
2. Locally multiplicative convex algebras

From the last part of the proof we can immediately see that

Corollary 2.1.12. If M is a basis for a filter on a K�algebra A consisting of
absorbing absolutely convex m-subsets, then there exists a unique topology ⌧ on
A both having fM := {�U : U 2 M, 0 < �  1} as a basis of neighbourhoods
of the origin and making (A, ⌧) an lmc algebra.

Theorem 2.1.11 shows that in an lmc algebra every neighbourhood of the
origin contains an m-barrel set. However, it is important to remark that not
every m-barrel subset of a topological algebra, not even of an lmc algebra,
is a neighbourhood of the origin (see Examples 2.2.19)! Topological algebras
having this property are called m-barrelled algebras.

2.2 Seminorm characterization of lmc algebras

In this section we will investigate the intrinsic and very useful connection
between lmc algebras and seminorms. Therefore, let us briefly recall this
concept and focus in particular on submultiplicative seminorms.

Definition 2.2.1. Let X be a K�vector space. A function p : X ! R is
called a seminorm if it satisfies the following conditions:

1. p is subadditive: 8x, y 2 X, p(x+ y)  p(x) + p(y).
2. p is positively homogeneous: 8x 2 X, 8� 2 K, p(�x) = |�|p(x).

A seminorm on a K�algebra X is called submultiplicative if

8x, y 2 X, p(xy)  p(x)p(y).

Definition 2.2.2. A seminorm p on a vector space X is a norm if p(x) = 0
implies x = o (i.e. if p�1({0}) = {o}).

The following properties are an easy consequence of Definition 2.2.1.

Proposition 2.2.3. Let p be a seminorm on a vector space X. Then:

• p is symmetric, i.e. p(x) = p(�x), 8x 2 X.

• p(o) = 0.
• |p(x)� p(y)|  p(x� y), 8x, y 2 X.

• p(x) � 0, 8x 2 X.

• ker(p) is a linear subspace of X.

Examples 2.2.4.

a) Suppose X = Rn is equipped with the componentwise operations of addition,
scalar and vector multiplication. Let M be a linear subspace of X. For any
x 2 X, set

qM (x) := inf
m2M

kx�mk,
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2.2. Seminorm characterization of lmc algebras

where k · k is the Euclidean norm on Rn, i.e. qM (x) is the distance from
the point x to M in the usual sense. If dim(M) � 1 then qM is a submulti-
plicative seminorm but not a norm (M is exactly the kernel of qM ). When
M = {o}, pM (·) and k · k coincide.

b) Let C(R) be the vector space of all real valued continuous functions on the
real line equipped with the pointwise operations of addition, multiplication
and scalar multiplication. For any a 2 R+, we define

pa(f) := sup
�ata

|f(t)|, 8f 2 C(R).

Then pa is a submultiplicative seminorm but is never a norm because it
might be that f(t) = 0 for all t 2 [�a, a] (and so that pa(f) = 0) but f 6⌘ 0.

c) Let n � 2 be an integer and consider the algebra Rn⇥n of real square ma-
trices of order n. Then

q(A) := max
i,j=1,...,n

|Aij |, 8A = (Aij)
n
i,j=1 2 Rn⇥n

is a norm (so in particular a seminorm) but it is not submultiplicative
because for example if A is the matrix with all entries equal to 1 then it is
easy to check that kA2k > kAk.

Seminorms on vector spaces are strongly related to a special kind of func-
tionals, i.e. Minkowski functionals. Let us investigate more in details such a
relation. Note that we are still in the realm of vector spaces with no topology!

Definition 2.2.5. Let X be a vector space and V a non-empty subset of X.
We define the Minkowski functional (or gauge) of V to be the mapping:

pV : X ! R
x 7! pV (x) := inf{� > 0 : x 2 �V }

(where pV (x) = 1 if the set {� > 0 : x 2 �V } is empty).

It is then natural to ask whether there exists a class of subsets for which
the associated Minkowski functionals are actually seminorms, and in particular
submultiplicative seminorms in the context of algebras. The answer is positive
in both cases as established in the following lemma.

Notation 2.2.6. Let X be a vector space and p a seminorm on X. The sets

Ůp = {x 2 X : p(x) < 1} and Up = {x 2 X : p(x)  1}.

are said to be, respectively, the open and the closed unit semiball of p.
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2. Locally multiplicative convex algebras

Lemma 2.2.7. Let X be a K�vector space (resp. K�algebra).
a) If V is a non-empty subset of X which is absorbing and absolutely convex

(resp. absolutely m-convex), then the associated Minkowski functional pV
is a seminorm (resp. submultiplicative seminorm) and ŮpV ✓ V ✓ UpV .

b) If q is a seminorm (resp. submultiplicative seminorm) on X then both
Ůq and Uq are absorbing absolutely convex sets [resp. absolutely m-convex]
and for any absorbing absolutely convex (resp. absolutely m-convex) V such
that Ůq ✓ V ✓ Uq we have q = pV .

Proof.
a) Let V be a non-empty subset of X which is absorbing and absolutely convex
and denote by pV the associated Minkowski functional. We want to show that
pV is a seminorm.

• First of all, note that pV (x) < 1 for all x 2 X because V is absorbing.
Indeed, for any x 2 X there exists ⇢x > 0 s.t. for all � 2 K with |�|  ⇢x
we have �x 2 V and so the set {� > 0 : x 2 �V } is never empty, i.e. pV
has only finite nonnegative values. Moreover, since o 2 V , we also have
that o 2 �V for any � 2 K and so pV (o) = inf{� > 0 : o 2 �V } = 0.

• The balancedness of V implies that pV is positively homogeneous. Since
we have already showed that pV (o) = 0 it remains to prove the positive
homogeneity of pV for non-zero scalars. Since V is balanced we have
that for any x 2 X and for any ⇠,� 2 K with ⇠ 6= 0 the following holds:

⇠x 2 �V if and only if x 2 �

|⇠|V. (2.2)

Indeed, V balanced guarantees that ⇠V = |⇠|V and so x 2 �
|⇠|V is

equivalent to ⇠x 2 � ⇠
|⇠|V = �V . Using (2.2), we get that for any x 2 X

and for any ⇠ 2 K with ⇠ 6= 0:

pV (⇠x) = inf{� > 0 : ⇠x 2 �V }

= inf

⇢

� > 0 : x 2 �

|⇠|V
�

= inf

⇢

|⇠| �|⇠| > 0 : x 2 �

|⇠|V
�

= |⇠| inf{µ > 0 : x 2 µV } = |⇠|pV (x).

• The convexity of V ensures the subadditivity of pV . Take x, y 2 X.
By the definition of Minkowski functional, for every " > 0 there exist
�, µ > 0 s.t.

� < pV (x) +
"

2
and x 2 �V
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2.2. Seminorm characterization of lmc algebras

and

µ < pV (y) +
"

2
and y 2 µV.

Then, by the convexity of V , we obtain that �
�+µV + µ

�+µV ✓ V , i.e.
�V + µV ✓ (�+ µ)V , and therefore x+ y 2 (�+ µ)V . Hence:

pV (x+ y) = inf{� > 0 : x+ y 2 �V }  �+ µ < pV (x) + pV (y) + "

which proves the subadditivity of pV since " is arbitrary.
We can then conclude that pV is a seminorm. Furthermore, we have the
following inclusions:

ŮpV ✓ V ✓ UpV .

In fact, if x 2 ŮpV then pV (x) < 1 and so there exists 0 < � < 1 s.t. x 2 �V .
Since V is balanced, for such � we have �V ✓ V and therefore x 2 V . On the
other hand, if x 2 V then clearly 1 2 {� > 0 : x 2 �V } which gives pV (x)  1
and so x 2 UpV .

If X is a K�algebra and V an absorbing absolutely m-convex subset of
X, then the previous part of the proof guarantees that pV is a seminorm and
ŮpV ✓ V ✓ UpV . Moreover, for any a, b 2 X, the multiplicativity of V implies
that {� > 0 : a 2 �V }{µ > 0 : b 2 µV } ✓ {� > 0 : ab 2 �V } and so

pV (a)pV (b) = inf ({� > 0 : a 2 �V }{µ > 0 : b 2 µV })
� inf{� > 0 : ab 2 �V } = pV (ab).

Hence, pV is a submultiplicative seminorm.
b) Let us take any seminorm q on X. Let us first show that Ůq is absorbing

and absolutely convex.
• Ůq is absorbing.

Let x be any point in X. If q(x) = 0 then clearly x 2 Ůq. If q(x) > 0,
we can take 0 < ⇢ < 1

q(x) and then for any � 2 K s.t. |�|  ⇢ the

positive homogeneity of q implies that q(�x) = |�|q(x)  ⇢q(x) < 1, i.e.
�x 2 Ůq.

• Ůq is balanced.
For any x 2 Ůq and for any � 2 K with |�|  1, again by the positive
homogeneity of q, we get: q(�x) = |�|q(x)  q(x) < 1 i.e. �x 2 Ůq.

• Ůq is convex.
For any x, y 2 Ůq and any t 2 [0, 1], by both the properties of seminorm,
we have that q(tx + (1 � t)y)  tq(x) + (1 � t)q(y) < t + 1 � t = 1 i.e.
tx+ (1� t)y 2 Ůq.
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2. Locally multiplicative convex algebras

The proof above easily adapts to show that Uq is absorbing and absolutely
convex. Also, it is easy to check that

pŮq
(x) = q(x) = pUq(x), 8x 2 X. (2.3)

Since for any absorbing absolutely convex subset V of X s.t. Ůq ✓ V ✓ Uq

and for any x 2 X we have that

pUq(x)  pV (x)  pŮq
(x),

by (2.3) we can conclude that pV (x) = q(x).
If X is a K�algebra and q is submultiplicative, then the previous part

of the proof of b) applies but in addition we get that both Ůq and Uq are
multiplicative sets. Indeed, for any a, b 2 Ůq we have q(ab)  q(a)q(b) < 1,
i.e. ab 2 Ůq and similarly for Uq.

In a nutshell this lemma says that: a real-valued functional on a K�vector
space X (resp. a K�algebra) is a seminorm (resp-submultiplicative seminorm)
if and only if it is the Minkowski functional of an absorbing absolutely convex
(resp. absolutely m-convex) non-empty subset of X.

Let us collect some interesting properties of semiballs in a vector space,
which we will repeatedly use in the following.

Proposition 2.2.8. Let X be a K�vector space and p a seminorm on X.
Then:

a) 8 r > 0, rŮp = {x 2 X : p(x) < r} = Ů 1

r
p.

b) 8x 2 X, x+ Ůp = {y 2 X : p(y � x) < 1}.
c) If q is also a seminorm on X, then p  q if and only if Ůq ✓ Ůp.
d) If n 2 N and s1, . . . , sn are seminorms on X, then their maximum s defined

as s(x) := max
i=1,...,n

si(x), 8x 2 X is also seminorm on X and Ůs =
Tn

i=1 Ůsi.

In particular, if X is a K�algebra and all si’s are submultiplicative semi-
norms, then s(x) is also submultiplicative.

All the previous properties also hold for closed semballs.

Proof. (Sheet 3)

Let us start to put some topological structure on our space and so to
consider continuous seminorms on it. The following result holds in any TVS
and so in particular in any TA.
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2.2. Seminorm characterization of lmc algebras

Proposition 2.2.9. Let X be a TVS and p a seminorm on X. Then the
following conditions are equivalent:

a) The open unit semiball Ůp of p is an open neighbourhood of the origin and
coincides with the interior of Up.

b) p is continuous at the origin.

c) The closed unit semiball Up of p is a closed neighbourhood of the origin and
coincides with the closure of Ůp.

d) p is continuous at every point.

Proof.
a) ) b) Suppose that Ůp is open in the topology on X. Then for any

" > 0 we have that p�1(] � ", "[) = {x 2 X : p(x) < "} = "Ůp is an open
neighbourhood of the origin inX. This is enough to conclude that p : X ! R+

is continuous at the origin.
b) ) c) Suppose that p is continuous at the origin, then Up = p�1([0, 1])

is a closed neighbourhood of the origin. Also, by definition Ůp ✓ Up and

so Ůp ✓ Up = Up. To show the converse inclusion, we consider x 2 X s.t.
p(x) = 1 and take (�n)n2N ⇢ (0, 1) s.t. limn!1 �n = 1. Then �nx 2 Ůp and

limn!1 �nx = x since the scalar multiplication is continuous. Hence, x 2 Ůp

which completes the proof of c).
c) ) d) Assume that c) holds and fix x 2 X. Using Proposition 2.2.8 and

Proposition 2.2.3, we get that for any " > 0: p�1([�"+p(x), p(x)+ "]) = {y 2
X : |p(y)� p(x)|  "} ◆ {y 2 X : p(y � x)  "} = x+ "Up, which is a closed
neighbourhood of x since X is a TVS and by the assumption c). Hence, p is
continuous at x.

d) ) a) If p is continuous on X then a) holds because Ůp = p�1(]� 1, 1[)
and the preimage of an open set under a continuous function is open. Also,

by definition Ůp ✓ Up and so Ůp = int
⇣

Ůp

⌘

✓ int (Up). To show the converse

inclusion, we consider x 2 int (Up). Then p(x)  1 but, since p(x) = pŮp
(x),

we also have that for any " > 0 there exists � > 0 s.t. x 2 �Ůp and � < p(x)+".
This gives that p(x) < � < 1+ " and so p(x) < 1, i.e. x 2 Ůp which completes
the proof of a).

Definition 2.2.10. Let X be a vector space and P := {pi}i2I a family of
seminorms on X. The coarsest topology ⌧P on X s.t. each pi is continuous is
said to be the topology induced or generated by the family of seminorms P.

We are now ready to see the connection between submultiplicative semi-
norms and locally convex multiplicative algebras.
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2. Locally multiplicative convex algebras

Theorem 2.2.11. Let X be a K�algebra and P := {pi}i2I a family of sub-
multiplicative seminorms. Then the topology induced by the family P is the
unique topology both making X into an lmc algebra and having as a basis of
neighbourhoods of the origin the following collection:

B :=
n

{x 2 X : pi
1

(x)  ", . . . , pin(x)  "} : i1, . . . , in 2 I, n 2 N, 0 < "  1
o

.

Viceversa, the topology of an arbitrary lmc algebra is always induced by a
family of submultiplicative seminorms (often called generating).

Proof.
Let us first observe that

B =
n

n
\

j=1

"Upij
: n 2 N, i1, . . . , in 2 I, 0 < "  1

o

and is a basis for a filter on X as it is closed under finite intersections. More-
over, by Proposition 2.2.8-a) and Lemma 2.2.7-b), we have that for any i 2 I
the semiball "Upi is absorbing and absolutely m-convex. Therefore, any ele-
ment in B is an absorbing absolutely m-convex subset ofX as finite intersection
of sets having such properties. Hence, Corollary 2.1.12 guarantees that there
exists a unique topology ⌧ having B as a basis of neighbourhoods of the origin
and s.t. (X, ⌧) is an lmc algebra.

Since for any i 2 I we have Upi 2 B, Upi is a neighbourhood of the
origin in (X, ⌧), then by Proposition 2.2.9, the seminorm pi is ⌧�continuous.
Therefore, the topology ⌧P induced by the family P is by definition coarser
than ⌧ . On the other hand, each pi is also ⌧P�continuous and so Upi is a closed
neighbourhood of the origin in (X, ⌧P). Then B consists of neighbourhoods of
the origin in (X, ⌧P) which implies that ⌧ is coarser than ⌧P . Hence, ⌧ ⌘ ⌧P .

Viceversa, let us assume that (X, ⌧) is an lmc algebra. Then by Theo-
rem 2.1.11 there exists a basis N of neighbourhoods of the origin in (X, ⌧)
consisting of m-barrels. Consider now the family S := {pN : N 2 N}. By
Lemma 2.2.7-a), we know that each pN is a submultiplicative seminorm and
that ŮpN ✓ N ✓ UpN . Now each pN is ⌧�continuous because UpN ◆ N 2 N
and hence, ⌧S ✓ ⌧ . Moreover, each pN is clearly ⌧S�continuous and so, by
Proposition 2.2.9, ŮpN is open in (X, ⌧S). Since ŮpN ✓ N , we have that N
consists of neighbourhoods of the origin in (X, ⌧S), which implies ⌧ ✓ ⌧S .

Historically the following more general result holds for locally convex tvs
and the previous theorem could be also derived as a corollary of:
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2.2. Seminorm characterization of lmc algebras

Theorem 2.2.12. Let X be a vector space and P := {pi}i2I a family of semi-
norms. Then the topology induced by the family P is the unique topology both
making X into a locally convex TVS and having as a basis of neighbourhoods
of the origin the following collection:

B :=
n

{x 2 X : pi
1

(x)  ", . . . , pin(x)  "} : i1, . . . , in 2 I, n 2 N, 0 < "  1
o

.

Viceversa, the topology of an arbitrary locally convex TVS is always induced
by a family of seminorms (often called generating).

Coming back to lmc algebras, Theorem 2.2.11 allows us to give another
characterization of such a class, namely: A TA is lmc if and only if its
topology is induced by a family of submultiplicative seminorms. This is very
helpful in establishing whether a given topological algebras is lmc or not as
we will see from the following examples.

Examples 2.2.13.

1. Normed algebras are clearly lmc algebras.
2. A seminormed algebra, i.e. a K�algebra endowed with the topology gen-

erated by a submultiplicative seminorm, is lmc.
3. The weak and the strong operator topologies on the space L(H) intro-

duced in Example 1.2.17 both make L(H) into a locally convex algebra
which is not lmc. Indeed, the weak operator topology ⌧w is generated by
the family of seminorms {px,y : x, y 2 H} where px,y(T ) := |hTx, yi|,
while the strong operator topology ⌧s is generated by the family of semi-
norms {px : x 2 H} where px(T ) := kTxk. If (L(H), ⌧w) and (L(H), ⌧s)
were lmc algebras, then by Proposition 2.1.9 the multiplication should
have been jointly continuous in both of them but this is not the case as
we have already showed in Example 1.2.17.

4. Consider L!([0, 1]) :=
T

p�1 L
p([0, 1]), where for each p � 1 we de-

fine Lp([0, 1]) to be the space of all equivalence classes of functions

f : [0, 1] ! R such that kfkp :=
⇣

R 1
0 |f(t)|pdt

⌘

1

p
< 1 which agree

almost everywhere. The set L!([0, 1]) endowed with the pointwise oper-
ations is a real algebra since for any q, r � 1 such that 1

p = 1
q + 1

r we
have

kfgkp  kfkqkgkr, 8f, g 2 L!([0, 1]).

The algebra L!([0, 1]) endowed with the topology induced by the family
P := {k · kp : p � 1} of seminorms is a locally convex algebra. However,
(L!([0, 1]), ⌧P) is not an lmc algebra because any m-convex subset U is
open in (L!([0, 1]), ⌧P) if and only if U = L!([0, 1]) (Sheet 3).
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