
1. General Concepts

A/I equipped with the three operations defined above is a K�algebra which
is often called quotient algebra. Then the quotient map � is clearly a ho-
momorphism. Moreover, if A is unital and I proper then also the quotient
algebra A/I is unital. Indeed, as I is a proper ideal of A, the unit 1A
does not belong to I and so we have �(1A) 6= o and for all x 2 A we get
�(x)�(1A) = �(x · 1A) = �(x) = �(1A · x) = �(1A)�(x).

Suppose now that (A,!) is a TA and I an ideal of A. Since A is in
particular a topological space, we can endow it with the quotient topology
w.r.t. the equivalence relation ⇠I . We already know that in this setting � is a
continuous homomorphism but actually the structure of TA on A guarantees
also that it is open. Indeed, the following holds for any TVS and so for any TA:

Proposition 1.4.5. For a linear subspace M of a t.v.s.X, the quotient map-
ping � : X ! X/M is open (i.e. carries open sets in X to open sets in X/M)
when X/M is endowed with the quotient topology.

Proof.
Let V be open in X. Then we have

��1(�(V )) = V +M =
[

m2M
(V +m).

Since X is a t.v.s, its topology is translation invariant and so V +m is open
for any m 2 M . Hence, ��1(�(V )) is open in X as union of open sets. By
definition, this means that �(V ) is open in X/M endowed with the quotient
topology.

Theorem 1.4.6. Let (A,!) be a TA (resp. TA with continuous multiplica-
tion) and I an ideal of A. Then the quotient algebra A/I endowed with the
quotient topology is a TA (resp. TA with continuous multiplication).

Proof.
For convenience, in this proof we denote by (resp. ) the vector addition
(resp. vector multiplication) in A/I and just by + (resp. ·) the vector addition
(resp. vector multiplication) in A. Let W be a neighbourhood of the origin
o in A/I endowed with the quotient topology ⌧Q. We first aim to prove that
�1(W ) is a neighbourhood of (o, o) in A/I ⇥A/I.
By definition of ⌧Q, ��1(W ) is a neighbourhood of the origin in (A,!)

and so, by Theorem 1.2.6-2 (we can apply the theorem because (A,!) is a
TA and so a TVS), there exists V neighbourhood of the origin in (A,!) s.t.
V + V ✓ ��1(W ). Hence, by the linearity of �, we get

(�(V )⇥�(V )) = �(V +V ) ✓ �(��1(W )) ✓ W, i.e. �(V )⇥�(V ) ✓ �1(W ).
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1.4. Subalgebras and quotients of a TA

Since � is also an open map, �(V ) is a neighbourhood of the origin o in
(A/I, ⌧Q) and so �1(W ) is a neighbourhood of (o, o) in A/I ⇥A/I endowed
with the product topology given by ⌧Q. A similar argument gives the con-
tinuity of the scalar multiplication. Hence, A/I endowed with the quotient
topology is a TVS.

Furthermore, for any x̃ 2 A/I and any W neighbourhood of the origin in
(A/I, ⌧Q), we know that x̃ = �(x) for some x 2 A and ��1(W ) is a neigh-
bourhood of the origin in (A,!). Since (A,!) is a TA, the multiplication
· in A is separately continuous so there exist V1, V2 neighbourhoods of the
origin in (A,!) such that x · V1 ✓ ��1(W ) and V2 · x ✓ ��1(W ). Setting
N1 := �(V1) and N2 := �(V2), we get (x̃ ⇥ N1) = (�(x) ⇥ �(V1)) =
�(x · V1) ✓ �(��1(W )) ✓ W and similarly (N2 ⇥ x̃) ✓ �(��1(W )) ✓ W .
This yields that is separately continuous as the quotient map is open and
so N1, N2 are both neighbourhoods of the origin in (A/I, ⌧Q).

Proposition 1.4.7. Let A be a TA and I an ideal of A. Consider A/I
endowed with the quotient topology. Then the two following properties are
equivalent:

a) I is closed

b) A/I is Hausdor↵

Proof.
In view of Proposition 1.3.2, (b) is equivalent to say that the complement of
the origin in A/I is open w.r.t. the quotient topology. But the complement
of the origin in A/I is exactly the image under the canonical map � of the
complement of I in A. Since � is an open continuous map, the image under
� of the complement of I in X is open in A/I i↵ the complement of I in A is
open, i.e. (a) holds.

Corollary 1.4.8. If A is a TA, then A/{o} endowed with the quotient topology
is a Hausdor↵ TA. A/{o} is said to be the Hausdor↵ TA associated with A.
When A is a Hausdor↵ TA, A and A/{o} are topologically isomorphic.

Proof.
First of all, let us observe that {o} is a closed ideal of A. Indeed, since A is a
TA, the multiplication is separately continuous and so for all x, y 2 A we have
x{o} ✓ {x · o} = {o} and {o}y ✓ {o · y} = {o}. Then, by Theorem 1.4.6 and
Proposition 1.4.7, A/{o} is a Hausdor↵ TA. If in addition A is also Hausdor↵,
then Proposition 1.3.2 guarantees that {o} = {o} in A. Therefore, the quotient
map � : A ! A/{o} is also injective because in this case Ker(�) = {o}.
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1. General Concepts

Hence, � is a topological isomorphism (i.e. bijective, continuous, open, linear)
between A and A/{o} which is indeed A/{o}.

Let us finally focus on quotients of normed algebra. If (A, k ·k) is a normed
(resp. Banach) algebra and I a closed ideal of A, then Theorem 1.4.6 guar-
antees that A/I endowed with the quotient topology is a TA with continuous
multiplication but, actually, the latter is also a normed (resp. Banach) alge-
bra. Indeed, one can easily show that the quotient topology is generated by
the so-called quotient norm defined by

q(�(x)) := inf
y2I

kx+ yk, 8x 2 A

which has the nice property to be submultiplicative and so the following holds.

Proposition 1.4.9. If (A, k · k) is a normed (resp. Banach) algebra and I
a closed ideal of A, then A/I equipped with the quotient norm is a normed
(resp. Banach) algebra.

Proof. (Sheet 2)
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Chapter 2

Locally multiplicative convex algebras

2.1 Neighbourhood definition of lmc algebras

In the study of locally multiplicative convex algebras a particular role will be
played by multiplicative sets. Therefore, before starting the study of this class
of topological algebras we are going to have a closer look to this concept.

Definition 2.1.1. A subset U of a K�algebra A is said to be a multiplica-
tive set or m-set if U · U ✓ U . We call m-convex (resp. m-balanced) a
multiplicative convex (resp. balanced) subset of A and absolutely m-convex a
multiplicative subset of A which is both balanced and convex.

The notions defined above are totally algebraic and so independent from
the topological structure with which the algebra is endowed.

Example 2.1.2.

• Any ideal of an algebra is an m-set.

• Fixed an element a 6= o of an algebra, the set {an : n 2 N} is an m-set.

• Given a normed algebra (A, k · k) and an integer n 2 N, the open and
the closed ball centered at origin with radius 1

n are both examples of
absolutely m-convex sets in A.

The following proposition illustrates some operations under which the mul-
tiplicativity of a subset of an algebra is preserved.

Proposition 2.1.3. Let A be a K�algebra and U ⇢ A multiplicative, then

a) The convex hull of U is an m-convex set in A.

b) The balanced hull of U is an m-balanced set in A.

c) The convex balanced hull of U is an absolutely m-convex set in A.
d) Any direct or inverse image via a homomorphism is a m-set.

Proof. (Sheet 2)
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2. Locally multiplicative convex algebras

Recall that

Definition 2.1.4. Let S be any subset of a vector space X over K. The convex
(resp. balanced) hull of S, denoted by conv(S) (resp. bal(S)) is the smallest
convex (resp. balanced) subset of X containing S, i.e. the intersection of all
convex (resp. balanced) subsets of X containing S. Equivalently,

conv(S) :=

(

n
X

i=1

�ixi : xi 2 S,�i 2 [0, 1],
n
X

i=1

�i = 1, n 2 N

)

and the balanced hull of S, denoted by bal(S) as

bal(S) :=
[

�2K,|�|1

�S.

The convex balanced hull of S, denoted by convb(S), is defined as the smallest
convex and balanced subset of X containing S and it can be easily proved that
convb(S) = conv(bal(S)).

Let us come back now to topological algebras.

Proposition 2.1.5. In any topological algebra, the operation of closure pre-
serves the multiplicativity of a subset as well as its m-convexity and absolute
m-convexity.

Proof.
First of all let us show that the following property holds in any TA (A, ⌧):

8V,W ✓ A, V ·W ✓ VW. (2.1)

where the closure in A is here clearly intended w.r.t. the topology ⌧ . Let
x 2 V , y 2 W and O 2 F(o) where F(o) denotes the filter of neighbourhoods
of the origin in A. As A is in particular a TVS, Theorem 1.2.6-2 ensures that
there exists N 2 F(o) s.t. N + N ✓ O. Then for each a 2 A, by Theorem
1.2.9, there exist N1, N2 2 F(o) such that N1a ✓ N and aN2 ✓ N . Moreover,
since x 2 V and y 2 W , there exist v 2 V and w 2 W s.t. v 2 x + N1 and
w 2 y +N2. Putting all together, we have that

vw 2 (x+N1)w = xw +N1w ✓ xw +N ✓ x(y +N2) +N

= xy + xN2 +N ✓ xy +N +N ✓ xy +O.

Hence, (xy + O) \ VW 6= ;, which proves that xy 2 VW . Therefore, if U is
an m-set in A then by (2.1) we get U · U ✓ U · U ✓ U, which proves that U
is an m-set.
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2.1. Neighbourhood definition of lmc algebras

Suppose now that U is m-convex. The first part of the proof guarantees
that U is an m-set. Moreover, using that A is in particular a TVS, we have
that for any � 2 [0, 1] the mapping

'� : A⇥A ! A
(x, y) 7! �x+ (1� �)y

is continuous and so '�(U ⇥ U) ✓ '�(U ⇥ U). Since U is also convex, for any
� 2 [0, 1] we have that '�(U ⇥ U) ✓ U and so '�(U ⇥ U) ✓ U . Putting all
together, we can conclude that '�(U⇥U) = '�(U ⇥ U) ✓ U , i.e. U is convex.
Hence, U is an m-convex set.

Finally, assume that U is absolutely m-convex. As U is in particular m-
convex, by the previous part of the proof, we can conclude immediately that
U is an m-convex set. Furthermore, since U is balanced and A has the TVS
structure, we can conclude that U is also balanced. Indeed, in any TVS the
closure of a balanced set is still balanced because the multiplication by scalar
is continuous and so for all � 2 K with |�|  1 we have �U ✓ �U ✓ U .

Definition 2.1.6. A closed absorbing absolutely convex multiplicative subset
of a TA is called a m-barrel.

Proposition 2.1.7. Every multiplicative neighbourhood of the origin in a TA
is contained in a neighbourhood of the origin which is an m-barrel.

Proof.
Let U be a multiplicative neighbourhood of the origin and define T (U) :=
convb(U). Clearly, U ✓ T (U). Therefore, T (U) is a neighbourhood of the
origin and so it is absorbing by Theorem 1.2.6-4). By Proposition 2.1.3-c),
convb(U) is an absolutely m-convex set as U is an m-set. Hence, Proposition
2.1.5 ensures that T (U) is closed and absolutely m-convex, i.e. an m-barrel.

Note that the converse inclusion in Proposition 2.1.7 does not hold in
general. Indeed, in any TA not every neighbourhood of the origin (not even
every multiplicative one) contains another one which is a m-barrel. This means
that not every TA has a basis of neighbourhoods consisting of m-barrels.
However, this is true for any lmc TA.

Definition 2.1.8. A TA is said to be locally multiplicative convex (lmc) if it
has a basis of neighbourhoods of the origin consisting of m-convex sets.

It is then easy to show that

23



2. Locally multiplicative convex algebras

Proposition 2.1.9. A locally multiplicative convex algebra is a TA with con-
tinuous multiplication.

Proof.
Let (A, ⌧) be an lmc algebra and let B denote a basis of neighbourhoods of the
origin in (A, ⌧) consisting of m-convex sets. Then (A, ⌧) is in particular a TVS
and for any U 2 B we have U · U ⇢ U . Hence, both conditions of Theorem
1.2.10 are fulfilled by B, which proves that (A, ⌧) is a TA with continuous
multiplication.

Note that any lmc algebra is in particular a locally convex TVS, i.e. a
TVS having a basis of neighbourhoods of the origin consisting of convex sets.
Hence, in the study of this class of TAs we can make use of all the powerful
results about locally convex TVS. To this aim let us recall that the class
of locally convex TVS can be characterized in terms of absorbing absolutely
convex neighbourhoods of the origin.

Theorem 2.1.10. If X is a lc TVS then there exists a basis B of neighbour-
hoods of the origin consisting of absorbing absolutely convex subsets s.t.
a) 8U, V 2 B, 9W 2 B s.t. W ✓ U \ V
b) 8U 2 B, 8 ⇢ > 0, 9W 2 B s.t. W ✓ ⇢U
Conversely, if B is a collection of absorbing absolutely convex subsets of a vec-
tor space X s.t. a) and b) hold, then there exists a unique topology compatible
with the linear structure of X s.t. B is a basis of neighbourhoods of the origin
in X for this topology (which is necessarily locally convex).

Proof.
Let N be a neighbourhood of the origin in the lc TVS (X, ⌧). The local
convexity ensures that there exists W convex neighbourhood of the origin in
(X, ⌧) s.t. W ✓ N . Moreover, by Theorem 1.2.6-5), there exists U balanced
neighbourhood of the origin in X s.t. U ✓ W . Then, using that W is a
convex set containing U , we get conv(U) ✓ W ✓ N . Now conv(U) is convex by
definition, balanced because U is balanced and it is also a neighbourhood of the
origin (and so an absorbing set) since U ✓ conv(U). Hence, the collection B :=
{conv(U) : U 2 Bb} is a basis of absorbing absolutely convex neighbourhoods
of the origin in (X, ⌧); here Bb denotes a basis of balanced neighbourhoods of
the origin in (X, ⌧). Observing that for any U,W 2 Bb and any ⇢ > 0 we have
conv(U \W ) ✓ conv(U)\ conv(W ) and conv(⇢U) ✓ ⇢conv(U), we see that B
fulfills both a) and b).

The converse direction is left as an exercise for the reader.

This theorem will be a handful tool in the proof of the following charac-
terization of lmc algebras in terms of neighbourhood basis.
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2.1. Neighbourhood definition of lmc algebras

Theorem 2.1.11. Let A be a K�algebra. Then the following are equivalent:
a) A is an lmc algebra
b) A is a TVS having a basis of neighbourhoods consisting of m-barrels.
c) There exists a basis for a filter on A consisting of absorbing absolutely

m-convex subsets.

Proof.
a) ) b) If A is an lmc algebra, then we have already observed that it is a
lc TVS. Let F(o) be the filter of neighbourhoods of the origin in A and let
N 2 F(o). The TVS structure ensures that there exists V 2 F(o) closed
s.t. V ✓ N1 and the local convexity allows to apply Theorem 2.1.10 which
guarantees that we can always find M 2 F(o) absolutely convex s.t. M ✓ V .
Finally, since A is an lmc algebra, we know that there exists C 2 F(o) m-
convex s.t. C ✓ M . Using the previous inclusions we have that

T (C) := convb(C) ✓ M ✓ V = V ✓ N.

(Note that the first inclusion follows from the fact that M is a convex and
balanced subset containing C.) Hence, the conclusion holds because T (C) is
an m-barrel set as C is a multiplicative neighbourhood of the origin (see last
part of proof of Proposition 2.1.7).

b) ) c) This is clear because every m-barrelled neighbourhood of the origin
is an absorbing absolutely m-convex subsets of A.

c) ) a) Suppose that M is a basis for a filter on A consisting of absorbing
absolutely convex m-subsets. Then it is easy to verify that the collection
fM := {�U : U 2 M, 0 < �  1} also consists of absorbing absolutely
m-convex subsets of A. Moreover, for any U, V 2 M we know that there
exists W 2 M s.t. W ✓ U \ W and so for any 0 < �, µ  1 we have that
�W ✓ �(U \ V ) = �U \ �V ✓ �U \ µV where � := min{�, µ}. As �W 2 fM
we have that a) of Theorem 2.1.10. Also b) of this same theorem is satisfied
because for any ⇢ > 0, 0 < �  1 and U 2 M we easily get that there exists
M 2 fM s.t. M ✓ ⇢(�U) by choosing M = ⇢(�U) when 0 < ⇢  1 and

M = �U when ⇢ > 1. Hence, fM fulfills all the assumptions of the second part
of Theorem 2.1.10 and so it is a basis of neighbourhoods of the origin for a
uniquely defined topology ⌧ on A making (A, ⌧) a lc TVS. As every set in fM
is m-convex, (A, ⌧) is in fact a lmc algebra.

1Every TVS has basis of closed neighbourhoods of the origin.

Proof.

Let F(o) be the filter of neighbourhoods of the origin in a TVS X and N 2 F(o). Then
Theorem 1.2.6 guarantees that there exists V 2 F(o) balanced such that V � V ✓ N . If
x 2 V then (V + x) \ V 6= ; and so there exist u, v 2 V s.t. u + x = v, which gives
x = v � u 2 V � V ✓ N . Hence, V ✓ N .
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