example 2.3.3].

Let us consider now a \mathbb{K} -algebra A and an ideal I of A. We denote by A/I the quotient set A/\sim_I , where \sim_I is the equivalence relation on A defined by $x \sim_I y$ iff $x - y \in I$. The canonical (or quotient) map $\phi : A \to A/I$ which assigns to each $x \in A$ its equivalence class $\phi(x)$ w.r.t. the relation \sim_I is clearly surjective.

Using the fact that I is an ideal of the algebra A (see Definition 1.1.3-2), it is easy to check that:

- 1. if $x \sim_I y$, then $\forall \lambda \in \mathbb{K}$ we have $\lambda x \sim_I \lambda y$.
- 2. if $x \sim_I y$, then $\forall z \in A$ we have $x + z \sim_I y + z$.
- 3. if $x \sim_I y$, then $\forall z \in A$ we have $xz \sim_I yz$ and $zx \sim_I zy$.

These three properties guarantee that the following operations are well-defined on A/I:

- vector addition: $\forall \phi(x), \phi(y) \in A/I, \ \phi(x) + \phi(y) := \phi(x+y)$
- scalar multiplication: $\forall \lambda \in \mathbb{K}, \forall \phi(x) \in A/I, \lambda \phi(x) := \phi(\lambda x)$
- vector multiplication: $\forall \phi(x), \phi(y) \in A/I, \phi(x) \cdot \phi(y) := \phi(xy)$

A/I equipped with the three operations defined above is a \mathbb{K} -algebra which is often called *quotient algebra*. Then the quotient map ϕ is clearly a homomorphism.

Moreover, if A is unital and I proper then also the quotient algebra A/I is unital. Indeed, as I is a proper ideal of A, the unit 1_A does not belong to I and so we have $\phi(1_A) \neq o$ and for all $x \in A$ we get $\phi(x)\phi(1_A) = \phi(x \cdot 1_A) = \phi(x) = \phi(1_A \cdot x) = \phi(1_A)\phi(x)$.

Suppose now that (A, ω) is a TA and I an ideal of A. Since A is in particular a topological space, we can endow it with the quotient topology w.r.t. the equivalence relation \sim_I . We already know that in this setting ϕ is a continuous homomorphism but actually the structure of TA on A guarantees also that it is open. Indeed, the following holds for any TVS and so for any TA:

Proposition 1.4.5. For a linear subspace M of a t.v.s. X, the quotient mapping $\phi : X \to X/M$ is open (i.e. carries open sets in X to open sets in X/M) when X/M is endowed with the quotient topology.

Proof. Let V be open in X. Then we have

 $\phi^{-1}(\phi(V)) = V + M = \bigcup_{m \in M} (V + m).$

Since X is a t.v.s, its topology is translation invariant and so V + m is open for any $m \in M$. Hence, $\phi^{-1}(\phi(V))$ is open in X as union of open sets. By definition, this means that $\phi(V)$ is open in X/M endowed with the quotient topology.

Theorem 1.4.6. Let (A, ω) be a TA (resp. TA with continuous multiplication) and I an ideal of A. Then the quotient algebra A/I endowed with the quotient topology is a TA (resp. TA with continuous multiplication).

Proof. (in the next lecture!)

Proposition 1.4.7. Let A be a TA and I an ideal of A. Consider A/I endowed with the quotient topology. Then the two following properties are equivalent:

a) I is closed b) A/I is Hausdorff

Proof.

In view of Proposition 1.3.2, (b) is equivalent to say that the complement of the origin in A/I is open w.r.t. the quotient topology. But the complement of the origin in A/I is exactly the image under the canonical map ϕ of the complement of I in A. Since ϕ is an open continuous map, the image under ϕ of the complement of I in X is open in A/I iff the complement of I in A is open, i.e. (a) holds.

Corollary 1.4.8. If A is a TA, then $A/\overline{\{o\}}$ endowed with the quotient topology is a Hausdorff TA. $A/\overline{\{o\}}$ is said to be the Hausdorff TA associated with A. When A is a Hausdorff TA, A and $A/\overline{\{o\}}$ are topologically isomorphic.

Proof.

First of all, let us observe that $\overline{\{o\}}$ is a closed ideal of A. Indeed, since A is a TA, the multiplication is separately continuous and so for all $x, y \in A$ we have $x\overline{\{o\}} \subseteq \overline{\{x \cdot o\}} = \overline{\{o\}}$ and $\overline{\{o\}}y \subseteq \overline{\{o \cdot y\}} = \overline{\{o\}}$ is a linear subspace of X. Then, by Theorem 1.4.6 and Proposition 1.4.7, $A/\overline{\{o\}}$ is a Hausdorff TA. If in addition A is also Hausdorff, then Proposition 1.3.2 guarantees that $\overline{\{o\}} = \{o\}$ in A. Therefore, the quotient map $\phi : A \to A/\overline{\{o\}}$ is also injective because in this case $Ker(\phi) = \{o\}$. Hence, ϕ is a topological isomorphism (i.e. bijective, continuous, open, linear) between A and $A/\overline{\{o\}}$ which is indeed $A/\{o\}$. \Box

Let us finally focus on quotients of normed algebra. If $(A, \|\cdot\|)$ is a normed (resp. Banach) algebra and I an ideal of A, then Theorem 1.4.6 guarantees that A/I endowed with the quotient topology is a TA with continuous multiplication but, actually, the latter is also a normed (resp. Banach) algebra. Indeed, one can easily show that the quotient topology is generated by the so-called *quotient norm* defined by

$$q(\phi(x)) := \inf_{y \in I} \|x + y\|, \quad \forall x \in A$$

which has the nice property to be submultiplicative (Sheet 2).

Proposition 1.4.9. If $(A, \|\cdot\|)$ is a normed (resp. Banach) algebra and I a closed ideal of A, then A/I equipped with the quotient norm is a normed (resp. Banach) algebra.

Proof. (Sheet 2)

Bibliography

- [1] R. Arens, The space L^{ω} and convex topological rings, Bull. Amer. Math. Soc. 52, (1946), 931–935.
- V. K. Balachandran, Topological algebras. Reprint of the 1999 original. North-Holland Mathematics Studies, 185. North-Holland Publishing Co., Amsterdam, 2000.
- [3] E. Beckenstein, L. Narici, C. Suffel, Topological algebras. North-Holland Mathematics Studies, Vol. 24. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.
- [4] I. Gelfand, On normed rings, C. R. (Doklady) Acad. Sci. URSS (N.S.) 25, (1939), 430–432.
- [5] I. Gelfand, To the theory of normed rings. II: On absolutely convergent trigonometrical series and integrals, C. R. (Doklady) Acad. Sci. URSS (N.S.) 25, (1939). 570?572.
- [6] I. Gelfand, To the theory of normed rings. III. On the ring of almost periodic functions. C. R. (Doklady) Acad. Sci. URSS (N.S.) 25, (1939). 573?574.
- [7] I. Gelfand, Normierte Ringe, (German) Rec. Math. [Mat. Sbornik] N. S. 9 (51), (1941), 3–24.
- [8] I. Gelfand, D. Raikov and G. Silov, Commutative normed rings (Chelsea 1964), Russian edition 1960.
- M. Infusino, Lecture notes on topological vector spaces I, Universität Konstanz, Summer Semester 2017, http://www.math.uni-konstanz.de/ infusino/TVS-SS17/Note2017(July29).pdf.

- [10] M. Infusino, Lecture notes on topological vector spaces II, Universität Konstanz, Winter Semester 2017-2017, http://www.math.unikonstanz.de/ infusino/TVS-WS17-18/Note2017-TVS-II.pdf.
- [11] A. Mallios, Topological algebras. Selected topics. 109. North-Holland Publishing Co.1986.
- [12] E. Michael, Locally multiplicatively-convex topological algebras, Mem. Amer. Math. Soc., No. 11 (1952), 79 pp.
- [13] M. Reed, B, Simon, Methods of modern mathematical physics. I. Functional analysis. Second edition. Academic Press, Inc., New York, 1980.
- [14] W. Zelazko, Selected topics in topological algebras. Lecture Notes Series, No. 31. Matematisk Institut, Aarhus Universitet, Aarhus, 1971.