$r_{b}^{-1}(V):=\{a \in A: a b \in V\}$ is closed. For any $k \in \mathbb{N}$, set $U_{k}:=\bigcap_{b \in W_{k}} r_{b}^{-1}(V)$. Then each $U_{k}$ is closed and ${ }^{1} A=\bigcup_{k \in \mathbb{N}} U_{k}$.

Since $A$ is a Baire space by Proposition 3.1.13, we have that there exists $h \in \mathbb{N}$ such that $\dot{U}_{h} \neq \emptyset$. Therefore, there exists $x \in \stackrel{\circ}{U}_{h}$, i.e. there exists $j \in \mathbb{N}$ such that $x+W_{j} \subseteq U_{h}$. This in turn provides that

$$
U_{h}-U_{h} \supseteq x+W_{j}-x-W_{j}=W_{j}-W_{j} \supseteq W_{j} .
$$

Since $\mathcal{B}$ is a basis for the filter of neighbourhoods of the origin, we can find $m \in \mathbb{N}$ such that $W_{m} \subseteq W_{j} \cap W_{h}$ and therefore

$$
W_{m} W_{m} \subseteq W_{j} W_{h} \subseteq\left(U_{h}-U_{h}\right) W_{h}=U_{h} W_{h}-U_{h} W_{h} \subseteq V-V \subseteq W_{n}
$$

where in the last inclusion we have just used the definition of $U_{h}$. Hence, the multiplication in $A$ is jointly continuous.

## Example 3.1.17.

1) Let $\mathcal{C}^{\infty}([0,1])$ be the space of all real valued infinitely differentiable functions on $[0,1]$ equipped with pointwise operations. We endow the algebra $\mathcal{C}^{\infty}([0,1])$ with the topology $\tau_{\mathcal{P}}$ generated by $\mathcal{P}:=\left\{p_{n}: n \in \mathbb{N}_{0}\right\}$ with $p_{n}(f):=\sup _{x \in[0,1]}\left|\left(D^{(n)} f\right)(x)\right|$ for any $f \in \mathcal{C}^{\infty}([0,1])$ (here $D^{(n)} f$ denotes the $n$-th derivative of $f) . \mathcal{P}$ is a countable separating family of seminorms so $\left(\mathcal{C}^{\infty}([0,1]), \tau_{\mathcal{P}}\right)$ is a metrizable lc algebra but the seminorms in $\mathcal{P}$ are not submultiplicative since if for example we take $f(t):=t$ then $p_{1}\left(f^{2}\right)=2>1=p_{1}(f) p_{1}(f)$. However, we are going to show that $\tau_{\mathcal{P}}$ can be in fact generated by a countable separating family of submultiplicative seminorms and so it is actually an lmc algebra. First, let us consider the family $\mathcal{R}:=\left\{r_{n}:=\max _{j=0, \ldots, n} p_{j}: n \in \mathbb{N}_{0}\right\}$. As each $p_{n} \leq r_{n}$, we have that $\tau_{\mathcal{P}}=\tau_{\mathcal{R}}$ and also for all $n \in \mathbb{N}_{0}, f, g \in \mathcal{C}^{\infty}([0,1])$ the following holds:

$$
\begin{aligned}
r_{n}(f g) & =\max _{j=0, \ldots, n} p_{j}(f g)=\max _{j=0, \ldots, n} \sup _{x \in[0,1]}\left|\left(D^{(n)} f g\right)(x)\right| \\
& \leq \max _{j=0, \ldots, n} \sum_{k=0}^{j}\binom{j}{k} \sup _{x \in[0,1]}\left|\left(D^{(j-k)} f\right)(x)\right| \sup _{x \in[0,1]}\left|\left(D^{(k)} g\right)(x)\right| \\
& \leq \max _{j=0, \ldots, n} \sum_{k=0}^{j}\binom{j}{k} p_{j-k}(f) p_{k}(g) \\
& \leq\left(\max _{j=0, \ldots, n} \sum_{k=0}^{j}\binom{j}{k}\right) r_{n}(f) r_{n}(g)=2^{n} r_{n}(f) r_{n}(g) .
\end{aligned}
$$

[^0]Therefore, setting $q_{n}(f):=2^{n} r_{n}(f)$ for any $n \in \mathbb{N}_{0}$ and $f \in \mathcal{C}^{\infty}([0,1])$, we have that the family $\mathcal{Q}:=\left\{q_{n}: n \in \mathbb{N}_{0}\right\}$ is a countable family of submultiplicative seminorms such that $\tau_{\mathcal{Q}}=\tau_{\mathcal{R}}=\tau_{\mathcal{P}}$. Hence, $\left(\mathcal{C}^{\infty}([0,1]), \tau_{\mathcal{P}}\right)$ is a metrizable lmc algebra. Actually, it is also complete and so a Fréchet lmc algebra. Indeed, as it is metrizable we said it is enough to show sequentially complete. Let $\left(f_{n}\right)_{n \in \mathbb{N}}$ be a Cauchy sequence in $\left(\mathcal{C}^{\infty}([0,1]), \tau_{\mathcal{P}}\right)$, i.e. $\forall U \in \tau_{\mathcal{P}} \exists N \in \mathbb{N}$ s.t. $f_{n}-f_{m} \in U \forall n, m \geq N$. Thus,

$$
\begin{equation*}
\forall \varepsilon>0 \forall k \in \mathbb{N}_{0} \exists N \in \mathbb{N}: p_{k}\left(f_{n}-f_{m}\right) \leq \varepsilon \quad \forall n, m \geq N \tag{3.3}
\end{equation*}
$$

which yields

$$
\begin{equation*}
\forall \varepsilon>0 \exists N \in \mathbb{N}: \sup _{x \in[0,1]}\left|f_{n}(x)-f_{m}(x)\right| \leq \varepsilon \quad \forall n, m \geq N \tag{3.4}
\end{equation*}
$$

so that $\left(f_{n}(x)\right)_{n \in \mathbb{N}}$ is a Cauchy sequence in $\mathbb{R}$ for all $x \in[0,1]$. Since $\mathbb{R}$ is complete for all $x \in[0,1]$ there exists $y_{x} \in \mathbb{R}$ s.t. $f_{n}(x) \rightarrow y_{x}$ as $n \rightarrow \infty$. Set $f(x):=y_{x}$ for all $x \in[0,1]$, then $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges pointwise to $f$. The latter combined with (3.4) yields that $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges uniformly to $f$ which implies that $f \in \mathcal{C}([0,1])$ by [11, Lemma 1.2.2]. By (3.4) for $k=1$, we get $\left(\left(D^{(1)} f_{n}\right)(x)\right)_{n \in \mathbb{N}}$ is a Cauchy sequence in $\mathbb{R}$ for all $x \in[0,1]$ and reasoning as above $\left(D^{(1)} f_{n}\right)_{n \in \mathbb{N}}$ uniformly converges to some $g$ on $[0,1]$. By [11, Lemma 1.2.3], $g=D^{(1)} f$ and so $f \in \mathcal{C}^{1}([0,1])$. Proceeding by induction, we can show that $\left(D^{(j)} f_{n}\right)_{n \in \mathbb{N}}$ converges uniformly to $D^{(j)} f$ on $[0,1]$ and $f \in \mathcal{C}^{j}([0,1])$ for all $j \in \mathbb{N}_{0}$, i.e.

$$
\forall \varepsilon>0 \exists N \in \mathbb{N}: \sup _{x \in[0,1]}\left|D^{(j)} f_{n}(x)-D^{(j)} f(x)\right| \leq \varepsilon \quad \forall n, m \geq N .
$$

Therefore, $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges to $f \in \mathcal{C}^{\infty}([0,1])$ in $\tau_{\mathcal{P}}$. Hence, completeness is proven.

Note that we could have first proved completeness and then used Corollary 3.1.15 to show that $\left(\mathcal{C}^{\infty}([0,1]), \tau_{\mathcal{P}}\right)$ is $m$-barrelled. Then, observing that $\tau_{\mathcal{P}}=\tau_{\mathcal{R}}$ and that the seminorms in $\mathcal{R}$ are all absorbing, we could have applied Theorem 2.5.5 and concluded that $\left(\mathcal{C}^{\infty}([0,1]), \tau_{\mathcal{P}}\right)$ is an lmc algebra.
2) Let $\mathbb{K}^{\mathbb{N}}=\left\{\underline{a}=\left(a_{n}\right)_{n \in \mathbb{N}}: a_{n} \in \mathbb{K}\right\}$ be the space of all $\mathbb{K}$-valued sequences endowed $\mathbb{K}^{\mathbb{N}}$ with the topology $\tau_{\mathcal{P}}$ generated by $\mathcal{P}:=\left\{p_{n}: n \in \mathbb{N}\right\}$ with $p_{n}(\underline{a}):=\max _{k \leq n}\left|a_{k}\right|$ for any $\underline{a} \in \mathbb{K}^{\mathbb{N}}(n \in \mathbb{N})$. Since $\mathcal{P}$ is an increasing family of submultiplicative seminorms and separating, $\left(\mathbb{K}^{\mathbb{N}}, \tau_{\mathcal{P}}\right)$ is a
metrizable lmc algebra by Theorem 3.1.3. Indeed, if $\underline{a}, \underline{b} \in \mathbb{K}^{\mathbb{N}}$, then

$$
p_{n}(\underline{a b})=\max _{k \leq n}\left|a_{k} b_{k}\right| \leq \max _{k \leq n}\left|a_{k}\right| \max _{k \leq n}\left|b_{k}\right|=p_{n}(\underline{a}) p_{n}(\underline{b})
$$

for all $n \in \mathbb{N}$. Further, if $p_{n}(\underline{a})=0$ for all $n \in \mathbb{N}$, then

$$
\max _{k \leq n}\left|a_{k}\right|=0, \forall n \in \mathbb{N} \Rightarrow\left|a_{k}\right|=0, \forall k \in \mathbb{N} \Rightarrow a \equiv 0
$$

Moreover, $\left(\mathbb{K}^{\mathbb{N}}, \tau_{\mathcal{P}}\right)$ is sequentially complete and so complete (prove it yourself). Hence, it is a Fréchet lmc algebra.
3) The Arens-algebra $L^{\omega}([0,1]):=\bigcap_{p \geq 1} L^{p}([0,1])$ endowed with the topology $\tau_{\mathcal{P}}$ generated by $\mathcal{P}:=\left\{\|\cdot\|_{p}: p \geq \mathbb{N}\right\}$ is a Fréchet lc algebra which is not lmc. We have already showed that it is an lc algebra but not lmc. Metrizability comes from the fact that the family of seminorms is countable and increasing (Hölder-inequality). Proving completeness is more complicated which we will maybe see it later on.

### 3.2 Locally bounded algebras

The TAs we are going to study in this section were first introduced by W. Zelazko in the 1960's and provide non-trivial examples of TAs whose underlying space is not necessarily locally convex (so they are neither necessarily lc algebras nor lmc algebras) but they still share several nice properties of Banach and/or lmc algebras.
Definition 3.2.1. A TA is locally bounded (lb) if there exists a neighbourhood of the origin which is bounded. Equivalently, a locally bounded algebra is a TA which is in particular a locally bounded TVS (i.e. the space has a bounded neighbourhood of the origin).

Recall that:
Definition 3.2.2. A subset $B$ of a TVS $X$ is bounded if $\forall U \in \mathcal{F}(o) \exists \lambda>0$ s.t. $B \subseteq \lambda U$ (i.e. $B$ can be swallowed by any neighbourhood of the origin).

This generalizes the concept of boundedness we are used to in the theory of normed and metric spaces, where a subset is bounded whenever we can find a ball large enough to contain it.

Example 3.2.3. The subset $Q:=[0,1]^{2}$ is bounded in $\left(\mathbb{R}^{2},\|\cdot\|\right)$ as for any $\varepsilon>0$ there exists $\lambda>0$ s.t. $Q \subseteq \lambda B_{\varepsilon}(o)$ namely, if $\varepsilon \geq \sqrt{2}$ take $\lambda=1$, otherwise take $\lambda=\frac{\sqrt{2}}{\varepsilon}$.

Proposition 3.2.4. Every Hausdorff locally bounded algebra is metrizable.

Proof.
Let $(A, \tau)$ be a Hausdorff locally bounded algebra. Then there exists $U \in \mathcal{F}(o)$ bounded. W.l.o.g. we can assume that $U$ is balanced. Indeed, if this is not the case, then we can replace it by some $V \in \mathcal{F}(o)$ balanced s.t. $V \subseteq U$. Then the boundedness of $U$ provides that $\forall N \in \mathcal{F}(o) \exists \lambda>0$ s.t. $U \subseteq \lambda N$ and so $V \subseteq \lambda N$, i.e. $V$ is bounded and balanced.

The collection $\left\{\frac{1}{n} U: n \in \mathbb{N}\right\}$ is a countable basis of neighbourhoods of the origin $o$. In fact, for any $N \in \mathcal{F}(o)$ there exists $\lambda>0$ s.t. $U \subseteq \lambda N$, i.e. $\frac{1}{\lambda} U \subseteq N$, and so $\frac{1}{n} U \subseteq \frac{1}{\lambda} U$ for all $n \geq \lambda$ as $U$ is balanced. Hence, we obtain that for any $N \in \mathcal{F}(o)$ there exists $n \in \mathbb{N}$ such that $\frac{1}{n} U \subseteq N$. Then we can apply Theorem 3.1.2 which gives that $(A, \tau)$ is a metrizable algebra.

The converse is not true in general as for example the countable product of 1 -dimensional metrizable TVS is metrizable but not locally bounded.

Corollary 3.2.5. Every complete Hausdorff lb algebra has continuous multiplication.

Proof. Since local boundedness and Hausdorfness imply metrizability, Proposition 3.1.16, ensures that the multiplication is continuous.

The concept of lb TVS and so of lb TA can be characterized through extensions of the notion of norm, which will allow us to see how some results can be extended from Banach algebras to complete lb algebras.

Definition 3.2.6. Let $X$ be $a \mathbb{K}$-vector space. A map $\|\cdot\|: X \rightarrow \mathbb{R}^{+}$is said to be a quasi-norm if

1. $\forall x \in X:\|x\|=0 \Longleftrightarrow x=0$,
2. $\forall x \in X \forall \lambda \in \mathbb{K}:\|\lambda x\|=|\lambda|\|x\|$,
3. $\exists k \geq 1:\|x+y\| \leq k(\|x\|+\|y\|), \forall x, y \in X$.

If $k=1$ this coincides with the notion of norm.
Example 3.2.7. Let $0<p<1$ and consider the space $L^{p}([0,1])$ together with the map $\|\cdot\|_{p}: L^{p}([0,1]) \rightarrow \mathbb{R}^{+}$defined by $\|f\|_{p}:=\left(\int_{0}^{1}|f(x)|^{p} d x\right)^{\frac{1}{p}}$ for all $f \in L^{p}([0,1])$. Then the Minkowski inequality does not hold but we still have that $\|f+g\|_{p} \leq 2^{\frac{1-p}{p}}(\|f\|+\|g\|)$ for all $f, g \in L^{p}([0,1])$ and so that $\|\cdot\|_{p}$ is a quasi-norm.

Proposition 3.2.8. Let $(X, \tau)$ be a Hausdorff TVS. Then $(X, \tau)$ is lb if and only if $\tau$ is induced by a quasi-norm on $X$.

## Proof.

Assume $(X, \tau)$ is lb. Then there exists balanced and bounded $U \in \mathcal{F}(o)$ and $\mathcal{B}:=\{\alpha U: \alpha>0\}$ is a basis of neighbourhoods of the origin in $(X, \tau)$ because $\forall N \in \mathcal{F}(o) \exists \lambda>0$ s.t. $U \subseteq \lambda N \Rightarrow \mathcal{B} \ni \frac{1}{\lambda} U \subseteq N$. Consider the Minkowski functional $p_{U}(x):=\inf \{\alpha>0: x \in \alpha U\}$. In the proof of Lemma 2.2.7 we have already seen that if $U$ is absorbing and balanced, then $0 \leq p_{U}(x)<\infty$ and $p_{U}(\lambda x)=|\lambda| p_{U}(x)$ for all $x \in X$ and all $\lambda \in \mathbb{K}$. If $p_{U}(x)=0$, then $x \in \alpha U$ for all $\alpha>0$ and so $x \in \bigcap_{\alpha>0} \alpha U=\{o\}$, i.e. $x=o$. Since $X$ is a TVS, $\exists V \in \mathcal{F}(o)$ s.t. $V+V \subseteq U$ and also $\exists \alpha>0$ s.t. $\alpha U \subseteq V$ as $\mathcal{B}$ is a basis of neighbourhoods. Therefore, $\alpha U+\alpha U \subseteq V+V \subseteq U$ and taking $k \geq \max \left\{1, \frac{1}{\alpha}\right\}$, we obtain $U+U \subseteq \frac{1}{\alpha} U \subseteq k U$ as $U$ is balanced.

Let $x, y \in X$ and $\rho>p_{U}(x), \delta>p_{U}(y)$, then $x \in \rho U, y \in \delta U$ since $U$ is balanced, and so $\frac{x}{\rho}, \frac{y}{\delta} \in U$. Thus,

$$
\frac{x+y}{\rho+\delta}=\frac{\rho}{\rho+\delta} \frac{x}{\rho}+\frac{\delta}{\rho+\delta} \frac{y}{\delta} \in U+U \subseteq k U .
$$

and we obtain $x+y \in k(\rho+\delta) U$ which implies $p_{U}(x+y) \leq k(\rho+\delta)$. As $\rho>p_{U}(x)$ and $\delta>p_{U}(y)$ were chosen arbitrarily, we conclude $p_{U}(x+y) \leq$ $k\left(p_{U}(x)+p_{U}(y)\right)$. Hence, $p_{U}$ is a quasi-norm.

Let $B_{1}^{p_{U}}:=\left\{x \in X: p_{U}(x) \leq 1\right\}$. Then we have $U \subseteq B_{1}^{p_{U}} \subseteq(1+\varepsilon) U$ for all $\varepsilon>0$. Indeed, if $x \in U$, then $p_{U}(x) \leq 1$ and so $x \in B_{1}^{p_{U}}$. If $x \in B_{1}^{p_{U}}$, then $p_{U}(x) \leq 1$ and so $\forall \varepsilon>0 \exists \alpha$ with $\alpha \leq 1+\varepsilon$ s.t. $x \in \alpha U$. This gives that $x \in(1+\varepsilon) U$ as $U$ is balanced and so $\alpha U \subseteq(1+\varepsilon) U$. Since $\left\{\varepsilon B_{1}^{p_{U}}: \varepsilon>0\right\}$ is a basis of $\tau_{p_{U}}$, this implies $\tau=\tau_{p_{U}}$.
Conversely, assume that $\tau=\tau_{q}$ for a quasi-norm $q$ on $X$. The collection $\mathcal{B}:=\left\{\varepsilon B_{1}^{q}: \varepsilon>0\right\}$ is a basis of neighbourhoods of the originin $X$ (by Theorem 1.2.6). Let us just show that $\forall N \in \mathcal{F}^{q}(o) \exists V \in \mathcal{F}^{q}(o)$ s.t. $V+V \subseteq N$. Indeed, $\frac{1}{2 k} B_{1}^{q}+\frac{1}{2 k} B_{1}^{q} \subseteq B_{1}^{q}$ because if $x, y \in B_{1}^{q}$, then

$$
q\left(\frac{x+y}{2 k}\right)=\frac{1}{2 k} q(x+y) \leq \frac{k(q(x)+q(y))}{2 k} \leq \frac{2 k}{2 k}=1
$$

and so $\frac{x+y}{2 k} \in B_{1}^{q}$. Then for all $N \in \mathcal{F}^{q}(o)$ there is some $\varepsilon>0$ s.t. $\varepsilon B_{1}^{q} \subseteq N$ and so $\frac{\varepsilon}{2 k} B_{1}^{q}+\frac{\varepsilon}{2 k} B_{1}^{q} \subseteq \varepsilon B_{1}^{q} \subseteq N$. Since $\mathcal{B}$ is a basis for $\tau_{q}$, clearly $B_{1}^{q}$ is bounded: $\forall N \in \mathcal{F}^{q}(o) \exists \varepsilon>0$ s.t. $\varepsilon B_{1}^{q} \subseteq N$ which implies $B_{1}^{q} \subseteq \frac{1}{\varepsilon} N$. Therefore, $\tau_{q}$ is lb.

Using the previous proposition and equipping the space in Example 3.2.7 with pointwise multiplication, we get an example of lb but not lc algebra (see Sheet 5).
Definition 3.2.9. Let $X$ be a $\mathbb{K}$-vector space and $0<\alpha \leq 1$. A map $q: X \rightarrow$ $\mathbb{R}^{+}$is a an $\alpha$-norm if

1. $\forall x \in X: q(x)=0 \Longleftrightarrow x=0$,
2. $\forall x \in X \forall \lambda \in \mathbb{K}: q(\lambda x)=|\lambda|^{\alpha} q(x)$,
3. $\forall x, y \in X: q(x+y) \leq q(x)+q(y)$.

If $\alpha=1$, this coincides with the notion of norm.
Definition 3.2.10. A TVS $(X, \tau)$ is $\alpha$-normable if $\tau$ can be induced by an $\alpha$-norm for some $0<\alpha \leq 1$.

In order to understand how $\alpha$-norms relates to lb spaces we need to introduce a generalization of the concept of convexity.

Definition 3.2.11. Let $0<\alpha \leq 1$ and $X$ a $\mathbb{K}$-vector space.

- A subset $V$ of $X$ is $\alpha$-convex if for any $x, y \in V$ we have $t x+s y \in V$ for all $t, s>0$ such that $t^{\alpha}+s^{\alpha}=1$.
- A subset $V$ of $X$ is absolutely $\alpha$-convex if for any $x, y \in V$ we have $t x+s y \in V$ for all $t, s \in \mathbb{K}$ such that $|t|^{\alpha}+|s|^{\alpha} \leq 1$.
Proposition 3.2.12. Let $(X, \tau)$ be a TVS and $0<\alpha \leq 1$. Then $(X, \tau)$ is $\alpha$-normable if and only if there exists an $\alpha$-convex, bounded neighbourhood of the origin.

Proof. (next lecture!)
Corollary 3.2.13. Every $\alpha$-normable TVS is lb.
The converse also holds and in proving it the following notion turns out to be very useful.

Definition 3.2.14. If $(X, \tau)$ is lb TVS, then for any balanced, bounded, neighbourhood $U$ of the origin in $X$ we define

$$
C(U):=\inf \{\lambda: U+U \subseteq \lambda U\}
$$

Then the concavity module of $X$ is defined as follows

$$
C(X):=\inf \{C(U): U \text { balanced, bounded, neighbourhood of o in } X\} .
$$

Theorem 3.2.15. Let $(X, \tau)$ be a TVS. Then $(X, \tau)$ is lb if and only if $\tau$ is induced by some $\alpha$-norm for some $0<\alpha \leq 1$.

Proof. The sufficiency is given by the previous corollary. As for the necessity, it is possible to show that if $(X, \tau)$ is lb then there exists a bounded $\alpha$-convex neighbourhood of the origin for all $0<\alpha<\alpha_{0}$ where $\alpha_{0}:=\frac{\log 2}{\log C(X)}$ (see Sheet 5). Hence, the conclusion follows by Proposition 3.2.12.

In the context of lb algebras, it might happen that the $\alpha$-norm defining the topology is actually submultiplicative. This is actually the case if the considered algebra is complete.
Definition 3.2.16. An $\alpha$-normed algebra is a $\mathbb{K}$-algebra endowed with the topology induced by a submultiplicative $\alpha$-norm.

Theorem 3.2.17. Any lb complete algebra can be made into an $\alpha$-normed algebra for some $0<\alpha \leq 1$.

Proof. Sketch
Let $(X, \tau)$ be a complete lb algebra. For convenience let us assume that $X$ is unital but the proof can be adapted also to the non-unital case.

As $(X, \tau)$ is lb , Theorem 3.2.15 ensures that the exists $0<\alpha \leq 1$ such that $\tau$ is induced by an $\alpha-$ norm $q$. Consider the space $L(X)$ of all linear continuous operators on $X$ equipped with pointwise addition and scaler multiplication and with the composition as multiplication. Then the operator norm on $L(X)$ defined by $\|\ell\|:=\sup _{x \in X \backslash\{o\}} \frac{q(\ell(x))}{q(x)}$ for all $\ell \in L(X)$ is a submultiplicative $\alpha$-norm. Since $(X, q)$ is complete, it is possible to show that it is topologically isomorphic to $(L(X),\|\cdot\|)$. If we denote by $\varphi$ such an isomorphism, we then get that $(X, p)$ with $p(x):=\|\varphi(x)\|$ for all $x \in X$ is an $\alpha-$ normed algebra.


[^0]:    ${ }^{1}$ Clearly, each $U_{k} \subset A$ and so $\bigcup_{k \in \mathbb{N}} U_{k} \subseteq A$. Conversely, if $x \in A$, then the continuity of the left multiplication implies that there exists $j \in \mathbb{N}$ such that $x W_{j} \subseteq V$ and so $x \in r_{b}^{-1}(V)$ for all $b \in W_{j}$, i.e. $x \in \bigcup_{k \in \mathbb{N}} U_{k}$.

