Corollary 2.4.3. Every \mathbb{K} -algebra endowed with the finest lmc topology is an m-barrelled algebra.

Proof.

Let U be an m-barrel of (X, τ_{max}) . Then U is closed absolutely m-convex and so it is a neighbourhood of the origin by the previous proposition. \Box

Using basically the same proofs, we could show the analogous results for the finest lc topology, namely:

The finest lc topology on a \mathbb{K} -vector space X is the topology induced by the family of all seminorms on X or equivalently the topology having the collection of all absorbing absolutely convex sets of X as a basis of neighbourhoods of the origin. Hence, every vector space endowed with the finest lc topology is a barrelled space.

Recall that

Definition 2.4.4. A closed absorbing absolutely convex subset of a TVS is called a barrel. A TVS in which every barrel is a neighbourhood of the origin is called barrelled space.

It is also important to remark that while the finest lc topology on a \mathbb{K} -vector space (and in particular on a \mathbb{K} -algebra) is always Hausdorff, the finest lmc topology on a \mathbb{K} -algebra does not have necessarily this property.

Proposition 2.4.5. Any \mathbb{K} -vector space endowed with the finest lc topology is a Hausdorff TVS.

Proof.

Let X be any non-empty \mathbb{K} -vector space and S the family of all seminorms on X. By Proposition 2.3.3-a), it is enough to show that S is separating. We will do that, by proving that there always exists a non-zero norm on X. In fact, let $\mathcal{B} = (b_i)_{i \in I}$ be an algebraic basis of X then for any $x \in X$ there exist a finite subset J of I and $\lambda_j \in \mathbb{K}$ for all $j \in J$ s.t. $x = \sum_{j \in J} \lambda_j b_j$ and so we can define $||x|| := \max_{j \in J} |\lambda_j|$. Then it is easy to check that $|| \cdot ||$ is a norm on X and so $|| \cdot || \in S$.

Note that if X is a \mathbb{K} -algebra, then the previous proof does not guaranteed the existence of a non-zero norm on X because, depending on the multiplication in X, the norm $\|\cdot\|$ might be or not submultiplicative. In fact, there exist algebras on which no submultiplicative norm can be defined. For instance, if the algebra $\mathcal{C}(Y)$ of all complex valued continuous functions on a topological space Y contains an unbounded function then it does not admit a submultiplicative norm (see Sheet 4). Actually, there exist algebras on which no non-zero submultiplicative seminorms can be defined, e.g. the algebra of all linear operator on an infinite dimensional complex vector space (see [13, Theorem 3]). The finest lmc topology on such algebras is the trivial topology which is obviously not Hausdorff.

We conclude this section with a nice further property of the finest lmc topology involving characters of an algebra.

Definition 2.4.6. Let A be a \mathbb{K} -algebra. A character of A is a non-zero homomorphism of A into \mathbb{K} . The set of all characters is denoted by $\mathcal{X}(A)$.

Proposition 2.4.7. Every character on a \mathbb{K} -algebra A is continuous w.r.t. the finest lmc topology on A.

Proof. Let $\alpha : A \to \mathbb{K}$ be a character on A. For any $\varepsilon > 0$, we denote by $B_{\varepsilon}(0)$ the open ball in \mathbb{K} of radius ε and center $0 \in \mathbb{K}$, i.e. $B_{\varepsilon}(0) := \{k \in \mathbb{K} : |k| < \varepsilon\}$. Set $p(a) := |\alpha(a)|$ for all $a \in A$. Then p is a submultiplicative seminorm on A since for any $a, b \in A$ and $\lambda \in \mathbb{K} \setminus \{0\}$ we have that:

- $p(a+b) = |\alpha(a+b)| = |\alpha(a) + \alpha(b)| \le |\alpha(a)| + |\alpha(b)| = p(a) + p(b)$
- $p(\lambda a) = |\alpha(\lambda a)| = |\lambda\alpha(a)| = |\lambda||\alpha(a)| = |\lambda|p(a)$
- $p(ab) = |\alpha(ab)| = |\alpha(a)\alpha(b)| = |\alpha(a)||\alpha(b)| = p(a)p(b).$

Then $\alpha^{-1}(B_{\varepsilon}(0)) = \{a \in A : |\alpha(a)| < \varepsilon\} = \varepsilon U_p$, which is an absorbing absolutely m-convex subset of X and so, by Proposition 2.4.2, it is a neighbourhood of the origin in the finest lmc topology on X. Hence α is continuous at the origin and so continuous everywhere in A.

With a proof similar to the previous one, we can deduce that

Proposition 2.4.8. Every linear functional on a \mathbb{K} -vector space X is continuous w.r.t. the finest lc topology on X.

2.5 Topological algebras admitting lmc topologies

In this section we will look for sufficient conditions on a TA to be an lmc algebra. More precisely, we would like to find out under which conditions a locally convex algebra (i.e. a TA which is a locally convex TVS) is in fact an lmc algebra. The main result in this direction was proved by Michael in 1952 (see [14, Proposition 4.3]) and it is actually a generalization of a well-known theorem by Gel'fand within the theory of Banach algebras (see [8]).

Theorem 2.5.1 (Michael's Theorem). Let A be a lc algebra. If a) A is m-barrelled, and b) there exists a basis \mathcal{M} of neighbourhoods of the origin in A such that

$$\forall a \in A, \forall U \in \mathcal{M}, \exists \lambda > 0 : aU \subseteq \lambda U, \tag{2.10}$$

then A is an lmc algebra.

Proof.

Let us first give the main proof structure and then proceed to show the more technical details.

Claim 1 W.l.o.g. we can assume that \mathcal{M} consists of barrels.

Consider the unitization A_1 of A equipped with the product topology (see Definition 1.1.3 and Section 1.3). Denote by \cdot the multiplication in A_1 and by $\overline{B}_1(0) := \{k \in \mathbb{K} : |k| \leq 1\}$. Then the family $\{\overline{B}_1(0) \times U : U \in \mathcal{M}\}$ is a basis of neighbourhoods of the origin (0, o) in A_1 and the following holds.

Claim 2 For any $U \in \mathcal{M}$, $V(U) := \{x \in A : (0,x) \cdot (\overline{B}_1(0) \times U) \subseteq (\overline{B}_1(0) \times U)\}$ is an m-barrel subset of A.

Then the assumption a) ensures that each V(U) is a neighbourhood of the origin in A. Moreover, for any $U \in \mathcal{M}$, $(1, o) \in (\overline{B}_1(0) \times U)$ and so

$$\forall x \in V(U), (0, x) = (0, x) \cdot (1, o) \in (\overline{B}_1(0) \times U),$$

which provides that $V(U) \subseteq U$. Hence, $\{V(U) : U \in \mathcal{M}\}$ is a basis of neighbourhoods of the origin in A consisting of m-barrels and so, by Theorem 2.1.11, A is an lmc algebra.

Proof. Claim 1

If \mathcal{M} is not already consisting of all barrels, then we can always replace it by $\widetilde{M} := \{\overline{\operatorname{conv}_{\mathrm{b}}(U)} : U \in \mathcal{M}\}$, because \widetilde{M} is a basis of neighbourhoods of the origin in A fulfilling (2.10).

In fact, since A is a lc TVS, then there exists a basis \mathcal{N} of neighbourhoods of the origin in A consisting of barrels. Then, since also \mathcal{M} is a basis of neighbourhoods of the origin in A, we have that:

$$\forall V \in \mathcal{N}, \exists U \in \mathcal{M} : U \subseteq V.$$

As $\overline{\operatorname{conv}_{\mathrm{b}}(U)}$ is the smallest closed convex balanced subset of A containing U and V has all such properties, we get that $\overline{\operatorname{conv}_{\mathrm{b}}(U)} \subseteq V$. Hence, \widetilde{M} is a basis of neighbourhoods of the origin in A.

Moreover, let $a \in A$ and $U \in \mathcal{M}$. By assumption b), we know that there exists $\lambda > 0$ such that $aU \subseteq \lambda U$. Now recalling that $\operatorname{conv}_{\mathrm{b}}(U) = \operatorname{conv}(\operatorname{bal}(U))$, we can write any $x \in \operatorname{conv}_{\mathrm{b}}(U)$ as $x = \sum_{i=1}^{n} \mu_i \delta_i u_i$ for some $n \in \mathbb{N}$, $u_i \in U$,

 $\mu_i \in [0,1]$ with $\sum_{i=1}^n \mu_i = 1$, and $\delta_i \in \mathbb{K}$ with $|\delta_i| \leq 1$. Then for each $i \in \{1, \ldots, n\}$ there exist $\tilde{u}_i \in U$ such that:

$$ax = \sum_{i=1}^{n} \mu_i \delta_i au_i = \sum_{i=1}^{n} \mu_i \delta_i \lambda \tilde{u}_i = \lambda \sum_{i=1}^{n} \mu_i (\delta_i \tilde{u}_i)$$

and so $ax \in \lambda \cdot \operatorname{conv_b}(U)$. Hence, $a \cdot \operatorname{conv_b}(U) \subseteq \lambda \cdot \operatorname{conv_b}(U)$. This together with the separate continuity of the multiplication in A and the fact that the scalar multiplication is a homeomorphism imply that

$$a \cdot \overline{\operatorname{conv}_{\mathrm{b}}(U)} \subseteq \overline{a \cdot \operatorname{conv}_{\mathrm{b}}(U)} \subseteq \overline{\lambda \cdot \operatorname{conv}_{\mathrm{b}}(U)} = \lambda \cdot \overline{\operatorname{conv}_{\mathrm{b}}(U)}.$$

This shows that \widetilde{M} fulfills (2.10).

Proof. Claim 2 Let $U \in \mathcal{M}$ and $V(U) := \{x \in A : (0, x) \cdot (\overline{B}_1(0) \times U) \subseteq (\overline{B}_1(0) \times U)\}$. Then: • V(U) is multiplicative.

For any $a, b \in V(U)$ we have

 $\begin{array}{l} (0,ab)\cdot(\overline{B}_1(0)\times U)=(0,a)\cdot(0,b)\cdot(\overline{B}_1(0)\times U)\subseteq(0,a)\cdot(\overline{B}_1(0)\times U)\subseteq(\overline{B}_1(0)\times U),\\ \text{i.e. } ab\in V(U). \end{array}$

• V(U) is closed.

Let us show that $A \setminus V(U)$ is open, i.e. that for any $x \in A \setminus V(U)$ there exists $N \in \mathcal{M}$ such that $x + N \subseteq A \setminus V(U)$. If $x \in A \setminus V(U)$, then there exist $t \in \overline{B}_1(0)$ and $u \in U$ such that $(0, x) \cdot (t, u) \notin (\overline{B}_1(0) \times U)$, i.e. $tx + ux \in A \setminus U$. As U is closed, $A \setminus U$ is open and so there exists $W \in \mathcal{M}$ s.t.

$$tx + ux + W \subseteq A \setminus U. \tag{2.11}$$

Take $N \in \mathcal{M}$ s.t. $uN \subseteq \frac{1}{2}W$ and $N \subseteq \frac{1}{2}W$ (this exists because left multiplication is continuous and \mathcal{M} is basis of neighbourhoods of the origin). Then $x + N \subseteq A \setminus U$, because otherwise there would exists $n \in N$ such that $x + n \in V(U)$ and so $(0, n+x) \cdot (t, u) \in (\overline{B}_1(0) \times U)$ that is $nt+nu+xt+xu \in U$, which in turns implies $xt+xu \in U-tN-uN \subseteq U-N-\frac{1}{2}W \subseteq U-\frac{1}{2}W-\frac{1}{2}W \subseteq U-W$, i.e. $xt+xu+W \subseteq U$ which contradicts (2.11).

• V(U) is absorbing.

Let $a \in A$. Then (2.10) ensures that there exists $\lambda > 0$ s.t. $aU \subseteq \lambda U$. Also, since U is absorbing, there exists $\mu > 0$ such that $a \in \mu U$. Take $\rho := \frac{1}{\lambda + \mu}$. Then for all $k \in \mathbb{K}$ with $|k| \leq \rho$ and for any $(t, u) \in (\overline{B}_1(0) \times U)$ we get that $kta + kau \in kt\mu U + k\lambda U \subseteq k\mu U + k\lambda U = k(\mu + \lambda)U \subseteq U$ where in both inclusions we have used that U is balanced together with $|t| \leq 1$ in the first and $|k(\mu + \lambda)| \leq \rho |\mu + \lambda| = 1$ in the second. Hence, we have obtained that $(0, ka) \cdot (t, u) = (0, kta + kau) \in (\overline{B}_1(0) \times U)$ which gives that $ka \in V(U)$.

• V(U) is balanced.

Let $a \in V(U)$ and $k \in \mathbb{K}$ with $|k| \leq 1$. Then

 $(0,ka) \cdot (\overline{B}_1(0) \times U) = k(0,a) \cdot (\overline{B}_1(0) \times U) \subseteq (k\overline{B}_1(0) \times kU) \subseteq (\overline{B}_1(0) \times U)$

where in the last inclusion we used that both $\overline{B}_1(0)$ and U are balanced. • V(U) is convex.

Let $a, b \in V(U)$ and $\mu \in [0, 1]$. Then for any $(t, u) \in (\overline{B}_1(0) \times U)$ we know that $(0, a) \cdot (t, u) \in (\overline{B}_1(0) \times U)$ and $(0, b) \cdot (t, u) \in (\overline{B}_1(0) \times U)$, which give in turn that $at + au \in U$ and $bt + bu \in U$. Therefore, the convexity of U implies that $\mu(at + au) + (1 - \mu)(bt + bu) \in U$ and so we obtain

$$(0, \mu a + (1 - \mu)b) \cdot (t, u) = (0, \mu(at + au) + (1 - \mu)(bt + bu)) \in (B_1(0) \times U),$$

i.e. $\mu a + (1 - \mu)b \in V(U).$

Let us present now a stronger version of Michael's theorem, which has however the advantage of providing a less technical and so more manageable sufficient condition for a topology to be lmc. This more convenient condition actually identifies an entire class of TA: the so-called *A-convex algebras* introduced by Cochran, Keown and Williams in the early seventies [3].

Definition 2.5.2. A \mathbb{K} -algebra X is called A-convex if it is endowed with the topology induced by an absorbing family of seminorms on X.

Definition 2.5.3. A seminorm p on a \mathbb{K} -algebra X is called:

- left absorbing if $\forall a \in X, \exists \lambda > 0 \ s.t. \ p(ax) \leq \lambda p(x), \forall x \in X.$
- right absorbing if $\forall a \in X, \exists \lambda > 0 \ s.t. \ p(xa) \leq \lambda p(x), \forall x \in X.$
- absorbing if it is both left and right absorbing.

Proposition 2.5.4. Every A-convex algebra is a lc algebra.

Proof.

Let (X, τ) be an A-convex algebra. Then by definition $\tau = \tau_{\mathcal{P}}$ where \mathcal{P} is a family of absorbing seminorm. Hence, by Theorem 2.2.12, (X, τ) is an lc TVS. It remains to show that it is a TA. Let $a \in X$ and consider the left multiplication $\ell_a : X \to X, x \mapsto ax$. Since any $p \in \mathcal{P}$ is left absorbing, we have that there exists $\lambda > 0$ such that $p(ax) \leq \lambda p(x)$ for all $x \in X$ and so that $\frac{1}{\lambda}U_p \subseteq \ell_a^{-1}(U_p)$. Hence, ℓ_a is τ -continuous. Similarly, one can prove the continuity of the right multiplication. We can then conclude that (X, τ) is an lc algebra. Note that not every lc algebra is A-convex (see Sheet 4) but every lmc algebra is A-convex as the submultiplicativity of the generating seminorms implies that they are absorbing. Let us focus now on the inverse question of establishing when an A-convex algebra is lmc.

Theorem 2.5.5. Every m-barrelled A-convex algebra is an lmc algebra.

Proof.

Let (X, τ) be an m-barrelled A-convex algebra. By the previous proposition, we have that (X, τ) is an lc algebra. Denote by $\mathcal{P} := \{p_i : i \in I\}$ a family of absorbing seminorm generating τ . Then, by Proposition 2.2.17, $\mathcal{Q} := \{\max_{i \in B} p_i : \emptyset \neq B \subseteq I \text{ with } B \text{ finite }\}$ is a directed family of seminorms such that $\tau = \tau_{\mathcal{Q}}$. Also, each $q \in \mathcal{Q}$ is absorbing. Indeed, $q = \max_{i \in B} p_i$ for some $\emptyset \neq B \subseteq I$ with B finite and so for any $i \in B$ and any $a \in X$ we have that there exists $\lambda_i > 0$ such that $p_i(ax) \leq \lambda_i p(x)$ for all $x \in X$. Hence, for any $a \in X$ we get

$$q(ax) = \max_{i \in B} p_i(ax) \le \max_{i \in B} \lambda_i p_i(x) \le \lambda \max_{i \in B} p_i(x) = q(x), \forall x \in X,$$

where $\lambda := \max_{i \in B} \lambda_i$. Then $\mathcal{M} := \{\varepsilon U_q : q \in \mathcal{Q}, 0 < \varepsilon \leq 1\}$ is a basis of neighbourhoods of the origin for (X, τ) and for each $a \in A, q \in \mathcal{Q}$ and $0 < \varepsilon \leq 1$ we have that if $x \in a\varepsilon U_q$ then $x = a\varepsilon y$ for some $y \in U_q$ and so $q(x) = q(a\varepsilon y) \leq \varepsilon q(ay) \leq \lambda \varepsilon q(y) \leq \lambda \varepsilon$ i.e. $x \in \lambda \varepsilon U_q$. Hence, we proved that $\forall a \in A, \forall q \in \mathcal{Q}, \forall 0 < \varepsilon \leq 1, a\varepsilon U_q \subseteq \lambda \varepsilon U_q$ which means that \mathcal{M} fulfills condition b) in Theorem 2.5.1. Then (X, τ) satisfies all the assumptions of Theorem 2.5.1 which guarantees that it is an Imc algebra. \Box

To conclude this section let us just restate the result by Gel'fand mentioned in the beginning in one of the many formulation which reveals the analogy with Michael's theorem.

Theorem 2.5.6. If X is a \mathbb{K} -algebra endowed with a norm which makes it into a Banach space and a TA, then there exists an equivalent norm on X which makes it into a Banach algebra.