
2. Locally multiplicative convex algebras

Corollary 2.4.3. Every K�algebra endowed with the finest lmc topology is
an m-barrelled algebra.

Proof.
Let U be an m-barrel of (X, ⌧max). Then U is closed absolutely m-convex and
so it is a neighbourhood of the origin by the previous proposition.

Using basically the same proofs, we could show the analogous results for
the finest lc topology, namely:

The finest lc topology on a K�vector space X is the topology induced by the
family of all seminorms on X or equivalently the topology having the collection
of all absorbing absolutely convex sets of X as a basis of neighbourhoods of
the origin. Hence, every vector space endowed with the finest lc topology is a
barrelled space.

Recall that

Definition 2.4.4. A closed absorbing absolutely convex subset of a TVS is
called a barrel. A TVS in which every barrel is a neighbourhood of the origin
is called barrelled space.

It is also important to remark that while the finest lc topology on a
K�vector space (and in particular on a K�algebra) is always Hausdor↵, the
finest lmc topology on a K�algebra does not have necessarily this property.

Proposition 2.4.5. Any K�vector space endowed with the finest lc topology
is a Hausdor↵ TVS.

Proof.
Let X be any non-empty K�vector space and S the family of all seminorms
on X. By Proposition 2.3.3-a), it is enough to show that S is separating. We
will do that, by proving that there always exists a non-zero norm on X. In
fact, let B = (bi)i2I be an algebraic basis of X then for any x 2 X there exist
a finite subset J of I and �j 2 K for all j 2 J s.t. x =

P

j2J �jbj and so we
can define kxk := maxj2J |�j |. Then it is easy to check that k · k is a norm on
X and so k · k 2 S.

Note that if X is a K�algebra, then the previous proof does not guar-
anteed the existence of a non-zero norm on X because, depending on the
multiplication in X, the norm k · k might be or not submultiplicative. In fact,
there exist algebras on which no submultiplicative norm can be defined. For
instance, if the algebra C(Y ) of all complex valued continuous functions on a
topological space Y contains an unbounded function then it does not admit a
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2.5. Topological algebras admitting lmc topologies

submultiplicative norm (see Sheet 4). Actually, there exist algebras on which
no non-zero submultiplicative seminorms can be defined, e.g. the algebra of
all linear operator on an infinite dimensional complex vector space (see [13,
Theorem 3] ). The finest lmc topology on such algebras is the trivial topology
which is obviously not Hausdor↵.

We conclude this section with a nice further property of the finest lmc
topology involving characters of an algebra.

Definition 2.4.6. Let A be a K�algebra. A character of A is a non-zero
homomorpism of A into K. The set of all characters is denoted by X (A).

Proposition 2.4.7. Every character on a K�algebra A is continuous w.r.t.
the finest lmc topology on A.

Proof. Let ↵ : A ! K be a character on A. For any " > 0, we denote by B"(0)
the open ball in K of radius " and center 0 2 K, i.e. B"(0) := {k 2 K : |k| < "}.
Set p(a) := |↵(a)| for all a 2 A. Then p is a submultiplicative seminorm on A
since for any a, b 2 A and � 2 K \ {0} we have that:

• p(a+ b) = |↵(a+ b)| = |↵(a) + ↵(b)|  |↵(a)|+ |↵(b)| = p(a) + p(b)
• p(�a) = |↵(�a)| = |�↵(a)| = |�||↵(a)| = |�|p(a)
• p(ab) = |↵(ab)| = |↵(a)↵(b)| = |↵(a)||↵(b)| = p(a)p(b).

Then ↵�1(B"(0)) = {a 2 A : |↵(a)| < "} = "Ůp, which is an absorbing abso-
lutely m-convex subset ofX and so, by Proposition 2.4.2, it is a neighbourhood
of the origin in the finest lmc topology on X. Hence ↵ is continuous at the
origin and so continuous everywhere in A.

With a proof similar to the previous one, we can deduce that

Proposition 2.4.8. Every linear functional on a K�vector space X is con-
tinuous w.r.t. the finest lc topology on X.

2.5 Topological algebras admitting lmc topologies

In this section we will look for su�cient conditions on a TA to be an lmc
algebra. More precisely, we would like to find out under which conditions a
locally convex algebra (i.e. a TA which is a locally convex TVS) is in fact an
lmc algebra. The main result in this direction was proved by Michael in 1952
(see [14, Proposition 4.3]) and it is actually a generalization of a well-known
theorem by Gel’fand within the theory of Banach algebras (see [8]).

Theorem 2.5.1 (Michael’s Theorem). Let A be a lc algebra. If

a) A is m-barrelled, and
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2. Locally multiplicative convex algebras

b) there exists a basis M of neighbourhoods of the origin in A such that

8a 2 A, 8U 2 M, 9� > 0 : aU ✓ �U, (2.10)

then A is an lmc algebra.

Proof.
Let us first give the main proof structure and then proceed to show the more
technical details.

Claim 1 W.l.o.g. we can assume that M consists of barrels.
Consider the unitization A

1

of A equipped with the product topology (see
Definition 1.1.3 and Section 1.3). Denote by · the multiplication in A

1

and by
B

1

(0) := {k 2 K : |k|  1}. Then the family {B
1

(0)⇥ U : U 2 M} is a basis
of neighbourhoods of the origin (0, o) in A

1

and the following holds.
Claim 2 For any U 2 M, V (U) := {x 2 A : (0, x) · (B

1

(0) ⇥ U) ✓
(B

1

(0)⇥ U)} is an m-barrel subset of A.
Then the assumption a) ensures that each V (U) is a neighbourhood of the
origin in A. Moreover, for any U 2 M, (1, o) 2 (B

1

(0)⇥ U) and so

8x 2 V (U), (0, x) = (0, x) · (1, o) 2 (B
1

(0)⇥ U),

which provides that V (U) ✓ U . Hence, {V (U) : U 2 M} is a basis of neigh-
bourhoods of the origin in A consisting of m-barrels and so, by Theorem 2.1.11,
A is an lmc algebra.

Proof. Claim 1
If M is not already consisting of all barrels, then we can always replace it by
fM := {conv

b

(U) : U 2 M}, because fM is a basis of neighbourhoods of the
origin in A fulfilling (2.10).

In fact, since A is a lc TVS, then there exists a basis N of neighbourhoods
of the origin in A consisting of barrels. Then, since also M is a basis of
neighbourhoods of the origin in A, we have that:

8V 2 N , 9U 2 M : U ✓ V.

As conv
b

(U) is the smallest closed convex balanced subset of A containing U

and V has all such properties, we get that conv
b

(U) ✓ V . Hence, fM is a basis
of neighbourhoods of the origin in A.

Moreover, let a 2 A and U 2 M. By assumption b), we know that there
exists � > 0 such that aU ✓ �U . Now recalling that conv

b

(U) = conv(bal(U)),
we can write any x 2 conv

b

(U) as x =
Pn

i=1

µi�iui for some n 2 N, ui 2 U ,
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2.5. Topological algebras admitting lmc topologies

µi 2 [0, 1] with
Pn

i=1

µi = 1, and �i 2 K with |�i|  1. Then for each
i 2 {1, . . . , n} there exist ũi 2 U such that:

ax =
n
X

i=1

µi�iaui =
n
X

i=1

µi�i�ũi = �
n
X

i=1

µi(�iũi)

and so ax 2 � · conv
b

(U). Hence, a · conv
b

(U) ✓ � · conv
b

(U). This together
with the separate continuity of the multiplication in A and the fact that the
scalar multiplication is a homeomorphism imply that

a · conv
b

(U) ✓ a · conv
b

(U) ✓ � · conv
b

(U) = � · conv
b

(U).

This shows that fM fulfills (2.10).

Proof. Claim 2
Let U 2 M and V (U) := {x 2 A : (0, x) · (B

1

(0)⇥U) ✓ (B
1

(0)⇥U)}. Then:
• V (U) is multiplicative.
For any a, b 2 V (U) we have

(0, ab)·(B
1

(0)⇥U) = (0, a)·(0, b)·(B
1

(0)⇥U) ✓ (0, a)·(B
1

(0)⇥U) ✓ (B
1

(0)⇥U),

i.e. ab 2 V (U).
• V (U) is closed.
Let us show that A \ V (U) is open, i.e. that for any x 2 A \ V (U) there
exists N 2 M such that x+N ✓ A \ V (U). If x 2 A \ V (U), then there exist
t 2 B

1

(0) and u 2 U such that (0, x) ·(t, u) /2 (B
1

(0)⇥U), i.e. tx+ux 2 A\U .
As U is closed, A \ U is open and so there exists W 2 M s.t.

tx+ ux+W ✓ A \ U. (2.11)

Take N 2 M s.t. uN ✓ 1

2

W and N ✓ 1

2

W (this exists because left multipli-
cation is continuous and M is basis of neighbourhoods of the origin). Then
x+N ✓ A \U , because otherwise there would exists n 2 N such that x+n 2
V (U) and so (0, n+x)·(t, u) 2 (B

1

(0)⇥U) that is nt+nu+xt+xu 2 U , which in
turns implies xt+xu 2 U�tN�uN ✓ U�N� 1

2

W ✓ U� 1

2

W� 1

2

W ✓ U�W ,
i.e. xt+ xu+W ✓ U which contradicts (2.11).
• V (U) is absorbing.
Let a 2 A. Then (2.10) ensures that there exists � > 0 s.t. aU ✓ �U . Also,
since U is absorbing, there exists µ > 0 such that a 2 µU . Take ⇢ := 1

�+µ .

Then for all k 2 K with |k|  ⇢ and for any (t, u) 2 (B
1

(0) ⇥ U) we get that
kta + kau 2 ktµU + k�U ✓ kµU + k�U = k(µ + �)U ✓ U where in both
inclusions we have used that U is balanced together with |t|  1 in the first
and |k(µ + �)|  ⇢|µ + �| = 1 in the second. Hence, we have obtained that
(0, ka) · (t, u) = (0, kta+ kau) 2 (B

1

(0)⇥ U) which gives that ka 2 V (U).
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• V (U) is balanced.
Let a 2 V (U) and k 2 K with |k|  1. Then

(0, ka) · (B
1

(0)⇥ U) = k(0, a) · (B
1

(0)⇥ U) ✓ (kB
1

(0)⇥ kU) ✓ (B
1

(0)⇥ U)

where in the last inclusion we used that both B
1

(0) and U are balanced.
• V (U) is convex.
Let a, b 2 V (U) and µ 2 [0, 1]. Then for any (t, u) 2 (B

1

(0) ⇥ U) we know
that (0, a) · (t, u) 2 (B

1

(0)⇥U) and (0, b) · (t, u) 2 (B
1

(0)⇥U), which give in
turn that at+ au 2 U and bt+ bu 2 U . Therefore, the convexity of U implies
that µ(at+ au) + (1� µ)(bt+ bu) 2 U and so we obtain

(0, µa+ (1� µ)b) · (t, u) = (0, µ(at+ au) + (1� µ)(bt+ bu)) 2 (B
1

(0)⇥ U),

i.e. µa+ (1� µ)b 2 V (U).

Let us present now a stronger version of Michael’s theorem, which has
however the advantage of providing a less technical and so more manageable
su�cient condition for a topology to be lmc. This more convenient condi-
tion actually identifies an entire class of TA: the so-called A-convex algebras
introduced by Cochran, Keown and Williams in the early seventies [3].

Definition 2.5.2. A K�algebra X is called A-convex if it is endowed with
the topology induced by an absorbing family of seminorms on X.

Definition 2.5.3. A seminorm p on a K�algebra X is called:

• left absorbing if 8a 2 X, 9� > 0 s.t. p(ax)  �p(x), 8x 2 X.

• right absorbing if 8a 2 X, 9� > 0 s.t. p(xa)  �p(x), 8x 2 X.

• absorbing if it is both left and right absorbing.

Proposition 2.5.4. Every A-convex algebra is a lc algebra.

Proof.
Let (X, ⌧) be an A-convex algebra. Then by definition ⌧ = ⌧P where P is
a family of absorbing seminorm. Hence, by Theorem 2.2.12, (X, ⌧) is an lc
TVS. It remains to show that it is a TA. Let a 2 X and consider the left
multiplication `a : X ! X,x 7! ax. Since any p 2 P is left absorbing, we
have that there exists � > 0 such that p(ax)  �p(x) for all x 2 X and so
that 1

�Up ✓ `�1

a (Up). Hence, `a is ⌧�continuous. Similarly, one can prove the
continuity of the right multiplication. We can then conclude that (X, ⌧) is an
lc algebra.

44



2.5. Topological algebras admitting lmc topologies

Note that not every lc algebra is A-convex (see Sheet 4) but every lmc
algebra is A-convex as the submultiplicativity of the generating seminorms
implies that they are absorbing. Let us focus now on the inverse question of
establishing when an A-convex algebra is lmc.

Theorem 2.5.5. Every m-barrelled A-convex algebra is an lmc algebra.

Proof.
Let (X, ⌧) be an m-barrelled A-convex algebra. By the previous proposi-
tion, we have that (X, ⌧) is an lc algebra. Denote by P := {pi : i 2 I}
a family of absorbing seminorm generating ⌧ . Then, by Proposition 2.2.17,
Q :=

�

maxi2B pi : ; 6= B ✓ I with B finite
 

is a directed family of semi-
norms such that ⌧ = ⌧Q. Also, each q 2 Q is absorbing. Indeed, q = maxi2B pi
for some ; 6= B ✓ I with B finite and so for any i 2 B and any a 2 X we
have that there exists �i > 0 such that pi(ax)  �ip(x) for all x 2 X. Hence,
for any a 2 X we get

q(ax) = max
i2B

pi(ax)  max
i2B

�ipi(x)  �max
i2B

pi(x) = q(x), 8x 2 X,

where � := maxi2B �i. Then M := {"Uq : q 2 Q, 0 < "  1} is a basis
of neighbourhoods of the origin for (X, ⌧) and for each a 2 A, q 2 Q and
0 < "  1 we have that if x 2 a"Uq then x = a"y for some y 2 Uq and so
q(x) = q(a"y)  "q(ay)  �"q(y)  �" i.e. x 2 �"Uq. Hence, we proved
that 8a 2 A, 8q 2 Q, 80 < "  1, a"Uq ✓ �"Uq which means that M fulfills
condition b) in Theorem 2.5.1. Then (X, ⌧) satisfies all the assumptions of
Theorem 2.5.1 which guarantees that it is an lmc algebra.

To conclude this section let us just restate the result by Gel’fand mentioned
in the beginning in one of the many formulation which reveals the analogy with
Michael’s theorem.

Theorem 2.5.6. If X is a K�algebra endowed with a norm which makes it
into a Banach space and a TA, then there exists an equivalent norm on X
which makes it into a Banach algebra.
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