
2. Locally multiplicative convex algebras

Let us conclude this section with a further very useful property of lmc
algebras.

Proposition 2.2.14. The topology of an lmc algebra can be always induced
by a directed family of submultiplicative seminorms.

Definition 2.2.15. A family Q := {qj}j2J of seminorms on a vector space
X is said to be directed (or fundamental or saturated) if

8 n 2 N, j1, . . . , jn 2 J, 9 j 2 J,C > 0 s.t. Cqj(x) � max
k=1,...,n

qjk(x), 8x 2 X.

(2.4)

To prove Proposition 2.2.14 we need to recall an important criterion to
compare topologies induced by families of seminorms.

Theorem 2.2.16.

Let P = {pi}i2I and Q = {qj}j2J be two families of seminorms on a K�vector
space X inducing respectively the topologies ⌧P and ⌧Q. Then ⌧P is finer than
⌧Q (i.e. ⌧Q ✓ ⌧P) i↵

8q 2 Q 9n 2 N, i1, . . . , in 2 I, C > 0 s.t. Cq(x)  max
k=1,...,n

pik(x), 8x 2 X.

(2.5)
Proof.
Let us first recall that, by Theorem 2.2.12, we have that

BP :=
n

n
\

k=1

"Ůpik
: i1, . . . , in 2 I, n 2 N, 0 < "  1

o

and

BQ :=
n

n
\

k=1

"Ůqjk
: j1, . . . , jn 2 J, n 2 N, 0 < "  1

o

.

are respectively bases of neighbourhoods of the origin for ⌧P and ⌧Q.
By using Proposition 2.2.8, the condition (2.5) can be rewritten as

8q 2 Q, 9n 2 N, i1, . . . , in 2 I, C > 0 s.t. C
n
\

k=1

Ůpik
✓ Ůq.

which means that

8q 2 Q, 9 Bq 2 BP s.t. Bq ✓ Ůq. (2.6)

since C
Tn

k=1 Ůpik
2 BP .

Condition (2.6) means that for any q 2 Q the set Ůq is a neighbourhood
of the origin in (X, ⌧P), which by Proposition 2.2.9 is equivalent to say that q
is continuous w.r.t. ⌧P . By definition of ⌧Q, this gives that ⌧Q ✓ ⌧P .
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2.2. Seminorm characterization of lmc algebras

This theorem allows us to easily see that the topology induced by a family
of seminorms on a vector space does not change if we close the family under
taking the maximum of finitely many of its elements. Indeed, the following
result holds.

Proposition 2.2.17. Let P := {pi}i2I be a family of seminorms on a K�vector
space (resp. submultiplicative seminorms on a K�algebra) X. Then we have
that Q :=

�

maxi2B pi : ; 6= B ✓ I with B finite
 

is a directed family of
seminorms (resp. submultiplicative seminorms) and ⌧P = ⌧Q, where ⌧P and
⌧Q denote the topology induced on X by P and Q, respectively.

Proof.
First of all let us note that, by Proposition 2.2.8-d), Q is a family of seminorms.
On the one hand, since P ✓ Q, by definition of induced topology we have
⌧P ✓ ⌧Q. On the other hand, for any q 2 Q we have q = max

i2B
pi for some

; 6= B ✓ I finite. Then (2.5) is fulfilled for n = |B| (where |B| denotes the
cardinality of the finite set B), i1, . . . , in being the n elements of B and for any
0 < C  1. Hence, by Theorem 2.2.16, ⌧Q ✓ ⌧P . If X is a K�algebra and P
consists of submultiplicative seminorms, then Q consists of submultiplicative
seminorms by the second part of Proposition 2.2.8-d).

We claim that Q is directed.
Let n 2 N and q1, . . . , qn 2 Q. Then for each j 2 {1, . . . , n} we have qj =

max
i2Bj

pi for some non-empty finite subset Bj of I. Let us define B :=
Sn

j=1Bj

and q := max
i2B

pi. Then q 2 Q and for any C � 1 we have that (2.4) is satisfied,

because we get that for any x 2 X

Cq(x) � max
i2B

pi(x) = max
j=1,...,n

✓

max
i2Bj

pi(x)

◆

= max
j=1,...,n

qj(x).

Hence, Q is directed.

We are ready now to show Proposition 2.2.14.

Proof. of Proposition 2.2.14
Let (X, ⌧) be an lmc algebra. By Theorem 2.2.11, we have that there exists
a family of submultiplicative seminorms P := {pi}i2I on X s.t. ⌧ = ⌧P . Let
us define Q as the collection obtained by forming the maximum of finitely
many elements of P, i.e. Q :=

�

max
i2B

pi : ; 6= B ✓ I with B finite
 

. By
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2. Locally multiplicative convex algebras

Proposition 2.2.17, Q is a directed family of submultiplicative seminorms and
we have that ⌧P = ⌧Q.

It is possible to show (Sheet 3) that a basis of neighbourhoods of the origin
for the lmc topology ⌧Q induced by a directed family of submultiplicative
seminorms Q is given by:

Bd := {rUq : q 2 Q, 0 < r  1}. (2.7)

Remark 2.2.18. The proof of Proposition 2.2.14 can be easily adapted to
show that the topology of a lc tvs can be always induced by a directed family
of seminorms ⌧Q and that the corresponding (2.7) is basis of neighbourhoods
of the origin for ⌧Q.

Example 2.2.19. Let Cb(R) the set of all real-valued bounded continuous func-
tions on the real line endowed with the pointwise operations of addition, mul-
tiplication and scalar multiplication and endowed with the topology ⌧Q induced
by the family Q := {pa : a > 0}, where pa(f) := sup�ata |f(t)|, 8f 2 Cb(R).
Since each pa is a submultiplicative seminorm (see Example 2.2.4-d)), the
algebra (Cb(R), ⌧Q) is lmc.

Note that Q is directed since for any n 2 N and any positive real numbers
a1, . . . , an we have that maxi=1,...,n pai(f) = supt2[�b,b] |f(t)| = pb(f), where
b := maxi=1,...,n ai, and so (2.4) is fulfilled. Hence, Bd as in (2.7) is a basis of
neighbourhoods of the origin for the lmc topology ⌧Q .

The algebra (Cb(R), ⌧Q) is not m-barrelled, because for instance the set
M := {f 2 Cb(R) : supt2R |f(t)|  1} is an m-barrel but not a neighbourhood of
the origin in (Cb(R), ⌧Q). Indeed, no elements of the basis Bd of neighbourhoods
of the origin is entirely contained in M , because for any a > 0 and any
0 < r  1 the set rUpa also contains continuous functions bounded by r on
[�a, a] but bounded by C > 1 on the whole R and so not belonging to M .

2.3 Hausdor↵ lmc algebras

In Section 1.3, we gave some characterization of Hausdor↵ TVS which can
of course be applied to establish whether an lmc algebra is Hausdor↵ or not.
However, in this section we aim to provide necessary and su�cient conditions
bearing only on the family of seminorms generating an lmc topology for being
a Hausdor↵ topology.
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2.3. Hausdor↵ lmc algebras

Definition 2.3.1.

A family of seminorms P := {pi}i2I on a vector space X is said to be sepa-
rating if

8x 2 X \ {o}, 9 i 2 I s.t. pi(x) 6= 0. (2.8)

Note that the separation condition (2.8) is equivalent to

pi(x) = 0, 8i 2 I ) x = o

which by using Proposition 2.2.8 can be rewritten as

\

i2I,c>0

cŮpi = {o}, (2.9)

since pi(x) = 0 is equivalent to say that pi(x) < c, for all c > 0.

It is clear that if any of the elements in a family of seminorms is actually
a norm, then the the family is separating.

Lemma 2.3.2. Let ⌧P be the topology induced by a separating family of semi-
norms P := (pi)i2I on a vector space X. Then ⌧P is a Hausdor↵ topology.

Proof. 2

Let x, y 2 X be such that x 6= y. Since P is separating, we have that 9 i 2 I
with pi(x� y) 6= 0. Then 9 " > 0 s.t. pi(x� y) = 2". Take Vx := x+ "Ůpi and
Vy := y+ "Ůpi . Since Theorem 2.2.12 guarantees that (X, ⌧P) is a TVS where
the set "Ůpi is a neighbourhood of the origin, Vx and Vy are neighbourhoods
of x and y, respectively. They are clearly disjoint. Indeed, if there would exist
u 2 Vx \ Vy then pi(x� y) = pi(x� u+ u� y)  pi(x� u) + pi(u� y) < 2",
which is a contradiction.

Proposition 2.3.3.

a) A locally convex TVS is Hausdor↵ if and only if its topology can be induced
by a separating family of seminorms.

b) An lmc algebra is Hausdor↵ if and only if its topology can be induced by a
separating family of submultiplicative seminorms.

2Alternative proof By Theorem 2.2.12, we know that (X, ⌧P) is a TVS and that BP :=
n

Tn
k=1

"Ůpik
: i

1

, . . . , in 2 I, n 2 N, 0 < "  1
o

is a basis of neighbourhoods of the origin.

Then
T

B2BP

B =
T

i2I,">0

"Ůpi

(2.9)

= {o} and so Proposition 1.3.2 gives that (X, ⌧P) is Hausdor↵.
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2. Locally multiplicative convex algebras

Proof.
a) Let (X, ⌧) be a locally convex TVS. Then we know that ⌧ is induced by a

directed family P of seminorms on X and that Bd := {rUp : p 2 Q, 0 < r  1}
(see Remark 2.2.18).

Suppose that (X, ⌧) is also Hausdor↵. Then Proposition 1.3.2 ensures that
for any x 2 X with x 6= o there exists a neighbourhood V of the origin in X
s.t. x /2 V . This implies that there exists at least B 2 Bd s.t. x /2 B,3 i.e.
there exist p 2 P and 0 < r  1 s.t. x /2 rUp. Hence, p(x) > r > 0 and so
p(x) 6= 0, i.e. P is separating.

Conversely, if ⌧ is induced by a separating family of seminorms P, i.e.
⌧ = ⌧P , then Lemma 2.3.2 ensures that X is Hausdor↵.

b) A Hausdor↵ lmc algebra (X, ⌧) is in particular a Hausdor↵ lc tvs, so
by a) there exists a separating family P of seminorms s.t. ⌧ = ⌧P . Since
(X, ⌧) is an lmc algebra, Theorem 2.2.11 ensures that there exists Q family of
submultiplicative seminorms s.t. ⌧ = ⌧Q. Hence, we have got ⌧P = ⌧Q which
gives in turn that for any p 2 P there exist q1, q2 2 Q and C1, C2 > 0 s.t.
C1q1(x)  p(x)  C2q2(x), 8x 2 X. This gives in turn that if q(x) = 0 for all
q 2 Q then we have p(x) = 0 for all p 2 P which implies x = 0 because P
is separating. This shows that Q is a separating family of submultiplicative
seminorms. Conversely, if ⌧ is induced by a separating family of submultiplica-
tive seminorms P, i.e. ⌧ = ⌧P , then Lemma 2.3.2 ensures that X is Hausdor↵
and Theorem 2.2.11 that it is an lmc algebra.

Examples 2.3.4.

1. Every normed algebra is a Hausdor↵ lmc algebra, since every submulti-
plicative norm is a submultiplicative seminorm satisfying the separation
property. Therefore, every Banach algebra is a complete Hausdor↵ lmc
algebra.

2. Every family of submultiplicative seminorms on a vector space containing
a submultiplicative norm induces a Hausdor↵ llmc topology.

3. Given an open subset ⌦ of Rd with the euclidean topology, the space C(⌦)
of real valued continuous functions on ⌦ with the so-called topology of
uniform convergence on compact sets is a lmc algebra. This topology is
defined by the family P of all the submultiplicative seminorms on C(⌦)
given by

pK(f) := max
x2K

|f(x)|, 8K ⇢ ⌦ compact.

3Since Bd is a basis of neighbourhoods of the origin, 9 B 2 Bd s.t. B ✓ V . If x would
belong to all elements of the basis then in particular it would be x 2 B and so also x 2 V ,
contradiction.
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2.4. The finest lmc topology

Moreover, (C(⌦), ⌧P) is Hausdor↵, because the family P is clearly sepa-
rating. In fact, if pK(f) = 0, 8K compact subsets of ⌦ then in particular
p{x}(f) = |f(x)| = 0, 8x 2 ⌦, which implies f ⌘ 0 on ⌦.

2.4 The finest lmc topology

In the previous sections we have seen how to generate topologies on an algebra
which makes it into an lmc algebra. Among all of them, there is the finest one
(i.e. the one having the largest number of open sets).

Proposition 2.4.1. The finest lmc topology on an algebra X is the topology
induced by the family of all submultiplicative seminorms on X.

Proof.
Let us denote by S the family of all submultiplicative seminorms on the vector
space X. By Theorem 2.2.11, we know that the topology ⌧S induced by S
makes X into an lmc algebra. We claim that ⌧S is the finest lmc topology.
In fact, if there was a finer lmc topology ⌧ (i.e. ⌧S ✓ ⌧ with (X, ⌧) lmc
algebra) then Theorem 2.2.11 would give that ⌧ is also induced by a family
P of submultiplicative seminorms. But then P ✓ S and so ⌧ = ⌧P ✓ ⌧S by
definition of induced topology. Hence, ⌧ = ⌧S .

An alternative way of describing the finest lmc topology on an algebra
without using the seminorms is the following:

Proposition 2.4.2. The collection of all absorbing absolutely m-convex sets
of an algebra X is a basis of neighbourhoods of the origin for the finest lmc
topology on X.

Proof.
Let ⌧max be the finest lmc topology on X and M the collection of all absorbing
absolutely m-convex sets of X. Since M fulfills all the properties required in
Corollary 2.1.12, there exists a unique topology ⌧ which makes X into an
lmc algebra having as basis of neighbourhoods of the origin M. Hence, by
definition of finest lmc topology, ⌧ ✓ ⌧max. On the other hand, (X, ⌧max) is
itself an lmc algebra and so Theorem 2.2.11 ensures that has a basis Bmax

of neighbourhoods of the origin consisting of absorbing absolutely m-convex
subsets of X. Then clearly Bmax is contained in M and, hence, ⌧max ✓ ⌧ .

This result can be proved also using Proposition 2.4.1 and the correspon-
dence between Minkowski functionals and absorbing absolutely convex subsets
of X introduced in the Section 2.2.
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