
Chapter 3

Further special classes of topological algebras

3.1 Metrizable and Fréchet algebras

Definition 3.1.1. A metrizable algebra X is a TA which is in particular a
metrizable TVS, i.e. a TVS whose topology is induced by a metric.

We recall that a metric d on a set X is a mapping d : X ⇥X ! R+ with
the following properties:

1. d(x, y) = 0 if and only if x = y (identity of indiscernibles);
2. d(x, y) = d(y, x) for all x, y 2 X (symmetry);
3. d(x, z)  d(x, y) + d(y, z) for all x, y, z 2 X (triangular inequality).

Saying that the topology of a TVS (X, ⌧) is induced by a metric d means
that for any x 2 X the sets of all open (or equivalently closed) balls:

Br(x) := {y 2 X : d(x, y) < r}, 8r > 0

forms a basis of neighbourhoods of x for ⌧ .
There exists a completely general characterization of metrizable TVS.

Theorem 3.1.2. A TVS X is metrizable if and only if X is Hausdor↵ and
has a countable basis of neighbourhoods of the origin.

Note that one direction is quite straightforward. Indeed, suppose that X is
a metrizable TVS and that d is a metric defining the topology of X, then the
collection of all B 1

n
(o) with n 2 N is a countable basis of neighbourhoods of the

origin o in X. Moreover, the intersection of all these balls is just the singleton
{o}, which proves that the TVS X is also Hausdor↵ (see Proposition 1.3.2)
The other direction requires more work and we are not going to prove it in full
generality as it would go beyond the aim of this course (see e.g. [16, Chapter I,
Section 6.1] or [11, proof of Theorem 1.1] for a proof for locally convex TVS).
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3. Further special classes of topological algebras

However, we are going to use Theorem 3.1.2 to give a characterization of all
metrizable lmc algebras.

Theorem 3.1.3. Let A be a K�algebra. Then the following are equivalent:

a) A is a metrizable lmc algebra

b) A is a TVS having a decreasing sequence of m-barrels with trivial intersec-
tion as a basis of neighbourhoods of the origin.

c) A is a TVS whose topology is generated by an increasing sequence of sub-
multiplicative seminorms which form a separating family.

The obvious analogous statement is true for metrizable lc algebras.

Proof.
a))b) Suppose that (A, ⌧) is a metrizable lmc algebra. Then in particular

(A, ⌧) is a metrizable TVS and so by Theorem 3.1.2 it is Hausdor↵ and has
a countable basis {Un : n 2 N} of neighbourhoods of the origin. As (A, ⌧)
is an lmc algebra, by Theorem 2.1.11, we can assume w.l.o.g. that each Un

is an m-barrel. Now for each n 2 N set Vn := U
1

\ · · · \ Un. Then one can
easily verify that each Vn is still an m-barrel and clearly Vn+1

✓ Vn. Hence,
the decreasing sequence {Vn : n 2 N} is a basis of neighbourhoods of the
origin in (A, ⌧) consisting of m-barrels. The Hausdorfness of (A, ⌧) implies,
by Proposition 1.3.2, that

T

n2N Vn = {o}.
b))c) Suppose that (A, ⌧) is a TVS and that {Vn : n 2 N} is a basis

of neighbourhoods of the origin such that, for any n 2 N, Vn is an m-barrel,
Vn+1

✓ Vn and
T

n2N Vn = {o}. Then Theorem 2.1.11 guarantees that (A, ⌧) is
an lmc algebra and the family S := {pVn : n 2 N} is a family of submultiplica-
tive seminorms generating ⌧ (see proof of Theorem 2.2.12). Actually, S is an
increasing sequence, since Vn+1

✓ Vn implies that pVn  pVn+1

. Moreover, we

have that {o} ✓
T

n2N ŮpVn ✓
T

n2N Vn = {o} and so
T

n2N,c>0

cŮpVn = {o},
i.e. S is separating (c.f. (2.9)).

c))a) Suppose that (A, ⌧) is a TVS and that P := {pn : n 2 N} is a
separating increasing sequence of submultiplicative seminorm generating ⌧ .
By Theorem 2.2.12 and Proposition 2.3.3, (A, ⌧) is a Hausdor↵ lmc algebra.
W.l.o.g. we can assume that P is directed and so, by using Exercise 3 in Sheet
3, we have that { 1

nUpn : n 2 N} is a countable basis of neighbourhoods of the
origin. Then Theorem 3.1.2 ensures that (A, ⌧) is also a metrizable TVS and,
hence, a metrizable lmc algebra.

A special class of metrizable algebras are the so-called Fréchet algebras.
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3.1. Metrizable and Fréchet algebras

Definition 3.1.4. A Fréchet algebra is a TA which is in particular a Fréchet
TVS, i.e. a complete metrizable lc TVS.

It is clear that every Fréchet algebra is a Hausdor↵ complete lc algebra
whose topology is induced by an increasing family of seminorms, but these
are not necessarily submultiplicative. If this is the case, we speak of Fréchet
lmc algebras.

Definition 3.1.5. A Fréchet lmc algebra is a complete metrizable lmc algebra.

As completeness is fundamental to understand the structure of a Fréchet
algebra, let us recall here some of the most important properties of complete
TVS (for a more detailed exposition about complete TVS see e.g. [10, Section
2.5] or [17, Part I, Section 5]).

Definition 3.1.6.

A TVS X is said to be complete if every Cauchy filter on X converges to a
point x of A.

It is important to distinguish between completeness and sequentially com-
pleteness.

Definition 3.1.7.

A TVS X is said to be sequentially complete if any Cauchy sequence in X
converges to a point in A.

Clearly, a TA is complete (resp. sequentially complete) if it is in particular
a complete (resp. sequentially complete) TVS. Remind that

Definition 3.1.8. A filter F on a TVS (X, ⌧) is said to be a Cauchy filter if

8U 2 F(o) inX, 9M 2 F : M �M ⇢ U, (3.1)

where F(o) denotes the filter of neighbourhoods of the origin o in (X, ⌧).

Definition 3.1.9. A sequence S := {xn}n2N of points in a TVS (X, ⌧) is said
to be a Cauchy sequence if

8U 2 F(o) inX, 9N 2 N : xm � xn 2 U, 8m,n � N, (3.2)

where F(o) denotes the filter of neighbourhoods of the origin o in (X, ⌧).

Proposition 3.1.10.

The filter associated with a Cauchy sequence in a TVS X is a Cauchy filter.
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3. Further special classes of topological algebras

Proof.
Let S be a Cauchy sequence. Then, recalling that the collection B := {Sm :
m 2 N} with Sm := {xn 2 S : n � m} is a basis of the filter FS associated
with S, we can easily rewrite (3.2) as

8U 2 F(o) inX, 9N 2 N : SN � SN ⇢ U.

This immediately gives that FS fulfills (3.2) and so that it is a Cauchy filter.

It is then not hard to prove that

Proposition 3.1.11.

If a TVS X is completem then A is sequentially complete.

Proof.
Let S := {xn}n2N be a Cauchy sequence of points in A. Then Proposition
3.1.10 guarantees that the filter FS associated to S is a Cauchy filter in A. By
the completeness of A we get that there exists x 2 A such that FS converges
to x. This is equivalent to say that the sequence S is convergent to x 2 A (see
[10, Proposition 1.1.29]). Hence, A is sequentially complete.

The converse is false in general (see [10, Example 2.5.9]). However, the
two notions coincide in metrizable TVS, and so we have that

Proposition 3.1.12. A metrizable lc algebra is a Fréchet algebra if and only
if it is sequentially complete.

Another important property of Fréchet algebras is that they are Baire
spaces, i.e. topological spaces in which the union of any countable family
of closed sets, none of which has interior points, has no interior points itself
(or, equivalently, the intersection of any countable family of everywhere dense
open sets is an everywhere dense set). This is actually a consequence of the
following more general result:

Proposition 3.1.13. A complete metrizable TVS X is a Baire space.

Proof. (see [11, Proposition 1.1.8])

Example 3.1.14. An example of Baire space is R with the euclidean topology.
Instead Q with the subset topology given by the euclidean topology on R is not
a Baire space. Indeed, for any q 2 Q the subset {q} is closed and has empty
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3.1. Metrizable and Fréchet algebras

interior in Q, but [q2Q{q} = Q which has interior points in Q (actually its
interior is the whole Q).

Corollary 3.1.15. Every Fréchet TVS is barrelled. In particular, every
Fréchet algebra is m-barrelled.

Proof.
Let (X, ⌧) be a Fréchet TVS and V a barrelled subset of X. Then V is
absorbing and closed, so X =

S

n2N nV is a countable union of closed sets.
Hence, as Proposition 3.1.13 ensures that (X, ⌧) is a Baire space, we have

that there exists k 2 N such that ˚(kV ) 6= ;. This implies that there exists

x 2 ˚(kV ), i.e. there exists a neighbourhood N of the origin in (X, ⌧) such
that x+N ✓ V . As (X, ⌧) is in particular an lc TVS, we can assume that N
is absolutely convex. Then we get

N =
1

2
N � 1

2
N =

1

2
(x+N) +

1

2
(�x�N) ✓ 1

2
V +

1

2
(�V ) = V,

where in the last equality we used that V is a barrel and so absolutely convex.
Hence, we can conclude that V is a neighbourhood of the origin and so (X, ⌧)
is barrelled.

If (X, ⌧) is a Fréchet algebra, then it is in particular a Fréchet TVS and
so the previous part of the proof guarantees that every m-barrelled subset of
X is a neighbourhood of the origin, i.e. (X, ⌧) is an m-barrelled algebra.

This result together with Theorem 2.5.1 (resp. Theorem 2.5.5) clearly pro-
vides that every Fréchet algebra having a basis of neighbourhoods of the origin
which satifies (2.10) (resp. every A-convex Fréchet algebra) is lmc. Propo-
sition 3.1.13 plays also a fundamental role in proving the following general
property of complete metrizable algebras and so of Fréchet algebras.

Proposition 3.1.16. Every complete metrizable algebra is a TA with contin-
uous multiplication.

Proof.
Let A be a complete metrizable algebra. The metrizability provides the ex-
istence of a countable basis B := {Wn : n 2 N} of neighbourhoods of the
origin. We aim to show that for any n 2 N there exists m 2 N such that
WmWm ✓ Wn.

Fixed n 2 N, as we are in a TVS, there always exists a closed neigh-
bourhood V of the origin such that V � V ✓ Wn. As for any b 2 A
the right multiplication rb : A ! A, a 7! ab is continuous we have that
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r�1

b (V ) := {a 2 A : ab 2 V } is closed. For any k 2 N, set Uk :=
T

b2Wk
r�1

b (V ).

Then each Uk is closed and1 A =
S

k2N Uk.
Since A is a Baire space by Proposition 3.1.13, we have that there exists

h 2 N such that Ůh 6= ;. Therefore, there exists x 2 Ůh, i.e. there exists j 2 N
such that x+Wj ✓ Uh. This in turn provides that

Uh � Uh ◆ x+Wj � x�Wj = Wj �Wj ◆ Wj .

Since B is a basis for the filter of neighbourhoods of the origin, we can find
m 2 N such that Wm ✓ Wj \Wh and therefore

WmWm ✓ WjWh ✓ (Uh � Uh)Wh = UhWh � UhWh ✓ V � V ✓ Wn,

where in the last inclusion we have just used the definition of Uh. Hence, the
multiplication in A is jointly continuous.

Example 3.1.17.

1) Let C1([0, 1]) be the space of all real valued infinitely di↵erentiable func-
tions on [0, 1] equipped with pointwise operations. We endow the algebra
C1([0, 1]) with the topology ⌧P generated by P := {pn : n 2 N

0

} with
pn(f) := supx2[0,1] |(D(n)f)(x)| for any f 2 C1([0, 1]) (here D(n)f denotes
the n�th derivative of f). P is a countable separating family of semi-
norms so (C1([0, 1]), ⌧P) is a metrizable lc algebra but the seminorms in
P are not submultiplicative since if for example we take f(t) := t then
p
1

(f2) = 2 > 1 = p
1

(f)p
1

(f). However, we are going to show that ⌧P can
be in fact generated by a countable separating family of submultiplicative
seminorms and so it is actually an lmc algebra. First, let us consider the
family R := {rn := maxj=0,...,n pj : n 2 N

0

}. As each pn  rn, we have
that ⌧P = ⌧R and also for all n 2 N

0

, f, g 2 C1([0, 1]) the following holds:

rn(fg) = max
j=0,...,n

pj(fg) = max
j=0,...,n

sup
x2[0,1]

|(D(n)fg)(x)|

 max
j=0,...,n

j
X

k=0

✓

j

k

◆

sup
x2[0,1]

|(D(j�k)f)(x)| sup
x2[0,1]

|(D(k)g)(x)|

 max
j=0,...,n

j
X

k=0

✓

j

k

◆

pj�k(f)pk(g)


 

max
j=0,...,n

j
X

k=0

✓

j

k

◆

!

rn(f)rn(g) = 2nrn(f)rn(g).

1Clearly, each Uk ⇢ A and so
S

k2N Uk ✓ A. Conversely, if x 2 A, then the continuity of

the left multiplication implies that there exists j 2 N such that xWj ✓ V and so x 2 r�1

b (V )
for all b 2 Wj , i.e. x 2

S

k2N Uk.
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