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Introduction

The theory of topological algebras has its first roots in the famous works by
Gelfand on“normed rings” of 1939 (see [6, 7, 8, 9]) followed by about fifteen
years of successful activity on this subject which culminated in the publication
of the book dealing with the commutative theory and its applications. From
there the theory of normed and Banach algebras gained more and more im-
portance (see [10] for a thorough account) until, with the development of the
theories of topological rings and topological vector spaces, the investigation of
general topological algebras became unavoidable. On the one hand, there was
a great interest in better understanding which are the advantages of having
in the same structure both the properties of topological rings and topologi-
cal vector spaces. On the other hand it was desirable to understand how far
one can go beyond normed and Banach algebras still retaining their distin-
guished features. The need for such an extension has been apparent since the
early days of the theory of general topological algebras, more precisely with
the introduction of locally multiplicative convex algebras by Arens in [1] and
Michael in [21] (they introduced the notion independently). Moreover, it is
worth noticing that the previous demand was due not only to a theoretical
interest but also to concrete applications of this general theory to a variety of
other disciplines (such as quantum filed theory and more in general theoretical
physics). This double impact of the theory of topological algebras is probably
the reason for which, after almost 80 years from its foundation, this is still an
extremely active subject which is indeed recently enjoying very fast research
developments.

v





Chapter 1

General Concepts

In this chapter we are going to consider vector spaces over the field K of real
or complex numbers which is given the usual euclidean topology defined by
means of the modulus.

1.1 Brief reminder about algebras over a field

Let us first recall the basic vocabulary needed to discuss about algebras.

Definition 1.1.1. A K−algebra A is a vector space over K equipped with an
additional binary operation which is bilinear:

A×A → A
(a, b) 7→ a · b

called vector multiplication.

In other words, (A,+, ·) is a ring such that the vector operations are both
compatible with the multiplication by scalars in K.

If a K−algebra has an associative (resp. commutative) vector multipli-
cation then it is said to be an associative (resp. commutative ) K−algebra.
Furthermore, if a K−algebra A has an identity element for the vector multi-
plication (called the unity of A), then A is referred to as unital.

Examples 1.1.2.
1. The real numbers form a unital associative commutative R−algebra.
2. The complex numbers form a unital associative commutative R−algebra.
3. Given n ∈ N, the polynomial ring R[x1, . . . , xn] (real coefficients and n

variables) equipped with pointwise addition and multiplication is a unital
associative commutative R−algebra.
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1. General Concepts

4. The space C(X) of K−valued continuous function on a topological space
X equipped with pointwise addition and multiplication is a unital asso-
ciative commutative K−algebra.

5. Given n ∈ N, the ring Rn×n of real square matrices of order n equipped
with the standard matrix addition and matrix multiplication is a unital
associative R−algebra but not commutative.

6. The set of quaternions H := {a + bi + cj + dk : a, b, c, d ∈ R} equipped
with the componentwise addition and scalar multiplication is a real vector
space with basis {1, i, j, k}. Let us equip H with the Hamilton product
which is defined first on the basis elements by setting

i · 1 = 1 = 1 · i, j · 1 = 1 = 1 · j, k · 1 = 1 = 1 · k, i2 = j2 = k2 = −1

ij = k, ji = −k, jk = i, kj = −i, ki = j, ik = −j,

and then it is extended to all quaternions by using the distributive prop-
erty and commutativity with real quaternions. Note that the multiplica-
tion formulas are equivalent to i2 = j2 = k2 = ijk = −1.
Then H is a unital, associative but non-commutative R−algebra since
e.g. ij = k but ji = −k.

7. The three-dimensional Euclidean space R3 equipped with componentwise
addition and scalar multiplication and with the vector cross product
∧ as multiplication is a non-unital, non-associative, non-commutative
R−algebra. Non-associative since e.g. (i ∧ j) ∧ j = k ∧ j = −i but
i ∧ (j ∧ j) = i ∧ 0 = 0, non-commutative since e.g. i ∧ j = k but
j ∧ i = −k and non-unital because if there was a unit element u then for
any x ∈ R3 we would have u∧ x = x = x∧ u, which is equivalent to say
that x is perpendicular to itself and so that x = 0. (Here i = (1, 0, 0),
j = (0, 1, 0) and k = (0, 0, 1)).
If we replace the vector cross product by the componentwise multiplica-
tion then R3 becomes a unital associative commutative R−algebra with
unity (1, 1, 1).

Recall that:

Definition 1.1.3. Let A be a K−algebra. Then

1. A subalgebra B of A is a linear subspace of A closed under vector mul-
tiplication, i.e. ∀b, b′ ∈ B, bb′ ∈ B.

2. A left ideal (resp. right ideal) I of A is a linear subspace of A such that
∀a ∈ A,∀b ∈ I, ab ∈ I (resp. ∀a ∈ A,∀b ∈ I, ba ∈ I. An ideal of A is
a linear subspace of A which is simultaneously left and right ideal of A.
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3. A homomorphism between two K−algebras (A, ·) and (B, ∗) is a linear
map ϕ : A → B such that ϕ(a · b) = ϕ(a) ∗ ϕ(b) for all a, b ∈ A. Its
kernel Ker(ϕ) is an ideal of A and its image ϕ(A) is a subalgebra of
B. A homomorphism between two unital K−algebras has the additional
property that ϕ(1A) = 1B where 1A and 1B are respectively the unit
element in A and the unit element in B.

4. The vector space A1 = K×A equipped with the following operations:

(λ, a) + (µ, b) := (λ+ µ, a+ b), ∀λ, µ ∈ K, a, b ∈ A

µ(λ, a) := (µλ, µa), ∀λ, µ ∈ K, a ∈ A

(λ, a) · (µ, b) := (λµ, λb+ µa+ ab), ∀λ, µ ∈ K, a, b ∈ A

is called the unitization of A.

Proposition 1.1.4. A K−algebra A can be always embedded in its unitization
A1 which is a unital algebra.

Proof. It is easy to check that A1 fulfils the assumptions of K−algebra and
that the map

e : A→ A1, a 7→ (0, a)

is an injective homomorphism, i.e. a monomorphism. The unit element of
A1 is given by (1, o) as (λ, a) · (1, o) = (λ, a) = (1, o) · (λ, a), ∀λ ∈ K, a ∈ A.
Identifying a and e(a) for any a ∈ A, we can see A as a subalgebra of A1.

1.2 Definition and main properties of a topological algebra

Definition 1.2.1. A K−algebra A is called a topological algebra (TA)if A
is endowed with a topology τ which makes the vector addition and the scalar
multiplication both continuous and the vector multiplication separately contin-
uous. (Here K is considered with the euclidean topology and, A×A and K×A
with the corresponding product topologies.)

If the vector multiplication in a TA is jointly continuous then we just
speak of a TA with a continuous multiplication. Recall that jointly continuous
implies separately continuous but the converse is false in general. In several
books, the definition of TA is given by requiring a jointly continuous vector
multiplication but we prefer here the more general definition according to [18].

An alternative definition of TA can be given in connection to TVS. Let us
recall the definition:
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1. General Concepts

Definition 1.2.2. A vector space X over K is called a topological vector space
(TVS)if X is provided with a topology τ which is compatible with the vector
space structure of X, i.e. τ makes the vector addition and the scalar multi-
plication both continuous. (Here K is considered with the euclidean topology
and, X ×X and K×X with the corresponding product topologies.)

Then it is clear that

Definition 1.2.3. A topological algebra over K is a TVS over K equipped
with a separately continuous vector multiplication.

Therefore, TAs inherit all the advantageous properties of TVS. In the
following we will try to characterize topologies which make a K−algebra into
a TA. To do that we will make use of the results already available from the
theory of TVS and see the further properties brought in by the additional
structure of being a TA.

In this spirit, let us first recall that the topology of a TVS is always trans-
lation invariant that means, roughly speaking, that any TVS topologically
looks about any point as it does about any other point. More precisely:

Proposition 1.2.4.
The filter 1 F(x) of neighbourhoods of x in a TVS X coincides with the family
of the sets O + x for all O ∈ F(o), where F(o) is the filter of neighbourhoods
of the origin o (i.e. neutral element of the vector addition).

(see [15, Corollary 2.1.9]]). This result easily implies that:

Proposition 1.2.5. Let X,Y be two t.v.s. and f : X → Y linear. The map
f is continuous if and only if f is continuous at the origin o.

Proof. (see [15, Corollary 2.1.15-3]]).

Thus, the topology of a TVS (and in particular the one of a TA) is com-
pletely determined by the filter of neighbourhoods of any of its points, in
particular by the filter of neighbourhoods of the origin o or, more frequently,
by a base of neighbourhoods of the origin o. We would like to derive a criterion
on a collection of subsets of a K−algebra A which ensures that it is a basis of
neighbourhoods of the origin o for some topology τ making (A, τ) a TA. To
this aim let us recall the following result from TVS theory:

1 A filter on a set X is a family F of subsets of X which fulfils the following conditions:
(F1) the empty set ∅ does not belong to F
(F2) F is closed under finite intersections
(F3) any subset of X containing a set in F belongs to F
(c.f. [15, Section 1.1.1]]).
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1.2. Definition and main properties of a topological algebra

Theorem 1.2.6. A filter F of a vector space X over K is the filter of neigh-
bourhoods of the origin for some topology τ making X into a TVS iff

1. The origin belongs to every set U ∈ F
2. ∀U ∈ F , ∃V ∈ F s.t. V + V ⊂ U
3. ∀U ∈ F , ∀λ ∈ K with λ 6= 0 we have λU ∈ F
4. ∀U ∈ F , U is absorbing.
5. ∀U ∈ F , ∃V ∈ F balanced s.t. V ⊂ U .

Proof. (see [15, Theorem 2.1.10]).

Recall that:

Definition 1.2.7. Let U be a subset of a vector space X.
1. U is absorbing (or radial) if ∀x ∈ X ∃ρ > 0 s.t. ∀λ ∈ K with |λ| ≤ ρ

we have λx ∈ U .
2. U is balanced (or circled) if ∀x ∈ U , ∀λ ∈ K with |λ| ≤ 1 we have

λx ∈ U .

(see also [15, Examples 2.1.12, Proposition 2.1.13]).
A first interesting consequence of Theorem 1.2.6 for TA is that

Lemma 1.2.8. For a TVS to be a TA with continuous multiplication it is
necessary and sufficient that the vector multiplication is jointly continuous at
the point (o, o).

Proof.
If A is a TA with continuous multiplication, then clearly the multiplication is
jointly continuous everywhere and so in particular at (o, o). Conversely, let
A be a TVS with multiplication M jointly continuous at the point (o, o) and
denote by F(o) the filter of neighbourhoods of the origin in A. Let (o, o) 6=
(a, b) ∈ A × A and U ∈ F(o). Then Theorem 1.2.6 guarantees that there
exists V ∈ F(o) balanced and such that V + V + V ⊂ U . Moreover, the joint
continuity of the multiplication at (o, o) gives that there exists U1, U2 ∈ F(0)
such that U1U2 ⊂ V . Taking W := U1 ∩ U2 we have WW ⊆ V . Also, since
W is absorbing, there exists ρ > 0 s.t. for all λ ∈ K with |λ| ≤ ρ we have

λa ∈W , λb ∈W . For θ :=

{
ρ if ρ ≤ 1
1
ρ if ρ > 1

, we have both |θ| ≤ 1 and |θ| ≤ ρ.

Hence,

(a+ θW )(b+ θW ) ⊆ ab+ aθW +Wθb+ θ2WW ⊆ ab+WW +WW + θ2V

⊆ ab+ V + V + V ⊆ ab+ U.

We showed that ∃N ∈ F(o) such that M−1(ab+U) ⊇ (a+N)×(b+N) which
proves that joint continuity of M at the point (a, b).
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1. General Concepts

We are now ready to give a characterization for a basis2 of neighbourhoods
of the origin in a TA (resp. TA with continuous multiplication).

Theorem 1.2.9. A non-empty collection B of subsets of a K−algebra A is a
basis of neighbourhoods of the origin for some topology making A into a TA if
and only if

a) B is a basis of neighbourhoods of o for a topology making A into a TVS.

b) ∀U ∈ B, ∀a ∈ A, ∃V,W ∈ B s.t. aV ⊆ U and Wa ⊆ U .

Proof.
Let (A, τ) be a TA and B be a basis of neighbourhoods of the origin of A.
Then (A, τ) is in particular a TVS and so (a) holds. Also by definition of TA,
the multiplication is separately continuous which means for any a ∈ A the
maps La(y) = ay and Ra(y) = ya are both continuous everywhere in A. Then
by Proposition 1.2.5 they are continuous at o, i.e. ∀U ∈ B, ∀a ∈ A, ∃V,W ∈ B
s.t. V ⊂ L−1

a (U) and W ⊂ R−1
a (U), i.e. aV ⊆ U and Wa ⊆ U , that is (b).

Conversely, suppose that B is a collection of subsets of a K−algebra A
fulfilling (a) and (b). Then (a) guarantees that there exists a topology τ having
B as basis of neighbourhoods of o and such that (A, τ) is a TVS. Hence, as
we have already observed, (b) means that both La and Ra are continuous at o
and so by Proposition 1.2.5 continuous everywhere. This yields that the vector
multiplication on A is separately continuous and so that (A, τ) is a TA.

Theorem 1.2.10. A non-empty collection B of subsets of a K−algebra A is
a basis of neighbourhoods of the origin for some topology making A into a TA
with continuous multiplication if and only if

a) B is a basis of neighbourhoods of o for a topology making A into a TVS.

b’) ∀U ∈ B,∃V ∈ B s.t. V V ⊆ U .

Proof. (Sheet 1).

Examples 1.2.11.

1. Every K−algebra A endowed with the trivial topology τ (i.e. τ = {∅, A})
is a TA.

2A family B of subsets of X is called a basis of a filter F if

1. B ⊆ F
2. ∀A ∈ F , ∃B ∈ B s.t. B ⊆ A

or equivalently if ∀A,B ∈ B, ∃C ∈ B s.t. C ⊆ A ∩B (c.f. [15, Section 1.1.1])
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1.2. Definition and main properties of a topological algebra

2. Let S be a non-emptyset and KS be the set of all functions from S to
K equipped with pointwise operations and the topology ω of pointwise
convergence (or simple convergence), i.e. the topology generated by

B := {Wε(x1, . . . , xn) : n ∈ N, x1, . . . , xn ∈ S, ε > 0},

where Wε(x1, . . . , xn) := {f ∈ KS : f(xi) ∈ Bε(0), i = 1, . . . , n} and
Bε(0) = {k ∈ K : |k| ≤ ε}. Then (KS , ω) is a TA with continuous
multiplication. Indeed, for any n ∈ N, x1, . . . , xn ∈ S, ε > 0 we have that

W√ε(x1, . . . , xn)W√ε(x1, . . . , xn)={fg : f(xi), g(xi) ∈ B√ε(0), i = 1, . . . , n}
⊆{h : h(xi) ∈ Bε(0), i = 1, . . . , n}
=Wε(x1, . . . , xn).

As it is also easy to show that (KS , ω) is a TVS, the conclusion follows
by Theorem 1.2.10.

Two fundamental classes of TA are the following ones:

Definition 1.2.12 (Normed Algebra). A normed algebra is a K−algebra A
endowed with the topology induced by a submultiplicative norm ‖·‖, i.e. ‖xy‖ ≤
‖x‖‖y‖, ∀x, y ∈ A.

Definition 1.2.13 (Banach Algebra). A normed algebra whose underlying
space is Banach (i.e. complete normed space) is said to be a Banach algebra.

Proposition 1.2.14. Any normed algebra is a TA with continuous multipli-
cation.

Proof.
Let (A, ‖ · ‖) be a normed algebra. It is easy to verify that the topology
τ induced by the norm ‖ · ‖ (i.e. the topology generated by the collection
B := {Bε(o) : ε > 0}, where Bε(o) := {x ∈ A : ‖x‖ ≤ ε}) makes A into a
TVS. Moreover, the submultiplicativity of the norm ‖ · ‖ ensures that for any
ε > 0 we have: B√ε(o)B

√
ε(o) ⊆ Bε(o). Hence, B fulfills both a) and b’) in

Theorem 1.2.10 and so we get the desired conclusion.

Examples 1.2.15.

1. Let n ∈ N. Kn equipped with the componentwise operations of addi-
tion, scalar and vector multiplication, and endowed with the supremum
norm ‖x‖ := maxi=1,...,n |xi| for all x := (x1, . . . , xn) ∈ Kn is a Banach
algebra.
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1. General Concepts

2. Let n ∈ N. The algebra Rn×n of all real square matrices of order n
equipped with the following norm is a Banach algebra:

‖A‖ := sup
x∈Rn\{o}

|Ax|
|x|

,∀A ∈ Rn×n,

where | · | is the usual euclidean norm on Rn. Indeed, from the previous
example it is easy to see that (Rn×n, ‖ · ‖) is a Banach space. Also, for
any A,B ∈ Rn×n we have that:

‖AB‖ = sup
x∈Rn\{o}

|A(Bx)|
|x|

≤ ‖A‖ sup
x∈Rn\{o}

|Bx|
|x|

= ‖A‖‖B‖.

3. Let (X, τ) be a topological space and Cc(X) the set of all K−valued con-
tinuous functions with compact support. If we equip Cc(X) with the
pointwise operations and the supremum norm ‖f‖ := supx∈X |f(x)|, then
(Cc(X), ‖ · ‖) is a Banach algebra.

Before coming back to general TA, let us observe a further nice property
of normed and so of Banach algebras, which will allow us to assume w.l.o.g.
that in a unital normed algebra the unit has always unitary norm.

Proposition 1.2.16. If (A, p) is a unital normed algebra with unit 1A, then
there always exists a subultiplicative norm q on A equivalent to p and such
that q(1A) = 1.

Proof. Suppose that p(1A) 6= 1 and define

q(a) := sup
x∈A\{o}

p(ax)

p(x)
, ∀a ∈ A.

Immediately from the definition, we see that q(1A) = 1 and p(ay) ≤ q(a)p(y)
for all a, y ∈ A. The latter implies at once that

p(a) = p(a1A) ≤ q(a)p(1A), ∀a ∈ A (1.1)

and

q(ab) = sup
x∈A\{o}

p(abx)

p(x)
≤ sup

x∈A\{o}

q(a)p(bx)

p(x)
= q(a)q(b), ∀a, b ∈ A. (1.2)

Moreover, since p is submultiplicative, we have that for all a ∈ A

q(a) ≤ sup
x∈A\{o}

p(a)p(x)

p(x)
= p(a).

The latter together with (1.1) guarantees that q is equivalent to p, while (1.2)
its submultiplicativity.
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So far we have seen only examples of TA with continuous multiplication.
In the following example, we will introduce a TA whose multiplication is sep-
arately continuous but not jointly continuous.

Example 1.2.17.
Let (H, 〈·, ·, 〉) be an infinite dimensional separable Hilbert space over K. De-
note by ‖ · ‖H the norm on H defined as ‖x‖H :=

√
〈x, x〉 for all x ∈ H, and

by L(H) the set of all linear and continuous maps from H to H. The set L(H)
equipped with the pointwise addition a, the pointwise scalar multiplication m

and the composition of maps ◦ as multiplication is a K−algebra.

Let τw be the weak operator topology on L(H), i.e. the coarsest topology
on L(H) such that all the maps Ex,y : L(H)→ K, T 7→ 〈Tx, y〉 (x, y ∈ H) are
continuous. A basis of neighbourhoods of the origin in (L(H), τw) is given by:

Bw := {Vε(xi, yi, n) : ε > 0, n ∈ N, x1, . . . , xn, y1, . . . , yn ∈ H} ,

where Vε(xi, yi, n) := {W ∈ L(H) : |〈Wxi, yi〉| < ε, i = 1, . . . , n}.

• (L(H), τw) is a TA.
For any ε > 0, n ∈ N, x1, . . . , xn, y1, . . . , yn ∈ H, using the bilinearity of the
inner product we easily have:

V ε
2
(xi, yi, n)× V ε

2
(xi, yi, n) =

n⋂
i=1

{
(T, S) : |〈Txi, yi〉| <

ε

2
, |〈Sxi, yi〉| <

ε

2

}
⊆

n⋂
i=1

{(T, S) : |〈(T + S)xi, yi〉| < ε}

= {(T, S) : (T + S) ∈ Vε(xi, yi, n)}
= a

−1(Vε(xi, yi, n)),

B1(0)× Vε(xi, yi, n) =
n⋂
i=1

{(λ, T ) ∈ K× L(H) : |λ| < 1, |〈Txi, yi〉| < ε}

⊆
n⋂
i=1

{(λ, T ) : |〈(λT )xi, yi〉| < ε} = m
−1(Vε(xi, yi, n))

which prove that a and m are both continuous. Hence, (L(H), τw) is a TVS.

Furthermore, we can show that the multiplication in (L(H), τw) is sepa-
rately continuous. For a fixed T ∈ L(H) denote by T ∗ the adjoint of T and
set zi := T ∗yi for i = 1, . . . , n. Then

T ◦ Vε(xi, zi, n) = {T ◦ S : |〈Sxi, zi〉| < ε, i = 1, . . . , n}
⊆ {W ∈ L(H) : |〈Wxi, yi〉| < ε, i = 1, . . . , n} = Vε(xi, yi, n),
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1. General Concepts

where in the latter inequality we used that

|〈(T ◦ S)xi, yi〉| = |〈T (Sxi), yi〉| = |〈Sxi, T ∗yi〉| = |〈Sxi, zi〉| < ε.

Similarly, we can show that Vε(xi, zi, n) ◦ T ⊆ Vε(xi, yi, n). Hence, Bw fulfills
a) and b) in Theorem 1.2.9 and so we have that (L(H), τw) is a TA.

• the multiplication in (L(H), τw) is not jointly continuous.
Let us preliminarily observe that a sequence (Wj)j∈N of elements in L(H)

converges to W ∈ L(H) w.r.t. τw, in symbols Wj
τw→ W , if and only if for

all x, y ∈ H we have 〈Wjx, y〉 → 〈Wx, y〉3. As H is separable, there exists
a countable orthonormal basis {ek}k∈N for H. Define S ∈ L(H) such that
S(e1) := o and S(ek) := ek−1 for all k ∈ N with k ≥ 2. Then the operator

Tn := Sn =

(
S ◦ · · · ◦ S︸ ︷︷ ︸
n times

)
, n ∈ N (1.3)

is s.t. Tn
τw→ o as n→∞. Indeed, ∀x ∈ H, ∃!λk ∈ K : x =

∑∞
k=1 λkek

4 so

‖Tnx‖ =

∥∥∥∥∥
∞∑
k=1

λkTn(ek)

∥∥∥∥∥ =

∥∥∥∥∥
∞∑

k=n+1

λkTn(ek)

∥∥∥∥∥ =

∥∥∥∥∥
∞∑

k=n+1

λkek−n

∥∥∥∥∥
=

∥∥∥∥∥
∞∑
k=1

λk+nek

∥∥∥∥∥ 4

=
∞∑
k=1

|λk+n|2 =
∞∑

k=n+1

|λk|2→0, as n→∞

which implies that 〈Tnx, y〉 → 0 as n→∞ since |〈Tnx, y〉| ≤ ‖Tnx‖‖y‖.
Moreover, the adjoint of S is the continuous linear operator S∗ : H → H

such that S∗(ek) = ek+1 for all k ∈ N. Hence, for any n ∈ N we have that
T ∗n = (Sn)∗ = (S∗)n and we can easily show that also T ∗n

τw→ o. In fact, for
any x, y ∈ Hwe have that |〈T ∗nx, y〉| = |〈x, Tny〉| ≤ ‖x‖‖Tny‖ → 0 as n → ∞.
However, we have S∗S = I where I denotes the identity map on H, which
gives in turn that T ∗n ◦ Tn = I for any n ∈ N. Hence, for any n ∈ N and any
x, y ∈ H we have that 〈(T ∗n ◦ Tn)x, y〉 = 〈x, y〉 and so that T ∗n ◦ Tn 6

τw→ o as
n→∞, which proves that ◦ is not jointly continuous.

3Indeed, we have

Wj
τw→W ⇐⇒ ∀ε > 0, n ∈ N, xi, yi ∈ H, ∃j̄ ∈ N : ∀j ≥ j̄,Wj −W ∈ Vε(xi, yi, n)

⇐⇒ ∀ε > 0, n ∈ N, xi, yi ∈ H, ∃j̄ ∈ N : ∀j ≥ j̄, |〈(Wj −W )xi, yi〉| < ε

⇐⇒ ∀n ∈ N, xi, yi ∈ H, 〈(Wj −W )xi, yi〉 → 0, as j →∞
⇐⇒ ∀x, y ∈ H, 〈(Wj −W )x, y〉 → 0, as j →∞.

4Recall that if {hi}i∈I is an orthonormal basis of a Hilbert space H then for each y ∈ H
y =

∑
i∈I〈y, hi〉hi and ‖y‖2 =

∑
i∈I |〈y, hi〉|

2 (see e.g. [22, Theorem II.6] for a proof)
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1.2. Definition and main properties of a topological algebra

Let τs be the strong operator topology or topology of pointwise con-
vergence on L(H), i.e. the coarsest topology on L(H) such that all the maps
Ex : L(H)→ H,T 7→ Tx (x ∈ H) are continuous. A basis of neighbourhoods
of the origin in (L(H), τs) is given by:

Bs := {Uε(xi, n) : ε > 0, n ∈ N, x1, . . . , xn ∈ H} ,

where Uε(xi, n) := {T ∈ L(H) : ‖Txi‖H < ε, i = 1, . . . , n}.

• (L(H), τs) is a TA.
For any r > 0, denote by Br(o) (resp. Br(0)) the open unit ball centered at o
in H (resp. at 0 in K). Then for any ε > 0, n ∈ N, x1, . . . , xn ∈ H we have:

U ε
2
(xi, n)× U ε

2
(xi, n) =

{
(T, S) : Txi, Sxi ∈ B ε

2
(o), i = 1, . . . , n

}
⊆ {(T, S) : ‖(T + S)xi‖H < ε, i = 1, . . . , n}
= {(T, S) : (T + S) ∈ Uε(xi, n)} = a

−1(Uε(xi, n))

B1(0)× Uε(xi, n) = {(λ, T ) ∈ K× L(H) : |λ| < 1, ‖Txi‖H < ε, i = 1, . . . , n}
⊆ {(λ, T ) : ‖(λT )xi‖H < ε, i = 1, . . . , n} = m

−1(Uε(xi, n))

which prove that a and m are both continuous.
Furthermore, we can show that the multiplication in (L(H), τs) is sepa-

rately continuous. Fixed T ∈ L(H), its continuity implies that T−1(Bε(o)) is
a neighbourhood of o in H and so that there exists η > 0 such that Bη(o) ⊆
T−1(Bε(o)). Therefore, we get:

T ◦ Uη(xi, n) = {T ◦ S : S ∈ L(H) with Sxi ∈ Bη(o), i = 1, . . . , n}
⊆ {W ∈ L(H) : Wxi ∈ Bε(o), i = 1, . . . , n}
= Uε(xi, n),

where in the latter inequality we used that

(T ◦ S)xi = T (Sxi) ∈ T (Bη(o)) ⊆ T (T−1(Bε(o))) ⊆ Bε(o).

Similarly, we can show that Uη(xi, n) ◦ T ⊆ Uε(xi, n). Hence, Bs fulfills a)
and b) in Theorem 1.2.9 and so we have that (L(H), τs) is a TA.

• the multiplication in (L(H), τs) is not jointly continuous
It is enough to show that there exists a neighbourhood of the origin in (L(H), τs)
which does not contain the product of any other two such neighbourhoods.
More precisely, we will show ∃ ε > 0, ∃x0 ∈ H s.t. ∀ε1, ε2 > 0, ∀p, q ∈ N,

11



1. General Concepts

∀x1, . . . , xp, y1, . . . , yq ∈ H we have Uε1(xi, p) ◦ Uε2(yi, q) 6⊆ Uε(x0), i.e. there
exist A ∈ Uε1(xi, p) and B ∈ Uε2(yi, q) with B ◦A /∈ Uε(x0).

Choose 0 < ε < 1 and x0 ∈ H s.t. ‖x0‖ = 1. For any ε1, ε2 > 0, p, q ∈ N,
x1, . . . , xp, y1, . . . , yq ∈ H, take

0 < δ <
ε2

max
i=1,...,q

‖yi‖
(1.4)

and n ∈ N such that

‖Tn(xk)‖ < δε1, for k = 1, . . . , p, (1.5)

where Tn is defined as in (1.3). (Note that we can choose such an n as we
showed above that ‖Tjx‖ → 0 as j →∞). Setting A := 1

δTn and B := δT ∗n we
get that:

‖Axk‖ =
1

δ
‖Tnxk‖

(1.5)
< ε1, for k = 1, . . . , p

and

‖Byi‖ = δ‖T ∗nyi‖
(4)
= δ‖yi‖

(1.4)
< ε2, for i = 1, . . . , q.

Hence, A ∈ Uε1(xi, p) and B ∈ Uε2(yi, q) but B ◦A /∈ Uε(x0) because

‖(B ◦A)x0‖ = ‖(T ∗nTn)x0‖ = ‖x0‖ = 1 > ε.

Note that L(H) endowed with the operator norm ‖·‖ is instead a normed
algebra and so has jointly continuous multiplication. Recall that the operator
norm is defined by ‖T‖ := sup

x∈H\{o}

‖Tx‖H
‖x‖H , ∀T ∈ L(H).

1.3 Hausdorffness and unitizations of a TA

Topological algebras are in particular topological spaces so their Hausdorfness
can be established just by verifying the usual definition of Hausdorff topolog-
ical space.

Definition 1.3.1. A topological space X is said to be Hausdorff or (T2) if
any two distinct points of X have neighbourhoods without common points; or
equivalently if two distinct points always lie in disjoint open sets.

However, a TA is more than a mere topological space but it is also a TVS.
This provides TAs with the following characterization of their Hausdorfness
which holds in general for any TVS.

12



1.3. Hausdorffness and unitizations of a TA

Proposition 1.3.2. For a TVS X the following are equivalent:

a) X is Hausdorff.

b) {o} is closed in X.

c) The intersection of all neighbourhoods of the origin o is just {o}.
d) ∀ o 6= x ∈ X, ∃U ∈ F(o) s.t. x /∈ U .

Since the topology of a TVS is translation invariant, property (d) means
that the TVS is a (T1)5topological space. Recall for general topological spaces
(T2) always implies (T1), but the converse does not always hold (c.f. Exam-
ple 1.1.41-4 in [15]). However, Proposition 1.3.2 ensures that for TVS and so
for TAs the two properties are equivalent.

Proof.
Let us just show that (d) implies (a) (for a complete proof see [15, Proposi-
tion 2.2.3, Corollary 2.2.4] or even better try it yourself!).

Suppose that (d) holds and let x, y ∈ X with x 6= y, i.e. x− y 6= o. Then
there exists U ∈ F(o) s.t. x− y /∈ U . By (2) and (5) of Theorem 1.2.6, there
exists V ∈ F(o) balanced and s.t. V + V ⊂ U . Since V is balanced V = −V
then we have V −V ⊂ U . Suppose now that (V +x)∩ (V +y) 6= ∅, then there
exists z ∈ (V + x) ∩ (V + y), i.e. z = v + x = w + y for some v, w ∈ V . Then
x−y = w− v ∈ V −V ⊂ U and so x−y ∈ U which is a contradiction. Hence,
(V + x) ∩ (V + y) = ∅ and by Proposition 1.2.4 we know that V + x ∈ F(x)
and V + y ∈ F(y). Hence, X is Hausdorff.

We have already seen that a K−algebra can be always embedded in a unital
one, called unitization see Definition 1.1.3-4) . In the rest of this section, we
will discuss about which topologies on the unitization of a K−algebra makes
it into a TA. To start with, let us look at normed algebras.

Proposition 1.3.3. If A is a normed algebra, then there always exists a norm
on its unitization A1 making both A1 into a normed algebra and the canonical
embedding an isometry. Such a norm is called a unitization norm.

Proof.
Let (A, ‖ · ‖) be a normed algebra and A1 = K×A its unitization. Define

‖(k, a)‖1 := |k|+ ‖a‖, ∀k ∈ K, a ∈ A.
5 A topological space X is said to be (T1) if, given two distinct points of X, each lies

in a neighborhood which does not contain the other point; or equivalently if, for any two
distinct points, each of them lies in an open subset which does not contain the other point.

13



1. General Concepts

Then ‖(1, o)‖1 = 1 and it is straightforward that ‖ · ‖1 is a norm on A1 since
| · | is a norm on K and ‖ · ‖ is a norm on A. Also, for any λ, k ∈ K, a, b ∈ A
we have:

‖(k, a)(λ, b)‖1 = ‖(kλ, ka+ λb+ ab)‖1 = |kλ|+ ‖ka+ λb+ ab‖
≤ |k||λ|+ k‖a‖+ λ‖b‖+ ‖a‖‖b‖ = |k|(|λ|+ ‖b‖) + ‖a‖(|λ|+ ‖b‖)
= (|k|+ ‖a‖)(|λ|+ ‖b‖) = ‖(k, a)‖1‖(λ, b)‖1.

This proves that (A1, ‖·‖1) is a unital normed algebra. Moreover, the canonical
embedding e : A→ A1, a 7→ (0, a) is an isometry because ‖e(a)‖1 = |0|+‖a‖ =
‖a‖ for all a ∈ A. This in turn gives that e is continuous and so a topological
embedding.

Remark 1.3.4. Note that ‖ · ‖1 induces the product topology on A1 given by
(K, | · |) and (A, ‖ · ‖) but there might exist other unitization norms on A1 not
necessarily equivalent to ‖ · ‖1 (see Sheet 1, Exercise 3).

The latter remark suggests the following generalization of Proposition 1.3.3
to any TA.

Proposition 1.3.5. Let A be a TA. Its unitization A1 equipped with the cor-
responding product topology is a TA and A is topologically embedded in A1.
Note that A1 is Hausdorff if and only if A is Hausdorff.

Proof. Suppose (A, τ) is a TA. By Proposition 1.1.4, we know that the unitiza-
tion A1 of A is a K−algebra. Moreover, since (K, |·|) and (A, τ) are both TVS,
we have that A1 := K×A endowed with the corresponding product topology
τprod is also a TVS. Then the definition of multiplication in A1 together with
the fact that the multiplication in A is separately continuous imply that the
multiplication in A1 is separately continuous, too. Hence, (A1, τprod) is a TA.

The canonical embedding e of A in A1 is then a continuous monomor-
phism, since for any U neighbourhood of (0, o) in (A1, τprod) there exist ε > 0
and a neighbourhood V of o in (A, τ) such that Bε(0) × V ⊆ U and so
V = e

−1(Bε(0) × V ) ⊆ e
−1(U). Hence, (A, τ) is topologically embedded

in (A1, τprod).
Finally, recall that the cartesian product of topological spaces endowed

with the corresponding product topology is Hausdorff iff each of them is Haus-
dorff. Then, as (K, | · |) is Hausdorff, it is clear that (A1, τprod) is Hausdorff iff
(A, τ) is Hausdorff. 6

6Alternative proof:

A Hausdorff
1.3.2⇐⇒ {o} closed in A

{0}closed in K⇐⇒ {(0, o)} closed in A1
1.3.2⇐⇒ (A1, τprod) Hausdorff.
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1.4. Subalgebras and quotients of a TA

If A is a TA with continuous multiplication, then A1 endowed with the
corresponding product topology is also a TA with continuous multiplication.
Moreover, from Remark 1.3.4, it is clear that the product topology is not the
unique one making the unitization of a TA into a TA itself.

1.4 Subalgebras and quotients of a TA

In this section we are going to see some methods which allow us to construct
new TAs from a given one. In particular, we will see under which conditions
the TA structure is preserved under taking subalgebras and quotients.

Let us start with an immediate application of Theorem 1.2.9.

Proposition 1.4.1. Let X be a K−algebra, (Y, ω) a TA (resp. TA with con-
tinuous multiplication) over K and ϕ : X → Y a homomorphism. Denote
by Bω a basis of neighbourhoods of the origin in (Y, ω). Then the collection
B := {ϕ−1(U) : U ∈ Bω} is a basis of neighbourhoods of the origin for a
topology τ on X such that (X, τ) is a TA (resp. TA with continuous multipli-
cation).

The topology τ constructed in the previous proposition is usually called
initial topology or inverse image topology induced by ϕ.

Proof.
We first show that B is a basis for a filter in X.

For any B1, B2 ∈ B, we have B1 = ϕ−1(U1) and B2 = ϕ−1(U2) for some
U1, U2 ∈ Bω. Since Bω is a basis of the filter of neighbourhoods of the origin in
(Y, ω), there exists U3 ∈ Bω such that U3 ⊆ U1 ∩ U2 and so B3 := ϕ−1(U3) ⊆
ϕ−1(U1) ∩ ϕ−1(U2) = B1 ∩B2 and clearly B3 ∈ B.

Now consider the filter F generated by B. For any M ∈ F , there exists
U ∈ Bω such that ϕ−1(U) ⊆M and so we have the following:

1. oY ∈ U and so oX ∈ ϕ−1(oY ) ∈ ϕ−1(U) = M .
2. by Theorem 1.2.6-2 applied to the TVS (Y, ω), we have that there exists
V ∈ Bω such that V + V ⊆ U . Hence, setting N := ϕ−1(V ) ∈ F we
have N +N ⊆ ϕ−1(V + V ) ⊆ ϕ−1(U) = M .

3. by Theorem 1.2.6-3 applied to the TVS (Y, ω), we have that for any
λ ∈ K \ {0} there exists V ∈ Bω such that V ⊆ λU . Therefore, setting
N := ϕ−1(V ) ∈ B we have N ⊆ ϕ−1(λU) = λϕ−1(U) ⊆ λM , and so
λM ∈ F .

4. For any x ∈ X there exists y ∈ Y such that x = ϕ−1(y). As U is
absorbing (by Theorem 1.2.6-4 applied to the TVS (Y, ω)), we have
that there exists ρ > 0 such that λy ∈ U for all λ ∈ K with |λ| ≤ ρ.
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1. General Concepts

This yields λx = λϕ−1(y) = ϕ−1(λy) ∈ ϕ−1(U) = M and hence, M is
absorbing in X.

5. by Theorem 1.2.6-5 applied to the TVS (Y, ω), we have that there exists
V ∈ Bω balanced such that V ⊆ U . By the linearity of ϕ also ϕ−1(V ) is
balanced and so, setting N := ϕ−1(V ) we have N ⊆ ϕ−1(U) = M .

Therefore, we have showed that F fulfills itself all the 5 properties of Theorem
1.2.6 and so it is a filter of neighbourhoods of the origin for a topology τ making
(X, τ) a TVS.

Furthermore, for any x ∈ X and any B ∈ B we have that there exist
y ∈ Y and U ∈ Bω such that x = ϕ−1(y) and B = ϕ−1(U). Then, as (Y, ω)
is a TA, Theorem 1.2.9 guarantees that there exist V1, V2 ∈ Bω such that
yV1 ⊆ U and V2y ⊆ U . Setting N1 := ϕ−1(V1) and N2 := ϕ−1(V2), we obtain
that N1, N2 ∈ B and xN1 = ϕ−1(y)ϕ−1(V1) = ϕ−1(yV1) ⊆ ϕ−1(U) = B and
xN2 = ϕ−1(y)ϕ−1(V2) = ϕ−1(yV2) ⊆ ϕ−1(U) = B. (Similarly, if (Y, ω) is a
TA with continuous multiplication, then one can show that for any B ∈ B
there exists N ∈ B such that NN ⊆ B.)

Hence, by Theorem 1.2.9 (resp. Theorem 1.2.10) , (X, τ) is a TA (resp.
TA with continuous multiplication).

Corollary 1.4.2. Let (A,ω) be a TA (resp. TA with continuous multiplica-
tion) and M a subalgebra of A. If we endow M with the relative topology τM
induced by A, then (M, τM ) is a TA (resp. TA with continuous multiplication).

Proof.
Consider the identity map id : M → A and let Bω a basis of neighbourhoods
of the origin in (A,ω) Clearly, id is a homomorphism and the initial topology
induced by id on M is nothing but the relative topology τM induced by A
since

{id−1(U) : U ∈ Bω} = {U ∩M : U ∈ Bω} = τM .

Hence, Proposition 1.4.1 ensures that (M, τM ) is a TA (resp. TA with contin-
uous multiplication).

With similar techniques to the ones used in Proposition 1.4.1 one can show:

Proposition 1.4.3. Let (X,ω) be a TA (resp. TA with continuous multi-
plication) over K, Y a K−algebra and ϕ : X → Y a surjective homomor-
phism. Denote by Bω a basis of neighbourhoods of the origin in (X,ω). Then
B := {ϕ(U) : U ∈ Bω} is a basis of neighbourhoods of the origin for a topology
τ on Y such that (Y, τ) is a TA (resp. TA with continuous multiplication).

Proof. (Sheet 2)
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1.4. Subalgebras and quotients of a TA

Using the latter result one can show that the quotient of a TA over an
ideal endowed with the quotient topology is a TA (Sheet 2). However, in the
following we are going to give a direct proof of this fact without making use of
bases. Before doing that, let us briefly recall the notion of quotient topology.

Given a topological space (X,ω) and an equivalence relation ∼ on X. The
quotient set X/∼ is defined to be the set of all equivalence classes w.r.t. to
∼. The map φ : X → X/∼ which assigns to each x ∈ X its equivalence class
φ(x) w.r.t. ∼ is called the canonical map or quotient map. Note that φ is
surjective. Thequotient topology on X/ ∼ is the collection of all subsets U of
X/∼ such that φ−1(U) ∈ ω. Hence, the quotient map φ is continuous and
actually the quotient topology on X/∼ is the finest topology on X/∼ such
that φ is continuous.

Note that the quotient map φ is not necessarily open or closed.

Example 1.4.4. Consider R with the standard topology given by the modulus
and define the following equivalence relation on R:

x ∼ y ⇔ (x = y ∨ {x, y} ⊂ Z).

Let R/∼ be the quotient set w.r.t ∼ and φ : R → R/∼ the correspondent
quotient map. Let us consider the quotient topology on R/∼. Then φ is not
an open map. In fact, if U is an open proper subset of R containing an integer,
then φ−1(φ(U)) = U ∪ Z which is not open in R with the standard topology.
Hence, φ(U) is not open in R/∼ with the quotient topology.

For an example of not closed quotient map see e.g. [15, Example 2.3.3].

Let us consider now a K−algebra A and an ideal I of A. We denote by
A/I the quotient set A/∼I , where ∼I is the equivalence relation on A defined
by x ∼I y iff x− y ∈ I. The canonical (or quotient) map φ : A→ A/I which
assigns to each x ∈ A its equivalence class φ(x) w.r.t. the relation ∼I is clearly
surjective.

Using the fact that I is an ideal of the algebra A (see Definition 1.1.3-2),
it is easy to check that:

1. if x ∼I y, then ∀λ ∈ K we have λx ∼I λy.

2. if x ∼I y, then ∀ z ∈ A we have x+ z ∼I y + z.

3. if x ∼I y, then ∀ z ∈ A we have xz ∼I yz and zx ∼I zy .

These three properties guarantee that the following operations are well-defined
on A/I:

• vector addition: ∀φ(x), φ(y) ∈ A/I, φ(x) + φ(y) := φ(x+ y)

• scalar multiplication: ∀λ ∈ K, ∀φ(x) ∈ A/I, λφ(x) := φ(λx)

• vector multiplication: ∀φ(x), φ(y) ∈ A/I, φ(x) · φ(y) := φ(xy)
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A/I equipped with the three operations defined above is a K−algebra which
is often called quotient algebra. Then the quotient map φ is clearly a ho-
momorphism. Moreover, if A is unital and I proper then also the quotient
algebra A/I is unital. Indeed, as I is a proper ideal of A, the unit 1A
does not belong to I and so we have φ(1A) 6= o and for all x ∈ A we get
φ(x)φ(1A) = φ(x · 1A) = φ(x) = φ(1A · x) = φ(1A)φ(x).

Suppose now that (A,ω) is a TA and I an ideal of A. Since A is in
particular a topological space, we can endow it with the quotient topology
w.r.t. the equivalence relation ∼I . We already know that in this setting φ is a
continuous homomorphism but actually the structure of TA on A guarantees
also that it is open. Indeed, the following holds for any TVS and so for any TA:

Proposition 1.4.5. For a linear subspace M of a t.v.s.X, the quotient map-
ping φ : X → X/M is open (i.e. carries open sets in X to open sets in X/M)
when X/M is endowed with the quotient topology.

Proof.
Let V be open in X. Then we have

φ−1(φ(V )) = V +M =
⋃
m∈M

(V +m).

Since X is a t.v.s, its topology is translation invariant and so V + m is open
for any m ∈ M . Hence, φ−1(φ(V )) is open in X as union of open sets. By
definition, this means that φ(V ) is open in X/M endowed with the quotient
topology.

Theorem 1.4.6. Let (A,ω) be a TA (resp. TA with continuous multiplica-
tion) and I an ideal of A. Then the quotient algebra A/I endowed with the
quotient topology is a TA (resp. TA with continuous multiplication).

Proof.
For convenience, in this proof we denote by a (resp. m) the vector addition
(resp. vector multiplication) in A/I and just by + (resp. ·) the vector addition
(resp. vector multiplication) in A. Let W be a neighbourhood of the origin
o in A/I endowed with the quotient topology τQ. We first aim to prove that
a
−1(W ) is a neighbourhood of (o, o) in A/I ×A/I.

By definition of τQ, φ−1(W ) is a neighbourhood of the origin in (A,ω)
and so, by Theorem 1.2.6-2 (we can apply the theorem because (A,ω) is a
TA and so a TVS), there exists V neighbourhood of the origin in (A,ω) s.t.
V + V ⊆ φ−1(W ). Hence, by the linearity of φ, we get

a(φ(V )×φ(V )) = φ(V +V ) ⊆ φ(φ−1(W )) ⊆W, i.e. φ(V )×φ(V ) ⊆ a−1(W ).
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Since φ is also an open map, φ(V ) is a neighbourhood of the origin o in
(A/I, τQ) and so a−1(W ) is a neighbourhood of (o, o) in A/I ×A/I endowed
with the product topology given by τQ. A similar argument gives the con-
tinuity of the scalar multiplication. Hence, A/I endowed with the quotient
topology is a TVS.

Furthermore, for any x̃ ∈ A/I and any W neighbourhood of the origin in
(A/I, τQ), we know that x̃ = φ(x) for some x ∈ A and φ−1(W ) is a neigh-
bourhood of the origin in (A,ω). Since (A,ω) is a TA, the multiplication
· in A is separately continuous so there exist V1, V2 neighbourhoods of the
origin in (A,ω) such that x · V1 ⊆ φ−1(W ) and V2 · x ⊆ φ−1(W ). Setting
N1 := φ(V1) and N2 := φ(V2), we get m(x̃ × N1) = m(φ(x) × φ(V1)) =
φ(x · V1) ⊆ φ(φ−1(W )) ⊆ W and similarly m(N2 × x̃) ⊆ φ(φ−1(W )) ⊆ W .
This yields that m is separately continuous as the quotient map is open and
so N1, N2 are both neighbourhoods of the origin in (A/I, τQ).

Proposition 1.4.7. Let A be a TA and I an ideal of A. Consider A/I
endowed with the quotient topology. Then the two following properties are
equivalent:

a) I is closed

b) A/I is Hausdorff

Proof.
In view of Proposition 1.3.2, (b) is equivalent to say that the complement of
the origin in A/I is open w.r.t. the quotient topology. But the complement
of the origin in A/I is exactly the image under the canonical map φ of the
complement of I in A. Since φ is an open continuous map, the image under
φ of the complement of I in X is open in A/I iff the complement of I in A is
open, i.e. (a) holds.

Corollary 1.4.8. If A is a TA, then A/{o} endowed with the quotient topology
is a Hausdorff TA. A/{o} is said to be the Hausdorff TA associated with A.
When A is a Hausdorff TA, A and A/{o} are topologically isomorphic.

Proof.
First of all, let us observe that {o} is a closed ideal of A. Indeed, since A is a
TA, the multiplication is separately continuous and so for all x, y ∈ A we have
x{o} ⊆ {x · o} = {o} and {o}y ⊆ {o · y} = {o}. Then, by Theorem 1.4.6 and
Proposition 1.4.7, A/{o} is a Hausdorff TA. If in addition A is also Hausdorff,
then Proposition 1.3.2 guarantees that {o} = {o} in A. Therefore, the quotient
map φ : A → A/{o} is also injective because in this case Ker(φ) = {o}.
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1. General Concepts

Hence, φ is a topological isomorphism (i.e. bijective, continuous, open, linear)
between A and A/{o} which is indeed A/{o}.

Let us finally focus on quotients of normed algebra. If (A, ‖·‖) is a normed
(resp. Banach) algebra and I a closed ideal of A, then Theorem 1.4.6 guar-
antees that A/I endowed with the quotient topology is a TA with continuous
multiplication but, actually, the latter is also a normed (resp. Banach) alge-
bra. Indeed, one can easily show that the quotient topology is generated by
the so-called quotient norm defined by

q(φ(x)) := inf
y∈I
‖x+ y‖, ∀x ∈ A

which has the nice property to be submultiplicative and so the following holds.

Proposition 1.4.9. If (A, ‖ · ‖) is a normed (resp. Banach) algebra and I
a closed ideal of A, then A/I equipped with the quotient norm is a normed
(resp. Banach) algebra.

Proof. (Sheet 2)
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Chapter 2

Locally multiplicative convex algebras

2.1 Neighbourhood definition of lmc algebras

In the study of locally multiplicative convex algebras a particular role will be
played by multiplicative sets. Therefore, before starting the study of this class
of topological algebras we are going to have a closer look to this concept.

Definition 2.1.1. A subset U of a K−algebra A is said to be a multiplica-
tive set or m-set if U · U ⊆ U . We call m-convex (resp. m-balanced) a
multiplicative convex (resp. balanced) subset of A and absolutely m-convex a
multiplicative subset of A which is both balanced and convex.

The notions defined above are totally algebraic and so independent from
the topological structure with which the algebra is endowed.

Example 2.1.2.

• Any ideal of an algebra is an m-set.

• Fixed an element a 6= o of an algebra, the set {an : n ∈ N} is an m-set.

• Given a normed algebra (A, ‖ · ‖) and an integer n ∈ N, the open and
the closed ball centered at origin with radius 1

n are both examples of
absolutely m-convex sets in A.

The following proposition illustrates some operations under which the mul-
tiplicativity of a subset of an algebra is preserved.

Proposition 2.1.3. Let A be a K−algebra and U ⊂ A multiplicative, then

a) The convex hull of U is an m-convex set in A.

b) The balanced hull of U is an m-balanced set in A.

c) The convex balanced hull of U is an absolutely m-convex set in A.

d) Any direct or inverse image via a homomorphism is a m-set.

Proof. (Sheet 2)

21



2. Locally multiplicative convex algebras

Recall that

Definition 2.1.4. Let S be any subset of a vector space X over K. The convex
(resp. balanced) hull of S, denoted by conv(S) (resp. bal(S)) is the smallest
convex (resp. balanced) subset of X containing S, i.e. the intersection of all
convex (resp. balanced) subsets of X containing S. Equivalently,

conv(S) :=

{
n∑
i=1

λixi : xi ∈ S, λi ∈ [0, 1],

n∑
i=1

λi = 1, n ∈ N

}

and the balanced hull of S, denoted by bal(S) as

bal(S) :=
⋃

λ∈K,|λ|≤1

λS.

The convex balanced hull of S, denoted by convb(S), is defined as the smallest
convex and balanced subset of X containing S and it can be easily proved that
convb(S) = conv(bal(S)).

Let us come back now to topological algebras.

Proposition 2.1.5. In any topological algebra, the operation of closure pre-
serves the multiplicativity of a subset as well as its m-convexity and absolute
m-convexity.

Proof.
First of all let us show that the following property holds in any TA (A, τ):

∀V,W ⊆ A, V ·W ⊆ VW. (2.1)

where the closure in A is here clearly intended w.r.t. the topology τ . Let
x ∈ V , y ∈W and O ∈ F(o) where F(o) denotes the filter of neighbourhoods
of the origin in A. As A is in particular a TVS, Theorem 1.2.6-2 ensures that
there exists N ∈ F(o) s.t. N + N ⊆ O. Then for each a ∈ A, by Theorem
1.2.9, there exist N1, N2 ∈ F(o) such that N1a ⊆ N and aN2 ⊆ N . Moreover,
since x ∈ V and y ∈ W , there exist v ∈ V and w ∈ W s.t. v ∈ x + N1 and
w ∈ y +N2. Putting all together, we have that

vw ∈ (x+N1)w = xw +N1w ⊆ xw +N ⊆ x(y +N2) +N

= xy + xN2 +N ⊆ xy +N +N ⊆ xy +O.

Hence, (xy + O) ∩ VW 6= ∅, which proves that xy ∈ VW . Therefore, if U is
an m-set in A then by (2.1) we get U · U ⊆ U · U ⊆ U, which proves that U
is an m-set.
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2.1. Neighbourhood definition of lmc algebras

Suppose now that U is m-convex. The first part of the proof guarantees
that U is an m-set. Moreover, using that A is in particular a TVS, we have
that for any λ ∈ [0, 1] the mapping

ϕλ : A×A → A
(x, y) 7→ λx+ (1− λ)y

is continuous and so ϕλ(U × U) ⊆ ϕλ(U × U). Since U is also convex, for any
λ ∈ [0, 1] we have that ϕλ(U × U) ⊆ U and so ϕλ(U × U) ⊆ U . Putting all
together, we can conclude that ϕλ(U×U) = ϕλ(U × U) ⊆ U , i.e. U is convex.
Hence, U is an m-convex set.

Finally, assume that U is absolutely m-convex. As U is in particular m-
convex, by the previous part of the proof, we can conclude immediately that
U is an m-convex set. Furthermore, since U is balanced and A has the TVS
structure, we can conclude that U is also balanced. Indeed, in any TVS the
closure of a balanced set is still balanced because the multiplication by scalar
is continuous and so for all λ ∈ K with |λ| ≤ 1 we have λU ⊆ λU ⊆ U .

Definition 2.1.6. A closed absorbing absolutely convex multiplicative subset
of a TA is called a m-barrel.

Proposition 2.1.7. Every multiplicative neighbourhood of the origin in a TA
is contained in a neighbourhood of the origin which is an m-barrel.

Proof.
Let U be a multiplicative neighbourhood of the origin and define T (U) :=
convb(U). Clearly, U ⊆ T (U). Therefore, T (U) is a neighbourhood of the
origin and so it is absorbing by Theorem 1.2.6-4). By Proposition 2.1.3-c),
convb(U) is an absolutely m-convex set as U is an m-set. Hence, Proposition
2.1.5 ensures that T (U) is closed and absolutely m-convex, i.e. an m-barrel.

Note that the converse inclusion in Proposition 2.1.7 does not hold in
general. Indeed, in any TA not every neighbourhood of the origin (not even
every multiplicative one) contains another one which is a m-barrel. This means
that not every TA has a basis of neighbourhoods consisting of m-barrels.
However, this is true for any lmc TA.

Definition 2.1.8. A TA is said to be locally multiplicative convex (lmc) if it
has a basis of neighbourhoods of the origin consisting of m-convex sets.

It is then easy to show that
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2. Locally multiplicative convex algebras

Proposition 2.1.9. A locally multiplicative convex algebra is a TA with con-
tinuous multiplication.

Proof.
Let (A, τ) be an lmc algebra and let B denote a basis of neighbourhoods of the
origin in (A, τ) consisting of m-convex sets. Then (A, τ) is in particular a TVS
and for any U ∈ B we have U · U ⊂ U . Hence, both conditions of Theorem
1.2.10 are fulfilled by B, which proves that (A, τ) is a TA with continuous
multiplication.

Note that any lmc algebra is in particular a locally convex TVS, i.e. a
TVS having a basis of neighbourhoods of the origin consisting of convex sets.
Hence, in the study of this class of TAs we can make use of all the powerful
results about locally convex TVS. To this aim let us recall that the class
of locally convex TVS can be characterized in terms of absorbing absolutely
convex neighbourhoods of the origin.

Theorem 2.1.10. If X is a lc TVS then there exists a basis B of neighbour-
hoods of the origin consisting of absorbing absolutely convex subsets s.t.
a) ∀U, V ∈ B, ∃W ∈ B s.t. W ⊆ U ∩ V
b) ∀U ∈ B, ∀ ρ > 0, ∃W ∈ B s.t. W ⊆ ρU
Conversely, if B is a collection of absorbing absolutely convex subsets of a vec-
tor space X s.t. a) and b) hold, then there exists a unique topology compatible
with the linear structure of X s.t. B is a basis of neighbourhoods of the origin
in X for this topology (which is necessarily locally convex).

Proof.
Let N be a neighbourhood of the origin in the lc TVS (X, τ). The local
convexity ensures that there exists W convex neighbourhood of the origin in
(X, τ) s.t. W ⊆ N . Moreover, by Theorem 1.2.6-5), there exists U balanced
neighbourhood of the origin in X s.t. U ⊆ W . Then, using that W is a
convex set containing U , we get conv(U) ⊆W ⊆ N . Now conv(U) is convex by
definition, balanced because U is balanced and it is also a neighbourhood of the
origin (and so an absorbing set) since U ⊆ conv(U). Hence, the collection B :=
{conv(U) : U ∈ Bb} is a basis of absorbing absolutely convex neighbourhoods
of the origin in (X, τ); here Bb denotes a basis of balanced neighbourhoods of
the origin in (X, τ). Observing that for any U,W ∈ Bb and any ρ > 0 we have
conv(U ∩W ) ⊆ conv(U)∩ conv(W ) and conv(ρU) ⊆ ρconv(U), we see that B
fulfills both a) and b).

The converse direction is left as an exercise for the reader.

This theorem will be a handful tool in the proof of the following charac-
terization of lmc algebras in terms of neighbourhood basis.
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2.1. Neighbourhood definition of lmc algebras

Theorem 2.1.11. Let A be a K−algebra. Then the following are equivalent:
a) A is an lmc algebra
b) A is a TVS having a basis of neighbourhoods consisting of m-barrels.
c) There exists a basis for a filter on A consisting of absorbing absolutely

m-convex subsets.

Proof.
a) ⇒ b) If A is an lmc algebra, then we have already observed that it is a
lc TVS. Let F(o) be the filter of neighbourhoods of the origin in A and let
N ∈ F(o). The TVS structure ensures that there exists V ∈ F(o) closed
s.t. V ⊆ N1 and the local convexity allows to apply Theorem 2.1.10 which
guarantees that we can always find M ∈ F(o) absolutely convex s.t. M ⊆ V .
Finally, since A is an lmc algebra, we know that there exists C ∈ F(o) m-
convex s.t. C ⊆M . Using the previous inclusions we have that

T (C) := convb(C) ⊆M ⊆ V = V ⊆ N.
(Note that the first inclusion follows from the fact that M is a convex and
balanced subset containing C.) Hence, the conclusion holds because T (C) is
an m-barrel set as C is a multiplicative neighbourhood of the origin (see last
part of proof of Proposition 2.1.7).

b)⇒ c) This is clear because every m-barrelled neighbourhood of the origin
is an absorbing absolutely m-convex subsets of A.

c)⇒ a) Suppose thatM is a basis for a filter on A consisting of absorbing
absolutely convex m-subsets. Then it is easy to verify that the collection
M̃ := {λU : U ∈ M, 0 < λ ≤ 1} also consists of absorbing absolutely
m-convex subsets of A. Moreover, for any U, V ∈ M we know that there
exists W ∈ M s.t. W ⊆ U ∩W and so for any 0 < λ, µ ≤ 1 we have that
δW ⊆ δ(U ∩ V ) = δU ∩ δV ⊆ λU ∩ µV where δ := min{λ, µ}. As δW ∈ M̃
we have that a) of Theorem 2.1.10. Also b) of this same theorem is satisfied
because for any ρ > 0, 0 < λ ≤ 1 and U ∈ M we easily get that there exists
M ∈ M̃ s.t. M ⊆ ρ(λU) by choosing M = ρ(λU) when 0 < ρ ≤ 1 and

M = λU when ρ > 1. Hence, M̃ fulfills all the assumptions of the second part
of Theorem 2.1.10 and so it is a basis of neighbourhoods of the origin for a
uniquely defined topology τ on A making (A, τ) a lc TVS. As every set in M̃
is m-convex, (A, τ) is in fact a lmc algebra.

1Every TVS has basis of closed neighbourhoods of the origin.

Proof.
Let F(o) be the filter of neighbourhoods of the origin in a TVS X and N ∈ F(o). Then
Theorem 1.2.6 guarantees that there exists V ∈ F(o) balanced such that V − V ⊆ N . If
x ∈ V then (V + x) ∩ V 6= ∅ and so there exist u, v ∈ V s.t. u + x = v, which gives
x = v − u ∈ V − V ⊆ N . Hence, V ⊆ N .
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2. Locally multiplicative convex algebras

From the last part of the proof we can immediately see that

Corollary 2.1.12. IfM is a basis for a filter on a K−algebra A consisting of
absorbing absolutely convex m-subsets, then there exists a unique topology τ on
A both having M̃ := {λU : U ∈ M, 0 < λ ≤ 1} as a basis of neighbourhoods
of the origin and making (A, τ) an lmc algebra.

Theorem 2.1.11 shows that in an lmc algebra every neighbourhood of the
origin contains an m-barrel set. However, it is important to remark that not
every m-barrel subset of a topological algebra, not even of an lmc algebra,
is a neighbourhood of the origin (see Examples 2.2.19)! Topological algebras
having this property are called m-barrelled algebras.

2.2 Seminorm characterization of lmc algebras

In this section we will investigate the intrinsic and very useful connection
between lmc algebras and seminorms. Therefore, let us briefly recall this
concept and focus in particular on submultiplicative seminorms.

Definition 2.2.1. Let X be a K−vector space. A function p : X → R is
called a seminorm if it satisfies the following conditions:

1. p is subadditive: ∀x, y ∈ X, p(x+ y) ≤ p(x) + p(y).

2. p is positively homogeneous: ∀x ∈ X, ∀λ ∈ K, p(λx) = |λ|p(x).

A seminorm on a K−algebra X is called submultiplicative if

∀x, y ∈ X, p(xy) ≤ p(x)p(y).

Definition 2.2.2. A seminorm p on a vector space X is a norm if p(x) = 0
implies x = o (i.e. if p−1({0}) = {o}).

The following properties are an easy consequence of Definition 2.2.1.

Proposition 2.2.3. Let p be a seminorm on a vector space X. Then:

• p is symmetric, i.e. p(x) = p(−x), ∀x ∈ X.

• p(o) = 0.

• |p(x)− p(y)| ≤ p(x− y), ∀x, y ∈ X.

• p(x) ≥ 0, ∀x ∈ X.

• ker(p) is a linear subspace of X.

Examples 2.2.4.

a) Suppose X = Rn is equipped with the componentwise operations of addition,
scalar and vector multiplication. Let M be a linear subspace of X. For any
x ∈ X, set

qM (x) := inf
m∈M

‖x−m‖,
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2.2. Seminorm characterization of lmc algebras

where ‖ · ‖ is the Euclidean norm on Rn, i.e. qM (x) is the distance from
the point x to M in the usual sense. If dim(M) ≥ 1 then qM is a submulti-
plicative seminorm but not a norm (M is exactly the kernel of qM ). When
M = {o}, pM (·) and ‖ · ‖ coincide.

b) Let C(R) be the vector space of all real valued continuous functions on the
real line equipped with the pointwise operations of addition, multiplication
and scalar multiplication. For any a ∈ R+, we define

pa(f) := sup
−a≤t≤a

|f(t)|, ∀f ∈ C(R).

Then pa is a submultiplicative seminorm but is never a norm because it
might be that f(t) = 0 for all t ∈ [−a, a] (and so that pa(f) = 0) but f 6≡ 0.

c) Let n ≥ 2 be an integer and consider the algebra Rn×n of real square ma-
trices of order n. Then

q(A) := max
i,j=1,...,n

|Aij |, ∀A = (Aij)
n
i,j=1 ∈ Rn×n

is a norm (so in particular a seminorm) but it is not submultiplicative
because for example if A is the matrix with all entries equal to 1 then it is
easy to check that ‖A2‖ > ‖A‖.

Seminorms on vector spaces are strongly related to a special kind of func-
tionals, i.e. Minkowski functionals. Let us investigate more in details such a
relation. Note that we are still in the realm of vector spaces with no topology!

Definition 2.2.5. Let X be a vector space and V a non-empty subset of X.
We define the Minkowski functional (or gauge) of V to be the mapping:

pV : X → R
x 7→ pV (x) := inf{λ > 0 : x ∈ λV }

(where pV (x) =∞ if the set {λ > 0 : x ∈ λV } is empty).

It is then natural to ask whether there exists a class of subsets for which
the associated Minkowski functionals are actually seminorms, and in particular
submultiplicative seminorms in the context of algebras. The answer is positive
in both cases as established in the following lemma.

Notation 2.2.6. Let X be a vector space and p a seminorm on X. The sets

Ůp = {x ∈ X : p(x) < 1} and Up = {x ∈ X : p(x) ≤ 1}.

are said to be, respectively, the open and the closed unit semiball of p.
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2. Locally multiplicative convex algebras

Lemma 2.2.7. Let X be a K−vector space (resp. K−algebra).
a) If V is a non-empty subset of X which is absorbing and absolutely convex

(resp. absolutely m-convex), then the associated Minkowski functional pV
is a seminorm (resp. submultiplicative seminorm) and ŮpV ⊆ V ⊆ UpV .

b) If q is a seminorm (resp. submultiplicative seminorm) on X then both
Ůq and Uq are absorbing absolutely convex sets [resp. absolutely m-convex]
and for any absorbing absolutely convex (resp. absolutely m-convex) V such
that Ůq ⊆ V ⊆ Uq we have q = pV .

Proof.
a) Let V be a non-empty subset of X which is absorbing and absolutely convex
and denote by pV the associated Minkowski functional. We want to show that
pV is a seminorm.
• First of all, note that pV (x) <∞ for all x ∈ X because V is absorbing.

Indeed, for any x ∈ X there exists ρx > 0 s.t. for all λ ∈ K with |λ| ≤ ρx
we have λx ∈ V and so the set {λ > 0 : x ∈ λV } is never empty, i.e. pV
has only finite nonnegative values. Moreover, since o ∈ V , we also have
that o ∈ λV for any λ ∈ K and so pV (o) = inf{λ > 0 : o ∈ λV } = 0.
• The balancedness of V implies that pV is positively homogeneous. Since

we have already showed that pV (o) = 0 it remains to prove the positive
homogeneity of pV for non-zero scalars. Since V is balanced we have
that for any x ∈ X and for any ξ, λ ∈ K with ξ 6= 0 the following holds:

ξx ∈ λV if and only if x ∈ λ

|ξ|
V. (2.2)

Indeed, V balanced guarantees that ξV = |ξ|V and so x ∈ λ
|ξ|V is

equivalent to ξx ∈ λ ξ
|ξ|V = λV . Using (2.2), we get that for any x ∈ X

and for any ξ ∈ K with ξ 6= 0:

pV (ξx) = inf{λ > 0 : ξx ∈ λV }

= inf

{
λ > 0 : x ∈ λ

|ξ|
V

}
= inf

{
|ξ| λ
|ξ|

> 0 : x ∈ λ

|ξ|
V

}
= |ξ| inf{µ > 0 : x ∈ µV } = |ξ|pV (x).

• The convexity of V ensures the subadditivity of pV . Take x, y ∈ X.
By the definition of Minkowski functional, for every ε > 0 there exist
λ, µ > 0 s.t.

λ < pV (x) +
ε

2
and x ∈ λV
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2.2. Seminorm characterization of lmc algebras

and

µ < pV (y) +
ε

2
and y ∈ µV.

Then, by the convexity of V , we obtain that λ
λ+µV + µ

λ+µV ⊆ V , i.e.
λV + µV ⊆ (λ+ µ)V , and therefore x+ y ∈ (λ+ µ)V . Hence:

pV (x+ y) = inf{δ > 0 : x+ y ∈ δV } ≤ λ+ µ < pV (x) + pV (y) + ε

which proves the subadditivity of pV since ε is arbitrary.

We can then conclude that pV is a seminorm. Furthermore, we have the
following inclusions:

ŮpV ⊆ V ⊆ UpV .

In fact, if x ∈ ŮpV then pV (x) < 1 and so there exists 0 < λ < 1 s.t. x ∈ λV .
Since V is balanced, for such λ we have λV ⊆ V and therefore x ∈ V . On the
other hand, if x ∈ V then clearly 1 ∈ {λ > 0 : x ∈ λV } which gives pV (x) ≤ 1
and so x ∈ UpV .

If X is a K−algebra and V an absorbing absolutely m-convex subset of
X, then the previous part of the proof guarantees that pV is a seminorm and
ŮpV ⊆ V ⊆ UpV . Moreover, for any a, b ∈ X, the multiplicativity of V implies
that {λ > 0 : a ∈ λV }{µ > 0 : b ∈ µV } ⊆ {δ > 0 : ab ∈ δV } and so

pV (a)pV (b) = inf ({λ > 0 : a ∈ λV }{µ > 0 : b ∈ µV })
≥ inf{δ > 0 : ab ∈ δV } = pV (ab).

Hence, pV is a submultiplicative seminorm.

b) Let us take any seminorm q on X. Let us first show that Ůq is absorbing
and absolutely convex.

• Ůq is absorbing.
Let x be any point in X. If q(x) = 0 then clearly x ∈ Ůq. If q(x) > 0,
we can take 0 < ρ < 1

q(x) and then for any λ ∈ K s.t. |λ| ≤ ρ the

positive homogeneity of q implies that q(λx) = |λ|q(x) ≤ ρq(x) < 1, i.e.
λx ∈ Ůq.
• Ůq is balanced.

For any x ∈ Ůq and for any λ ∈ K with |λ| ≤ 1, again by the positive
homogeneity of q, we get: q(λx) = |λ|q(x) ≤ q(x) < 1 i.e. λx ∈ Ůq.
• Ůq is convex.

For any x, y ∈ Ůq and any t ∈ [0, 1], by both the properties of seminorm,
we have that q(tx + (1 − t)y) ≤ tq(x) + (1 − t)q(y) < t + 1 − t = 1 i.e.
tx+ (1− t)y ∈ Ůq.
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2. Locally multiplicative convex algebras

The proof above easily adapts to show that Uq is absorbing and absolutely
convex. Also, it is easy to check that

pŮq(x) = q(x) = pUq(x), ∀x ∈ X. (2.3)

Since for any absorbing absolutely convex subset V of X s.t. Ůq ⊆ V ⊆ Uq
and for any x ∈ X we have that

pUq(x) ≤ pV (x) ≤ pŮq(x),

by (2.3) we can conclude that pV (x) = q(x).
If X is a K−algebra and q is submultiplicative, then the previous part

of the proof of b) applies but in addition we get that both Ůq and Uq are
multiplicative sets. Indeed, for any a, b ∈ Ůq we have q(ab) ≤ q(a)q(b) < 1,
i.e. ab ∈ Ůq and similarly for Uq.

In a nutshell this lemma says that: a real-valued functional on a K−vector
space X (resp. a K−algebra) is a seminorm (resp-submultiplicative seminorm)
if and only if it is the Minkowski functional of an absorbing absolutely convex
(resp. absolutely m-convex) non-empty subset of X.

Let us collect some interesting properties of semiballs in a vector space,
which we will repeatedly use in the following.

Proposition 2.2.8. Let X be a K−vector space and p a seminorm on X.
Then:

a) ∀ r > 0, rŮp = {x ∈ X : p(x) < r} = Ů 1
r
p.

b) ∀x ∈ X, x+ Ůp = {y ∈ X : p(y − x) < 1}.
c) If q is also a seminorm on X, then p ≤ q if and only if Ůq ⊆ Ůp.
d) If n ∈ N and s1, . . . , sn are seminorms on X, then their maximum s defined

as s(x) := max
i=1,...,n

si(x), ∀x ∈ X is also seminorm on X and Ůs =
⋂n
i=1 Ůsi.

In particular, if X is a K−algebra and all si’s are submultiplicative semi-
norms, then s(x) is also submultiplicative.

All the previous properties also hold for closed semballs.

Proof. (Sheet 3)

Let us start to put some topological structure on our space and so to
consider continuous seminorms on it. The following result holds in any TVS
and so in particular in any TA.
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2.2. Seminorm characterization of lmc algebras

Proposition 2.2.9. Let X be a TVS and p a seminorm on X. Then the
following conditions are equivalent:

a) The open unit semiball Ůp of p is an open neighbourhood of the origin and
coincides with the interior of Up.

b) p is continuous at the origin.

c) The closed unit semiball Up of p is a closed neighbourhood of the origin and
coincides with the closure of Ůp.

d) p is continuous at every point.

Proof.
a) ⇒ b) Suppose that Ůp is open in the topology on X. Then for any

ε > 0 we have that p−1(] − ε, ε[) = {x ∈ X : p(x) < ε} = εŮp is an open
neighbourhood of the origin in X. This is enough to conclude that p : X → R+

is continuous at the origin.

b) ⇒ c) Suppose that p is continuous at the origin, then Up = p−1([0, 1])
is a closed neighbourhood of the origin. Also, by definition Ůp ⊆ Up and

so Ůp ⊆ Up = Up. To show the converse inclusion, we consider x ∈ X s.t.
p(x) = 1 and take (λn)n∈N ⊂ (0, 1) s.t. limn→∞ λn = 1. Then λnx ∈ Ůp and

limn→∞ λnx = x since the scalar multiplication is continuous. Hence, x ∈ Ůp
which completes the proof of c).

c)⇒ d) Assume that c) holds and fix x ∈ X. Using Proposition 2.2.8 and
Proposition 2.2.3, we get that for any ε > 0: p−1([−ε+p(x), p(x) + ε]) = {y ∈
X : |p(y)− p(x)| ≤ ε} ⊇ {y ∈ X : p(y − x) ≤ ε} = x+ εUp, which is a closed
neighbourhood of x since X is a TVS and by the assumption c). Hence, p is
continuous at x.

d)⇒ a) If p is continuous on X then a) holds because Ůp = p−1(]− 1, 1[)
and the preimage of an open set under a continuous function is open. Also,

by definition Ůp ⊆ Up and so Ůp = int
(
Ůp

)
⊆ int (Up). To show the converse

inclusion, we consider x ∈ int (Up). Then p(x) ≤ 1 but, since p(x) = pŮp(x),

we also have that for any ε > 0 there exists λ > 0 s.t. x ∈ λŮp and λ < p(x)+ε.
This gives that p(x) < λ < 1 + ε and so p(x) < 1, i.e. x ∈ Ůp which completes
the proof of a).

Definition 2.2.10. Let X be a vector space and P := {pi}i∈I a family of
seminorms on X. The coarsest topology τP on X s.t. each pi is continuous is
said to be the topology induced or generated by the family of seminorms P.

We are now ready to see the connection between submultiplicative semi-
norms and locally convex multiplicative algebras.
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2. Locally multiplicative convex algebras

Theorem 2.2.11. Let X be a K−algebra and P := {pi}i∈I a family of sub-
multiplicative seminorms. Then the topology induced by the family P is the
unique topology both making X into an lmc algebra and having as a basis of
neighbourhoods of the origin the following collection:

B :=
{
{x ∈ X : pi1(x) ≤ ε, . . . , pin(x) ≤ ε} : i1, . . . , in ∈ I, n ∈ N, 0 < ε ≤ 1

}
.

Viceversa, the topology of an arbitrary lmc algebra is always induced by a
family of submultiplicative seminorms (often called generating).

Proof.
Let us first observe that

B =
{ n⋂
j=1

εUpij : n ∈ N, i1, . . . , in ∈ I, 0 < ε ≤ 1
}

and is a basis for a filter on X as it is closed under finite intersections. More-
over, by Proposition 2.2.8-a) and Lemma 2.2.7-b), we have that for any i ∈ I
the semiball εUpi is absorbing and absolutely m-convex. Therefore, any ele-
ment in B is an absorbing absolutely m-convex subset ofX as finite intersection
of sets having such properties. Hence, Corollary 2.1.12 guarantees that there
exists a unique topology τ having B as a basis of neighbourhoods of the origin
and s.t. (X, τ) is an lmc algebra.

Since for any i ∈ I we have Upi ∈ B, Upi is a neighbourhood of the
origin in (X, τ), then by Proposition 2.2.9, the seminorm pi is τ−continuous.
Therefore, the topology τP induced by the family P is by definition coarser
than τ . On the other hand, each pi is also τP−continuous and so Upi is a closed
neighbourhood of the origin in (X, τP). Then B consists of neighbourhoods of
the origin in (X, τP) which implies that τ is coarser than τP . Hence, τ ≡ τP .

Viceversa, let us assume that (X, τ) is an lmc algebra. Then by Theo-
rem 2.1.11 there exists a basis N of neighbourhoods of the origin in (X, τ)
consisting of m-barrels. Consider now the family S := {pN : N ∈ N}. By
Lemma 2.2.7-a), we know that each pN is a submultiplicative seminorm and
that ŮpN ⊆ N ⊆ UpN . Now each pN is τ−continuous because UpN ⊇ N ∈ N
and hence, τS ⊆ τ . Moreover, each pN is clearly τS−continuous and so, by
Proposition 2.2.9, ŮpN is open in (X, τS). Since ŮpN ⊆ N , we have that N
consists of neighbourhoods of the origin in (X, τS), which implies τ ⊆ τS .

Historically the following more general result holds for locally convex tvs
and the previous theorem could be also derived as a corollary of:
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2.2. Seminorm characterization of lmc algebras

Theorem 2.2.12. Let X be a vector space and P := {pi}i∈I a family of semi-
norms. Then the topology induced by the family P is the unique topology both
making X into a locally convex TVS and having as a basis of neighbourhoods
of the origin the following collection:

B :=
{
{x ∈ X : pi1(x) ≤ ε, . . . , pin(x) ≤ ε} : i1, . . . , in ∈ I, n ∈ N, 0 < ε ≤ 1

}
.

Viceversa, the topology of an arbitrary locally convex TVS is always induced
by a family of seminorms (often called generating).

Coming back to lmc algebras, Theorem 2.2.11 allows us to give another
characterization of such a class, namely: A TA is lmc if and only if its
topology is induced by a family of submultiplicative seminorms. This is very
helpful in establishing whether a given topological algebras is lmc or not as
we will see from the following examples.

Examples 2.2.13.
1. Normed algebras are clearly lmc algebras.
2. A seminormed algebra, i.e. a K−algebra endowed with the topology gen-

erated by a submultiplicative seminorm, is lmc.
3. The weak and the strong operator topologies on the space L(H) intro-

duced in Example 1.2.17 both make L(H) into a locally convex algebra
which is not lmc. Indeed, the weak operator topology τw is generated by
the family of seminorms {px,y : x, y ∈ H} where px,y(T ) := |〈Tx, y〉|,
while the strong operator topology τs is generated by the family of semi-
norms {px : x ∈ H} where px(T ) := ‖Tx‖. If (L(H), τw) and (L(H), τs)
were lmc algebras, then by Proposition 2.1.9 the multiplication should
have been jointly continuous in both of them but this is not the case as
we have already showed in Example 1.2.17.

4. Consider Lω([0, 1]) :=
⋂
p≥1 L

p([0, 1]), where for each p ≥ 1 we de-
fine Lp([0, 1]) to be the space of all equivalence classes of functions

f : [0, 1] → R such that ‖f‖p :=
(∫ 1

0 |f(t)|pdt
) 1
p
< ∞ which agree

almost everywhere. The set Lω([0, 1]) endowed with the pointwise oper-
ations is a real algebra since for any q, r ≥ 1 such that 1

p = 1
q + 1

r we
have

‖fg‖p ≤ ‖f‖q‖g‖r, ∀f, g ∈ Lω([0, 1]).

The algebra Lω([0, 1]) endowed with the topology induced by the family
P := {‖ · ‖p : p ≥ 1} of seminorms is a locally convex algebra. However,
(Lω([0, 1]), τP) is not an lmc algebra because any m-convex subset U is
open in (Lω([0, 1]), τP) if and only if U = Lω([0, 1]) (Sheet 3).
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2. Locally multiplicative convex algebras

Let us conclude this section with a further very useful property of lmc
algebras.

Proposition 2.2.14. The topology of an lmc algebra can be always induced
by a directed family of submultiplicative seminorms.

Definition 2.2.15. A family Q := {qj}j∈J of seminorms on a vector space
X is said to be directed (or fundamental or saturated) if

∀ n ∈ N, j1, . . . , jn ∈ J, ∃ j ∈ J,C > 0 s.t. Cqj(x) ≥ max
k=1,...,n

qjk(x), ∀x ∈ X.

(2.4)

To prove Proposition 2.2.14 we need to recall an important criterion to
compare topologies induced by families of seminorms.

Theorem 2.2.16.
Let P = {pi}i∈I and Q = {qj}j∈J be two families of seminorms on a K−vector
space X inducing respectively the topologies τP and τQ. Then τP is finer than
τQ (i.e. τQ ⊆ τP) iff

∀q ∈ Q ∃n ∈ N, i1, . . . , in ∈ I, C > 0 s.t. Cq(x) ≤ max
k=1,...,n

pik(x), ∀x ∈ X.

(2.5)
Proof.
Let us first recall that, by Theorem 2.2.12, we have that

BP :=
{ n⋂
k=1

εŮpik : i1, . . . , in ∈ I, n ∈ N, 0 < ε ≤ 1
}

and

BQ :=
{ n⋂
k=1

εŮqjk : j1, . . . , jn ∈ J, n ∈ N, 0 < ε ≤ 1
}
.

are respectively bases of neighbourhoods of the origin for τP and τQ.
By using Proposition 2.2.8, the condition (2.5) can be rewritten as

∀q ∈ Q, ∃n ∈ N, i1, . . . , in ∈ I, C > 0 s.t. C

n⋂
k=1

Ůpik ⊆ Ůq.

which means that

∀q ∈ Q, ∃ Bq ∈ BP s.t. Bq ⊆ Ůq. (2.6)

since C
⋂n
k=1 Ůpik ∈ BP .

Condition (2.6) means that for any q ∈ Q the set Ůq is a neighbourhood
of the origin in (X, τP), which by Proposition 2.2.9 is equivalent to say that q
is continuous w.r.t. τP . By definition of τQ, this gives that τQ ⊆ τP .
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2.2. Seminorm characterization of lmc algebras

This theorem allows us to easily see that the topology induced by a family
of seminorms on a vector space does not change if we close the family under
taking the maximum of finitely many of its elements. Indeed, the following
result holds.

Proposition 2.2.17. Let P := {pi}i∈I be a family of seminorms on a K−vector
space (resp. submultiplicative seminorms on a K−algebra) X. Then we have
that Q :=

{
maxi∈B pi : ∅ 6= B ⊆ I with B finite

}
is a directed family of

seminorms (resp. submultiplicative seminorms) and τP = τQ, where τP and
τQ denote the topology induced on X by P and Q, respectively.

Proof.
First of all let us note that, by Proposition 2.2.8-d), Q is a family of seminorms.
On the one hand, since P ⊆ Q, by definition of induced topology we have
τP ⊆ τQ. On the other hand, for any q ∈ Q we have q = max

i∈B
pi for some

∅ 6= B ⊆ I finite. Then (2.5) is fulfilled for n = |B| (where |B| denotes the
cardinality of the finite set B), i1, . . . , in being the n elements of B and for any
0 < C ≤ 1. Hence, by Theorem 2.2.16, τQ ⊆ τP . If X is a K−algebra and P
consists of submultiplicative seminorms, then Q consists of submultiplicative
seminorms by the second part of Proposition 2.2.8-d).

We claim that Q is directed.

Let n ∈ N and q1, . . . , qn ∈ Q. Then for each j ∈ {1, . . . , n} we have qj =
max
i∈Bj

pi for some non-empty finite subset Bj of I. Let us define B :=
⋃n
j=1Bj

and q := max
i∈B

pi. Then q ∈ Q and for any C ≥ 1 we have that (2.4) is satisfied,

because we get that for any x ∈ X

Cq(x) ≥ max
i∈B

pi(x) = max
j=1,...,n

(
max
i∈Bj

pi(x)

)
= max

j=1,...,n
qj(x).

Hence, Q is directed.

We are ready now to show Proposition 2.2.14.

Proof. of Proposition 2.2.14
Let (X, τ) be an lmc algebra. By Theorem 2.2.11, we have that there exists
a family of submultiplicative seminorms P := {pi}i∈I on X s.t. τ = τP . Let
us define Q as the collection obtained by forming the maximum of finitely
many elements of P, i.e. Q :=

{
max
i∈B

pi : ∅ 6= B ⊆ I with B finite
}

. By
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2. Locally multiplicative convex algebras

Proposition 2.2.17, Q is a directed family of submultiplicative seminorms and
we have that τP = τQ.

It is possible to show (Sheet 3) that a basis of neighbourhoods of the origin
for the lmc topology τQ induced by a directed family of submultiplicative
seminorms Q is given by:

Bd := {rUq : q ∈ Q, 0 < r ≤ 1}. (2.7)

Remark 2.2.18. The proof of Proposition 2.2.14 can be easily adapted to
show that the topology of a lc tvs can be always induced by a directed family
of seminorms τQ and that the corresponding (2.7) is basis of neighbourhoods
of the origin for τQ.

Example 2.2.19. Let Cb(R) the set of all real-valued bounded continuous func-
tions on the real line endowed with the pointwise operations of addition, mul-
tiplication and scalar multiplication and endowed with the topology τQ induced
by the family Q := {pa : a > 0}, where pa(f) := sup−a≤t≤a |f(t)|, ∀f ∈ Cb(R).
Since each pa is a submultiplicative seminorm (see Example 2.2.4-d)), the
algebra (Cb(R), τQ) is lmc.

Note that Q is directed since for any n ∈ N and any positive real numbers
a1, . . . , an we have that maxi=1,...,n pai(f) = supt∈[−b,b] |f(t)| = pb(f), where
b := maxi=1,...,n ai, and so (2.4) is fulfilled. Hence, Bd as in (2.7) is a basis of
neighbourhoods of the origin for the lmc topology τQ .

The algebra (Cb(R), τQ) is not m-barrelled, because for instance the set
M := {f ∈ Cb(R) : supt∈R |f(t)| ≤ 1} is an m-barrel but not a neighbourhood of
the origin in (Cb(R), τQ). Indeed, no elements of the basis Bd of neighbourhoods
of the origin is entirely contained in M , because for any a > 0 and any
0 < r ≤ 1 the set rUpa also contains continuous functions bounded by r on
[−a, a] but bounded by C > 1 on the whole R and so not belonging to M .

2.3 Hausdorff lmc algebras

In Section 1.3, we gave some characterization of Hausdorff TVS which can
of course be applied to establish whether an lmc algebra is Hausdorff or not.
However, in this section we aim to provide necessary and sufficient conditions
bearing only on the family of seminorms generating an lmc topology for being
a Hausdorff topology.
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2.3. Hausdorff lmc algebras

Definition 2.3.1.
A family of seminorms P := {pi}i∈I on a vector space X is said to be sepa-
rating if

∀x ∈ X \ {o},∃ i ∈ I s.t. pi(x) 6= 0. (2.8)

Note that the separation condition (2.8) is equivalent to

pi(x) = 0, ∀i ∈ I ⇒ x = o

which by using Proposition 2.2.8 can be rewritten as⋂
i∈I,c>0

cŮpi = {o}, (2.9)

since pi(x) = 0 is equivalent to say that pi(x) < c, for all c > 0.

It is clear that if any of the elements in a family of seminorms is actually
a norm, then the the family is separating.

Lemma 2.3.2. Let τP be the topology induced by a separating family of semi-
norms P := (pi)i∈I on a vector space X. Then τP is a Hausdorff topology.

Proof. 2

Let x, y ∈ X be such that x 6= y. Since P is separating, we have that ∃ i ∈ I
with pi(x− y) 6= 0. Then ∃ ε > 0 s.t. pi(x− y) = 2ε. Take Vx := x+ εŮpi and
Vy := y+ εŮpi . Since Theorem 2.2.12 guarantees that (X, τP) is a TVS where
the set εŮpi is a neighbourhood of the origin, Vx and Vy are neighbourhoods
of x and y, respectively. They are clearly disjoint. Indeed, if there would exist
u ∈ Vx ∩ Vy then pi(x− y) = pi(x− u+ u− y) ≤ pi(x− u) + pi(u− y) < 2ε,
which is a contradiction.

Proposition 2.3.3.

a) A locally convex TVS is Hausdorff if and only if its topology can be induced
by a separating family of seminorms.

b) An lmc algebra is Hausdorff if and only if its topology can be induced by a
separating family of submultiplicative seminorms.

2Alternative proof By Theorem 2.2.12, we know that (X, τP) is a TVS and that BP :={⋂n
k=1 εŮpik : i1, . . . , in ∈ I, n ∈ N, 0 < ε ≤ 1

}
is a basis of neighbourhoods of the origin.

Then
⋂

B∈BP
B =

⋂
i∈I,ε>0

εŮpi
(2.9)
= {o} and so Proposition 1.3.2 gives that (X, τP) is Hausdorff.
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2. Locally multiplicative convex algebras

Proof.
a) Let (X, τ) be a locally convex TVS. Then we know that τ is induced by a

directed family P of seminorms on X and that Bd := {rUp : p ∈ Q, 0 < r ≤ 1}
(see Remark 2.2.18).

Suppose that (X, τ) is also Hausdorff. Then Proposition 1.3.2 ensures that
for any x ∈ X with x 6= o there exists a neighbourhood V of the origin in X
s.t. x /∈ V . This implies that there exists at least B ∈ Bd s.t. x /∈ B,3 i.e.
there exist p ∈ P and 0 < r ≤ 1 s.t. x /∈ rUp. Hence, p(x) > r > 0 and so
p(x) 6= 0, i.e. P is separating.

Conversely, if τ is induced by a separating family of seminorms P, i.e.
τ = τP , then Lemma 2.3.2 ensures that X is Hausdorff.

b) A Hausdorff lmc algebra (X, τ) is in particular a Hausdorff lc tvs, so
by a) there exists a separating family P of seminorms s.t. τ = τP . Since
(X, τ) is an lmc algebra, Theorem 2.2.11 ensures that there exists Q family of
submultiplicative seminorms s.t. τ = τQ. Hence, we have got τP = τQ which
gives in turn that for any p ∈ P there exist q1, q2 ∈ Q and C1, C2 > 0 s.t.
C1q1(x) ≤ p(x) ≤ C2q2(x),∀x ∈ X. This gives in turn that if q(x) = 0 for all
q ∈ Q then we have p(x) = 0 for all p ∈ P which implies x = 0 because P
is separating. This shows that Q is a separating family of submultiplicative
seminorms. Conversely, if τ is induced by a separating family of submultiplica-
tive seminorms P, i.e. τ = τP , then Lemma 2.3.2 ensures that X is Hausdorff
and Theorem 2.2.11 that it is an lmc algebra.

Examples 2.3.4.

1. Every normed algebra is a Hausdorff lmc algebra, since every submulti-
plicative norm is a submultiplicative seminorm satisfying the separation
property. Therefore, every Banach algebra is a complete Hausdorff lmc
algebra.

2. Every family of submultiplicative seminorms on a vector space containing
a submultiplicative norm induces a Hausdorff llmc topology.

3. Given an open subset Ω of Rd with the euclidean topology, the space C(Ω)
of real valued continuous functions on Ω with the so-called topology of
uniform convergence on compact sets is a lmc algebra. This topology is
defined by the family P of all the submultiplicative seminorms on C(Ω)
given by

pK(f) := max
x∈K
|f(x)|, ∀K ⊂ Ω compact.

3Since Bd is a basis of neighbourhoods of the origin, ∃ B ∈ Bd s.t. B ⊆ V . If x would
belong to all elements of the basis then in particular it would be x ∈ B and so also x ∈ V ,
contradiction.
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2.4. The finest lmc topology

Moreover, (C(Ω), τP) is Hausdorff, because the family P is clearly sepa-
rating. In fact, if pK(f) = 0, ∀K compact subsets of Ω then in particular
p{x}(f) = |f(x)| = 0, ∀x ∈ Ω, which implies f ≡ 0 on Ω.

2.4 The finest lmc topology

In the previous sections we have seen how to generate topologies on an algebra
which makes it into an lmc algebra. Among all of them, there is the finest one
(i.e. the one having the largest number of open sets).

Proposition 2.4.1. The finest lmc topology on an algebra X is the topology
induced by the family of all submultiplicative seminorms on X.

Proof.
Let us denote by S the family of all submultiplicative seminorms on the vector
space X. By Theorem 2.2.11, we know that the topology τS induced by S
makes X into an lmc algebra. We claim that τS is the finest lmc topology.
In fact, if there was a finer lmc topology τ (i.e. τS ⊆ τ with (X, τ) lmc
algebra) then Theorem 2.2.11 would give that τ is also induced by a family
P of submultiplicative seminorms. But then P ⊆ S and so τ = τP ⊆ τS by
definition of induced topology. Hence, τ = τS .

An alternative way of describing the finest lmc topology on an algebra
without using the seminorms is the following:

Proposition 2.4.2. The collection of all absorbing absolutely m-convex sets
of an algebra X is a basis of neighbourhoods of the origin for the finest lmc
topology on X.

Proof.
Let τmax be the finest lmc topology on X andM the collection of all absorbing
absolutely m-convex sets of X. Since M fulfills all the properties required in
Corollary 2.1.12, there exists a unique topology τ which makes X into an
lmc algebra having as basis of neighbourhoods of the origin M. Hence, by
definition of finest lmc topology, τ ⊆ τmax. On the other hand, (X, τmax) is
itself an lmc algebra and so Theorem 2.2.11 ensures that has a basis Bmax
of neighbourhoods of the origin consisting of absorbing absolutely m-convex
subsets of X. Then clearly Bmax is contained inM and, hence, τmax ⊆ τ .

This result can be proved also using Proposition 2.4.1 and the correspon-
dence between Minkowski functionals and absorbing absolutely convex subsets
of X introduced in the Section 2.2.
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2. Locally multiplicative convex algebras

Corollary 2.4.3. Every K−algebra endowed with the finest lmc topology is
an m-barrelled algebra.

Proof.
Let U be an m-barrel of (X, τmax). Then U is closed absolutely m-convex and
so it is a neighbourhood of the origin by the previous proposition.

Using basically the same proofs, we could show the analogous results for
the finest lc topology, namely:

The finest lc topology on a K−vector space X is the topology induced by the
family of all seminorms on X or equivalently the topology having the collection
of all absorbing absolutely convex sets of X as a basis of neighbourhoods of
the origin. Hence, every vector space endowed with the finest lc topology is a
barrelled space.

Recall that

Definition 2.4.4. A closed absorbing absolutely convex subset of a TVS is
called a barrel. A TVS in which every barrel is a neighbourhood of the origin
is called barrelled space.

It is also important to remark that while the finest lc topology on a
K−vector space (and in particular on a K−algebra) is always Hausdorff, the
finest lmc topology on a K−algebra does not have necessarily this property.

Proposition 2.4.5. Any K−vector space endowed with the finest lc topology
is a Hausdorff TVS.

Proof.
Let X be any non-empty K−vector space and S the family of all seminorms
on X. By Proposition 2.3.3-a), it is enough to show that S is separating. We
will do that, by proving that there always exists a non-zero norm on X. In
fact, let B = (bi)i∈I be an algebraic basis of X then for any x ∈ X there exist
a finite subset J of I and λj ∈ K for all j ∈ J s.t. x =

∑
j∈J λjbj and so we

can define ‖x‖ := maxj∈J |λj |. Then it is easy to check that ‖ · ‖ is a norm on
X and so ‖ · ‖ ∈ S.

Note that if X is a K−algebra, then the previous proof does not guar-
anteed the existence of a non-zero norm on X because, depending on the
multiplication in X, the norm ‖ · ‖ might be or not submultiplicative. In fact,
there exist algebras on which no submultiplicative norm can be defined. For
instance, if the algebra C(Y ) of all complex valued continuous functions on a
topological space Y contains an unbounded function then it does not admit a
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2.5. Topological algebras admitting lmc topologies

submultiplicative norm (see Sheet 4). Actually, there exist algebras on which
no non-zero submultiplicative seminorms can be defined, e.g. the algebra of
all linear operator on an infinite dimensional complex vector space (see [20,
Theorem 3] ). The finest lmc topology on such algebras is the trivial topology
which is obviously not Hausdorff.

We conclude this section with a nice further property of the finest lmc
topology involving characters of an algebra.

Definition 2.4.6. Let A be a K−algebra. A character of A is a non-zero
homomorpism of A into K. The set of all characters is denoted by X (A).

Proposition 2.4.7. Every character on a K−algebra A is continuous w.r.t.
the finest lmc topology on A.

Proof. Let α : A→ K be a character on A. For any ε > 0, we denote by Bε(0)
the open ball in K of radius ε and center 0 ∈ K, i.e. Bε(0) := {k ∈ K : |k| < ε}.
Set p(a) := |α(a)| for all a ∈ A. Then p is a submultiplicative seminorm on A
since for any a, b ∈ A and λ ∈ K \ {0} we have that:

• p(a+ b) = |α(a+ b)| = |α(a) + α(b)| ≤ |α(a)|+ |α(b)| = p(a) + p(b)

• p(λa) = |α(λa)| = |λα(a)| = |λ||α(a)| = |λ|p(a)

• p(ab) = |α(ab)| = |α(a)α(b)| = |α(a)||α(b)| = p(a)p(b).

Then α−1(Bε(0)) = {a ∈ A : |α(a)| < ε} = εŮp, which is an absorbing abso-
lutely m-convex subset of X and so, by Proposition 2.4.2, it is a neighbourhood
of the origin in the finest lmc topology on X. Hence α is continuous at the
origin and so continuous everywhere in A.

With a proof similar to the previous one, we can deduce that

Proposition 2.4.8. Every linear functional on a K−vector space X is con-
tinuous w.r.t. the finest lc topology on X.

2.5 Topological algebras admitting lmc topologies

In this section we will look for sufficient conditions on a TA to be an lmc
algebra. More precisely, we would like to find out under which conditions a
locally convex algebra (i.e. a TA which is a locally convex TVS) is in fact an
lmc algebra. The main result in this direction was proved by Michael in 1952
(see [21, Proposition 4.3]) and it is actually a generalization of a well-known
theorem by Gel’fand within the theory of Banach algebras (see [9]).

Theorem 2.5.1 (Michael’s Theorem). Let A be a lc algebra. If

a) A is m-barrelled, and
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2. Locally multiplicative convex algebras

b) there exists a basis M of neighbourhoods of the origin in A such that

∀a ∈ A,∀U ∈M, ∃λ > 0 : aU ⊆ λU, (2.10)

then A is an lmc algebra.

Proof.
Let us first give the main proof structure and then proceed to show the more
technical details.

Claim 1 W.l.o.g. we can assume that M consists of barrels.
Consider the unitization A1 of A equipped with the product topology (see
Definition 1.1.3 and Section 1.3). Denote by · the multiplication in A1 and by
B1(0) := {k ∈ K : |k| ≤ 1}. Then the family {B1(0)× U : U ∈ M} is a basis
of neighbourhoods of the origin (0, o) in A1 and the following holds.

Claim 2 For any U ∈ M, V (U) := {x ∈ A : (0, x) · (B1(0) × U) ⊆
(B1(0)× U)} is an m-barrel subset of A.
Then the assumption a) ensures that each V (U) is a neighbourhood of the
origin in A. Moreover, for any U ∈M, (1, o) ∈ (B1(0)× U) and so

∀x ∈ V (U), (0, x) = (0, x) · (1, o) ∈ (B1(0)× U),

which provides that V (U) ⊆ U . Hence, {V (U) : U ∈ M} is a basis of neigh-
bourhoods of the origin in A consisting of m-barrels and so, by Theorem 2.1.11,
A is an lmc algebra.

Proof. Claim 1
If M is not already consisting of all barrels, then we can always replace it by
M̃ := {convb(U) : U ∈ M}, because M̃ is a basis of neighbourhoods of the
origin in A fulfilling (2.10).

In fact, since A is a lc TVS, then there exists a basis N of neighbourhoods
of the origin in A consisting of barrels. Then, since also M is a basis of
neighbourhoods of the origin in A, we have that:

∀V ∈ N , ∃U ∈M : U ⊆ V.

As convb(U) is the smallest closed convex balanced subset of A containing U

and V has all such properties, we get that convb(U) ⊆ V . Hence, M̃ is a basis
of neighbourhoods of the origin in A.

Moreover, let a ∈ A and U ∈ M. By assumption b), we know that there
exists λ > 0 such that aU ⊆ λU . Now recalling that convb(U) = conv(bal(U)),
we can write any x ∈ convb(U) as x =

∑n
i=1 µiδiui for some n ∈ N, ui ∈ U ,
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µi ∈ [0, 1] with
∑n

i=1 µi = 1, and δi ∈ K with |δi| ≤ 1. Then for each
i ∈ {1, . . . , n} there exist ũi ∈ U such that:

ax =

n∑
i=1

µiδiaui =

n∑
i=1

µiδiλũi = λ

n∑
i=1

µi(δiũi)

and so ax ∈ λ · convb(U). Hence, a · convb(U) ⊆ λ · convb(U). This together
with the separate continuity of the multiplication in A and the fact that the
scalar multiplication is a homeomorphism imply that

a · convb(U) ⊆ a · convb(U) ⊆ λ · convb(U) = λ · convb(U).

This shows that M̃ fulfills (2.10).

Proof. Claim 2
Let U ∈M and V (U) := {x ∈ A : (0, x) · (B1(0)×U) ⊆ (B1(0)×U)}. Then:
• V (U) is multiplicative.
For any a, b ∈ V (U) we have

(0, ab)·(B1(0)×U) = (0, a)·(0, b)·(B1(0)×U) ⊆ (0, a)·(B1(0)×U) ⊆ (B1(0)×U),

i.e. ab ∈ V (U).
• V (U) is closed.
Let us show that A \ V (U) is open, i.e. that for any x ∈ A \ V (U) there
exists N ∈M such that x+N ⊆ A \ V (U). If x ∈ A \ V (U), then there exist
t ∈ B1(0) and u ∈ U such that (0, x) ·(t, u) /∈ (B1(0)×U), i.e. tx+ux ∈ A\U .
As U is closed, A \ U is open and so there exists W ∈M s.t.

tx+ ux+W ⊆ A \ U. (2.11)

Take N ∈ M s.t. uN ⊆ 1
2W and N ⊆ 1

2W (this exists because left multipli-
cation is continuous and M is basis of neighbourhoods of the origin). Then
x+N ⊆ A \U , because otherwise there would exists n ∈ N such that x+n ∈
V (U) and so (0, n+x)·(t, u) ∈ (B1(0)×U) that is nt+nu+xt+xu ∈ U , which in
turns implies xt+xu ∈ U−tN−uN ⊆ U−N− 1

2W ⊆ U−
1
2W−

1
2W ⊆ U−W ,

i.e. xt+ xu+W ⊆ U which contradicts (2.11).
• V (U) is absorbing.
Let a ∈ A. Then (2.10) ensures that there exists λ > 0 s.t. aU ⊆ λU . Also,
since U is absorbing, there exists µ > 0 such that a ∈ µU . Take ρ := 1

λ+µ .

Then for all k ∈ K with |k| ≤ ρ and for any (t, u) ∈ (B1(0)× U) we get that
kta + kau ∈ ktµU + kλU ⊆ kµU + kλU = k(µ + λ)U ⊆ U where in both
inclusions we have used that U is balanced together with |t| ≤ 1 in the first
and |k(µ + λ)| ≤ ρ|µ + λ| = 1 in the second. Hence, we have obtained that
(0, ka) · (t, u) = (0, kta+ kau) ∈ (B1(0)× U) which gives that ka ∈ V (U).
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2. Locally multiplicative convex algebras

• V (U) is balanced.
Let a ∈ V (U) and k ∈ K with |k| ≤ 1. Then

(0, ka) · (B1(0)× U) = k(0, a) · (B1(0)× U) ⊆ (kB1(0)× kU) ⊆ (B1(0)× U)

where in the last inclusion we used that both B1(0) and U are balanced.
• V (U) is convex.
Let a, b ∈ V (U) and µ ∈ [0, 1]. Then for any (t, u) ∈ (B1(0) × U) we know
that (0, a) · (t, u) ∈ (B1(0)×U) and (0, b) · (t, u) ∈ (B1(0)×U), which give in
turn that at+ au ∈ U and bt+ bu ∈ U . Therefore, the convexity of U implies
that µ(at+ au) + (1− µ)(bt+ bu) ∈ U and so we obtain

(0, µa+ (1− µ)b) · (t, u) = (0, µ(at+ au) + (1− µ)(bt+ bu)) ∈ (B1(0)× U),

i.e. µa+ (1− µ)b ∈ V (U).

Let us present now a stronger version of Michael’s theorem, which has
however the advantage of providing a less technical and so more manageable
sufficient condition for a topology to be lmc. This more convenient condi-
tion actually identifies an entire class of TA: the so-called A-convex algebras
introduced by Cochran, Keown and Williams in the early seventies [5].

Definition 2.5.2. A K−algebra X is called A-convex if it is endowed with
the topology induced by an absorbing family of seminorms on X.

Definition 2.5.3. A seminorm p on a K−algebra X is called:

• left absorbing if ∀a ∈ X,∃λ > 0 s.t. p(ax) ≤ λp(x),∀x ∈ X.

• right absorbing if ∀a ∈ X,∃λ > 0 s.t. p(xa) ≤ λp(x),∀x ∈ X.

• absorbing if it is both left and right absorbing.

Proposition 2.5.4. Every A-convex algebra is a lc algebra.

Proof.
Let (X, τ) be an A-convex algebra. Then by definition τ = τP where P is
a family of absorbing seminorm. Hence, by Theorem 2.2.12, (X, τ) is an lc
TVS. It remains to show that it is a TA. Let a ∈ X and consider the left
multiplication `a : X → X,x 7→ ax. Since any p ∈ P is left absorbing, we
have that there exists λ > 0 such that p(ax) ≤ λp(x) for all x ∈ X and so
that 1

λUp ⊆ `
−1
a (Up). Hence, `a is τ−continuous. Similarly, one can prove the

continuity of the right multiplication. We can then conclude that (X, τ) is an
lc algebra.
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Note that not every lc algebra is A-convex (see Sheet 4) but every lmc
algebra is A-convex as the submultiplicativity of the generating seminorms
implies that they are absorbing. Let us focus now on the inverse question of
establishing when an A-convex algebra is lmc.

Theorem 2.5.5. Every m-barrelled A-convex algebra is an lmc algebra.

Proof.
Let (X, τ) be an m-barrelled A-convex algebra. By the previous proposi-
tion, we have that (X, τ) is an lc algebra. Denote by P := {pi : i ∈ I}
a family of absorbing seminorm generating τ . Then, by Proposition 2.2.17,
Q :=

{
maxi∈B pi : ∅ 6= B ⊆ I with B finite

}
is a directed family of semi-

norms such that τ = τQ. Also, each q ∈ Q is absorbing. Indeed, q = maxi∈B pi
for some ∅ 6= B ⊆ I with B finite and so for any i ∈ B and any a ∈ X we
have that there exists λi > 0 such that pi(ax) ≤ λip(x) for all x ∈ X. Hence,
for any a ∈ X we get

q(ax) = max
i∈B

pi(ax) ≤ max
i∈B

λipi(x) ≤ λmax
i∈B

pi(x) = q(x),∀x ∈ X,

where λ := maxi∈B λi. Then M := {εUq : q ∈ Q, 0 < ε ≤ 1} is a basis
of neighbourhoods of the origin for (X, τ) and for each a ∈ A, q ∈ Q and
0 < ε ≤ 1 we have that if x ∈ aεUq then x = aεy for some y ∈ Uq and so
q(x) = q(aεy) ≤ εq(ay) ≤ λεq(y) ≤ λε i.e. x ∈ λεUq. Hence, we proved
that ∀a ∈ A, ∀q ∈ Q, ∀0 < ε ≤ 1, aεUq ⊆ λεUq which means that M fulfills
condition b) in Theorem 2.5.1. Then (X, τ) satisfies all the assumptions of
Theorem 2.5.1 which guarantees that it is an lmc algebra.

To conclude this section let us just restate the result by Gel’fand mentioned
in the beginning in one of the many formulation which reveals the analogy with
Michael’s theorem.

Theorem 2.5.6. If X is a K−algebra endowed with a norm which makes it
into a Banach space and a TA, then there exists an equivalent norm on X
which makes it into a Banach algebra.
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Chapter 3

Further special classes of topological algebras

3.1 Metrizable and Fréchet algebras

Definition 3.1.1. A metrizable algebra X is a TA which is in particular a
metrizable TVS, i.e. a TVS whose topology is induced by a metric.

We recall that a metric d on a set X is a mapping d : X ×X → R+ with
the following properties:

1. d(x, y) = 0 if and only if x = y (identity of indiscernibles);

2. d(x, y) = d(y, x) for all x, y ∈ X (symmetry);

3. d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X (triangular inequality).

Saying that the topology of a TVS (X, τ) is induced by a metric d means
that for any x ∈ X the sets of all open (or equivalently closed) balls:

Br(x) := {y ∈ X : d(x, y) < r}, ∀r > 0

forms a basis of neighbourhoods of x for τ .
There exists a completely general characterization of metrizable TVS.

Theorem 3.1.2. A TVS X is metrizable if and only if X is Hausdorff and
has a countable basis of neighbourhoods of the origin.

Note that one direction is quite straightforward. Indeed, suppose that X is
a metrizable TVS and that d is a metric defining the topology of X, then the
collection of all B 1

n
(o) with n ∈ N is a countable basis of neighbourhoods of the

origin o in X. Moreover, the intersection of all these balls is just the singleton
{o}, which proves that the TVS X is also Hausdorff (see Proposition 1.3.2)
The other direction requires more work and we are not going to prove it in full
generality as it would go beyond the aim of this course (see e.g. [23, Chapter I,
Section 6.1] or [16, proof of Theorem 1.1] for a proof for locally convex TVS).
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However, we are going to use Theorem 3.1.2 to give a characterization of all
metrizable lmc algebras.

Theorem 3.1.3. Let A be a K−algebra. Then the following are equivalent:

a) A is a metrizable lmc algebra

b) A is a TVS having a decreasing sequence of m-barrels with trivial intersec-
tion as a basis of neighbourhoods of the origin.

c) A is a TVS whose topology is generated by an increasing sequence of sub-
multiplicative seminorms which form a separating family.

The obvious analogous statement is true for metrizable lc algebras.

Proof.
a)⇒b) Suppose that (A, τ) is a metrizable lmc algebra. Then in particular

(A, τ) is a metrizable TVS and so by Theorem 3.1.2 it is Hausdorff and has
a countable basis {Un : n ∈ N} of neighbourhoods of the origin. As (A, τ)
is an lmc algebra, by Theorem 2.1.11, we can assume w.l.o.g. that each Un
is an m-barrel. Now for each n ∈ N set Vn := U1 ∩ · · · ∩ Un. Then one can
easily verify that each Vn is still an m-barrel and clearly Vn+1 ⊆ Vn. Hence,
the decreasing sequence {Vn : n ∈ N} is a basis of neighbourhoods of the
origin in (A, τ) consisting of m-barrels. The Hausdorfness of (A, τ) implies,
by Proposition 1.3.2, that

⋂
n∈N Vn = {o}.

b)⇒c) Suppose that (A, τ) is a TVS and that {Vn : n ∈ N} is a basis
of neighbourhoods of the origin such that, for any n ∈ N, Vn is an m-barrel,
Vn+1 ⊆ Vn and

⋂
n∈N Vn = {o}. Then Theorem 2.1.11 guarantees that (A, τ) is

an lmc algebra and the family S := {pVn : n ∈ N} is a family of submultiplica-
tive seminorms generating τ (see proof of Theorem 2.2.12). Actually, S is an
increasing sequence, since Vn+1 ⊆ Vn implies that pVn ≤ pVn+1 . Moreover, we

have that {o} ⊆
⋂
n∈N ŮpVn ⊆

⋂
n∈N Vn = {o} and so

⋂
n∈N,c>0 cŮpVn = {o},

i.e. S is separating (c.f. (2.9)).

c)⇒a) Suppose that (A, τ) is a TVS and that P := {pn : n ∈ N} is a
separating increasing sequence of submultiplicative seminorm generating τ .
By Theorem 2.2.12 and Proposition 2.3.3, (A, τ) is a Hausdorff lmc algebra.
W.l.o.g. we can assume that P is directed and so, by using Exercise 3 in Sheet
3, we have that { 1

nUpn : n ∈ N} is a countable basis of neighbourhoods of the
origin. Then Theorem 3.1.2 ensures that (A, τ) is also a metrizable TVS and,
hence, a metrizable lmc algebra.

A special class of metrizable algebras are the so-called Fréchet algebras.
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Definition 3.1.4. A Fréchet algebra is a TA which is in particular a Fréchet
TVS, i.e. a complete metrizable lc TVS.

It is clear that every Fréchet algebra is a Hausdorff complete lc algebra
whose topology is induced by an increasing family of seminorms, but these
are not necessarily submultiplicative. If this is the case, we speak of Fréchet
lmc algebras.

Definition 3.1.5. A Fréchet lmc algebra is a complete metrizable lmc algebra.

As completeness is fundamental to understand the structure of a Fréchet
algebra, let us recall here some of the most important properties of complete
TVS (for a more detailed exposition about complete TVS see e.g. [15, Section
2.5] or [24, Part I, Section 5]).

Definition 3.1.6.
A TVS X is said to be complete if every Cauchy filter on X converges to a
point x of A.

It is important to distinguish between completeness and sequentially com-
pleteness.

Definition 3.1.7.
A TVS X is said to be sequentially complete if any Cauchy sequence in X
converges to a point in A.

Clearly, a TA is complete (resp. sequentially complete) if it is in particular
a complete (resp. sequentially complete) TVS. Remind that

Definition 3.1.8. A filter F on a TVS (X, τ) is said to be a Cauchy filter if

∀U ∈ F(o) inX, ∃M ∈ F : M −M ⊂ U, (3.1)

where F(o) denotes the filter of neighbourhoods of the origin o in (X, τ).

Definition 3.1.9. A sequence S := {xn}n∈N of points in a TVS (X, τ) is said
to be a Cauchy sequence if

∀U ∈ F(o) inX, ∃N ∈ N : xm − xn ∈ U, ∀m,n ≥ N, (3.2)

where F(o) denotes the filter of neighbourhoods of the origin o in (X, τ).

Proposition 3.1.10.
The filter associated with a Cauchy sequence in a TVS X is a Cauchy filter.
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3. Further special classes of topological algebras

Proof.
Let S be a Cauchy sequence. Then, recalling that the collection B := {Sm :
m ∈ N} with Sm := {xn ∈ S : n ≥ m} is a basis of the filter FS associated
with S, we can easily rewrite (3.2) as

∀U ∈ F(o) inX, ∃N ∈ N : SN − SN ⊂ U.

This immediately gives that FS fulfills (3.2) and so that it is a Cauchy filter.

It is then not hard to prove that

Proposition 3.1.11.
If a TVS X is completem then A is sequentially complete.

Proof.
Let S := {xn}n∈N be a Cauchy sequence of points in A. Then Proposition
3.1.10 guarantees that the filter FS associated to S is a Cauchy filter in A. By
the completeness of A we get that there exists x ∈ A such that FS converges
to x. This is equivalent to say that the sequence S is convergent to x ∈ A (see
[15, Proposition 1.1.29]). Hence, A is sequentially complete.

The converse is false in general (see [15, Example 2.5.9]). However, the
two notions coincide in metrizable TVS, and so we have that

Proposition 3.1.12. A metrizable lc algebra is a Fréchet algebra if and only
if it is sequentially complete.

Another important property of Fréchet algebras is that they are Baire
spaces, i.e. topological spaces in which the union of any countable family
of closed sets, none of which has interior points, has no interior points itself
(or, equivalently, the intersection of any countable family of everywhere dense
open sets is an everywhere dense set). This is actually a consequence of the
following more general result:

Proposition 3.1.13. A complete metrizable TVS X is a Baire space.

Proof. (see [16, Proposition 1.1.8])

Example 3.1.14. An example of Baire space is R with the euclidean topology.
Instead Q with the subset topology given by the euclidean topology on R is not
a Baire space. Indeed, for any q ∈ Q the subset {q} is closed and has empty
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3.1. Metrizable and Fréchet algebras

interior in Q, but ∪q∈Q{q} = Q which has interior points in Q (actually its
interior is the whole Q).

Corollary 3.1.15. Every Fréchet TVS is barrelled. In particular, every
Fréchet algebra is m-barrelled.

Proof.
Let (X, τ) be a Fréchet TVS and V a barrelled subset of X. Then V is
absorbing and closed, so X =

⋃
n∈N nV is a countable union of closed sets.

Hence, as Proposition 3.1.13 ensures that (X, τ) is a Baire space, we have

that there exists k ∈ N such that ˚(kV ) 6= ∅. This implies that there exists

x ∈ ˚(kV ), i.e. there exists a neighbourhood N of the origin in (X, τ) such
that x+N ⊆ V . As (X, τ) is in particular an lc TVS, we can assume that N
is absolutely convex. Then we get

N =
1

2
N − 1

2
N =

1

2
(x+N) +

1

2
(−x−N) ⊆ 1

2
V +

1

2
(−V ) = V,

where in the last equality we used that V is a barrel and so absolutely convex.
Hence, we can conclude that V is a neighbourhood of the origin and so (X, τ)
is barrelled.

If (X, τ) is a Fréchet algebra, then it is in particular a Fréchet TVS and
so the previous part of the proof guarantees that every m-barrelled subset of
X is a neighbourhood of the origin, i.e. (X, τ) is an m-barrelled algebra.

This result together with Theorem 2.5.1 (resp. Theorem 2.5.5) clearly pro-
vides that every Fréchet algebra having a basis of neighbourhoods of the origin
which satifies (2.10) (resp. every A-convex Fréchet algebra) is lmc. Propo-
sition 3.1.13 plays also a fundamental role in proving the following general
property of complete metrizable algebras and so of Fréchet algebras.

Proposition 3.1.16. Every complete metrizable algebra is a TA with contin-
uous multiplication.

Proof.
Let A be a complete metrizable algebra. The metrizability provides the ex-
istence of a countable basis B := {Wn : n ∈ N} of neighbourhoods of the
origin. We aim to show that for any n ∈ N there exists m ∈ N such that
WmWm ⊆Wn.

Fixed n ∈ N, as we are in a TVS, there always exists a closed neigh-
bourhood V of the origin such that V − V ⊆ Wn. As for any b ∈ A
the right multiplication rb : A → A, a 7→ ab is continuous we have that
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r−1
b (V ) := {a ∈ A : ab ∈ V } is closed. For any k ∈ N, set Uk :=

⋂
b∈Wk

r−1
b (V ).

Then each Uk is closed and1 A =
⋃
k∈N Uk.

Since A is a Baire space by Proposition 3.1.13, we have that there exists
h ∈ N such that Ůh 6= ∅. Therefore, there exists x ∈ Ůh, i.e. there exists j ∈ N
such that x+Wj ⊆ Uh. This in turn provides that

Uh − Uh ⊇ x+Wj − x−Wj = Wj −Wj ⊇Wj .

Since B is a basis for the filter of neighbourhoods of the origin, we can find
m ∈ N such that Wm ⊆Wj ∩Wh and therefore

WmWm ⊆WjWh ⊆ (Uh − Uh)Wh = UhWh − UhWh ⊆ V − V ⊆Wn,

where in the last inclusion we have just used the definition of Uh. Hence, the
multiplication in A is jointly continuous.

Example 3.1.17.
1) Let C∞([0, 1]) be the space of all real valued infinitely differentiable func-

tions on [0, 1] equipped with pointwise operations. We endow the algebra
C∞([0, 1]) with the topology τP generated by P := {pn : n ∈ N0} with
pn(f) := supx∈[0,1] |(D(n)f)(x)| for any f ∈ C∞([0, 1]) (here D(n)f denotes
the n−th derivative of f). P is a countable separating family of semi-
norms so that (C∞([0, 1]), τP) is a metrizable lc algebra but the seminorms
in P are not submultiplicative since if for example we take f(t) := t then
p1(f2) = 2 > 1 = p1(f)p1(f). However, we are going to show that τP can
be in fact generated by a countable separating family of submultiplicative
seminorms and so it is actually an lmc algebra. First, let us consider the
family R := {rn := maxj=0,...,n pj : n ∈ N0}. As each pn ≤ rn, we have
that τP = τR and also for all n ∈ N0, f, g ∈ C∞([0, 1]) the following holds:

rn(fg) = max
j=0,...,n

pj(fg) = max
j=0,...,n

sup
x∈[0,1]

|(D(j)fg)(x)|

≤ max
j=0,...,n

j∑
k=0

(
j

k

)
sup
x∈[0,1]

|(D(j−k)f)(x)| sup
x∈[0,1]

|(D(k)g)(x)|

≤ max
j=0,...,n

j∑
k=0

(
j

k

)
pj−k(f)pk(g)

≤

(
max

j=0,...,n

j∑
k=0

(
j

k

))
rn(f)rn(g) = 2nrn(f)rn(g).

1Clearly, each Uk ⊂ A and so
⋃
k∈N Uk ⊆ A. Conversely, if x ∈ A, then the continuity of

the left multiplication implies that there exists j ∈ N such that xWj ⊆ V and so x ∈ r−1
b (V )

for all b ∈Wj , i.e. x ∈
⋃
k∈N Uk.

52



3.1. Metrizable and Fréchet algebras

Therefore, setting qn(f) := 2nrn(f) for any n ∈ N0 and f ∈ C∞([0, 1]), we
have that the family Q := {qn : n ∈ N0} is a countable family of submulti-
plicative seminorms such that τQ = τR = τP . Hence, (C∞([0, 1]), τP) is a
metrizable lmc algebra. Actually, it is also complete and so a Fréchet lmc
algebra. Indeed, as it is metrizable we said it is enough to show sequen-
tially complete. Let (fn)n∈N be a Cauchy sequence in (C∞([0, 1]), τP), i.e.
∀U ∈ τP∃N ∈ N s.t. fn − fm ∈ U∀n,m ≥ N . Thus,

∀ε > 0∀k ∈ N0∃N ∈ N : pk(fn − fm) ≤ ε ∀n,m ≥ N (3.3)

which yields

∀ε > 0∃N ∈ N : sup
x∈[0,1]

|fn(x)− fm(x)| ≤ ε ∀n,m ≥ N (3.4)

so that (fn(x))n∈N is a Cauchy sequence in R for all x ∈ [0, 1]. Since R is
complete for all x ∈ [0, 1] there exists yx ∈ R s.t. fn(x) → yx as n → ∞.
Set f(x) := yx for all x ∈ [0, 1], then (fn)n∈N converges pointwise to f .
The latter combined with (3.4) yields that (fn)n∈N converges uniformly to f
which implies that f ∈ C([0, 1]) by [16, Lemma 1.2.2]. By (3.4) for k = 1,
we get ((D(1)fn)(x))n∈N is a Cauchy sequence in R for all x ∈ [0, 1] and
reasoning as above (D(1)fn)n∈N uniformly converges to some g on [0, 1].
By [16, Lemma 1.2.3], g = D(1)f and so f ∈ C1([0, 1]). Proceeding by
induction, we can show that (D(j)fn)n∈N converges uniformly to D(j)f on
[0, 1] and f ∈ Cj([0, 1]) for all j ∈ N0, i.e.

∀ε > 0∃N ∈ N : sup
x∈[0,1]

∣∣∣D(j)fn(x)−D(j)f(x)
∣∣∣ ≤ ε ∀n,m ≥ N.

Therefore, (fn)n∈N converges to f ∈ C∞([0, 1]) in τP . Hence, completeness
is proven.

Note that we could have first proved completeness and then used Corol-
lary 3.1.15 to show that (C∞([0, 1]), τP) is m-barrelled. Then, observing
that τP = τR and that the seminorms in R are all absorbing, we could
have applied Theorem 2.5.5 and concluded that (C∞([0, 1]), τP) is an lmc
algebra.

2) Let KN = {a = (an)n∈N : an ∈ K} be the space of all K–valued sequences
endowed KN with the topology τP generated by P := {pn : n ∈ N} with
pn(a) := maxk≤n |ak| for any a ∈ KN (n ∈ N). Since P is an increas-
ing family of submultiplicative seminorms and separating, (KN, τP) is a
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3. Further special classes of topological algebras

metrizable lmc algebra by Theorem 3.1.3. Indeed, if a, b ∈ KN, then

pn(ab) = max
k≤n
|akbk| ≤ max

k≤n
|ak|max

k≤n
|bk| = pn(a)pn(b)

for all n ∈ N. Further, if pn(a) = 0 for all n ∈ N, then

max
k≤n
|ak| = 0, ∀n ∈ N⇒ |ak| = 0,∀k ∈ N⇒ a ≡ 0.

Moreover, (KN, τP) is sequentially complete and so complete (prove it your-
self). Hence, it is a Fréchet lmc algebra.

3) The Arens–algebra Lω([0, 1]) :=
⋂
p≥1 L

p([0, 1]) endowed with the topology
τP generated by P := {‖ · ‖p : p ∈ N} is a Fréchet lc algebra which is not
lmc. We have already showed that it is an lc algebra but not lmc. Metriz-
ability comes from the fact that the family of seminorms is countable and
increasing (Hölder–inequality). Proving completeness is more complicated
which we will maybe see it later on.

3.2 Locally bounded algebras

The TAs we are going to study in this section were first introduced by W. Ze-
lazko in the 1960’s and provide non-trivial examples of TAs whose underlying
space is not necessarily locally convex (so they are neither necessarily lc alge-
bras nor lmc algebras) but they still share several nice properties of Banach
and/or lmc algebras.

Definition 3.2.1. A TA is locally bounded (lb) if there exists a neighbourhood
of the origin which is bounded. Equivalently, a locally bounded algebra is a TA
which is in particular a locally bounded TVS (i.e. the space has a bounded
neighbourhood of the origin).

Recall that:

Definition 3.2.2. A subset B of a TVS X is bounded if for any neighbour-
hood U of the origin in X there exists λ > 0 s.t. B ⊆ λU (i.e. B can be
swallowed by any neighbourhood of the origin).

This generalizes the concept of boundedness we are used to in the theory
of normed and metric spaces, where a subset is bounded whenever we can find
a ball large enough to contain it.
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3.2. Locally bounded algebras

Example 3.2.3. The subset Q := [0, 1]2 is bounded in (R2, ‖ · ‖) as for any
ε > 0 there exists λ > 0 s.t. Q ⊆ λBε(o) namely, if ε ≥

√
2 take λ = 1,

otherwise take λ =
√

2
ε .

Proposition 3.2.4. Every Hausdorff locally bounded algebra is metrizable.

Proof.
Let (A, τ) be a Hausdorff locally bounded algebra and F(o) its filter of neigh-
bourhoods of the origin. Then there exists U ∈ F(o) bounded. W.l.o.g. we
can assume that U is balanced. Indeed, if this is not the case, then we can
replace it by some V ∈ F(o) balanced s.t. V ⊆ U . Then the boundedness of
U provides that ∀N ∈ F(o) ∃λ > 0 s.t. U ⊆ λN and so V ⊆ λN , i.e. V is
bounded and balanced.

The collection { 1
nU : n ∈ N} is a countable basis of neighbourhoods of

the origin o. In fact, for any N ∈ F(o) there exists λ > 0 s.t. U ⊆ λN , i.e.
1
λU ⊆ N , and so 1

nU ⊆
1
λU for all n ≥ λ as U is balanced. Hence, we obtain

that for any N ∈ F(o) there exists n ∈ N such that 1
nU ⊆ N . Then we can

apply Theorem 3.1.2 which gives that (A, τ) is a metrizable algebra.

The converse is not true in general as for example the countable product
of 1–dimensional metrizable TVS is metrizable but not locally bounded.

Corollary 3.2.5. Every complete Hausdorff lb algebra has continuous multi-
plication.

Proof. Since local boundedness and Hausdorffness imply metrizability, Propo-
sition 3.1.16 ensures that the multiplication is continuous.

The concept of lb TVS and so of lb TA can be characterized through
extensions of the notion of norm, which will allow us to see how some results
can be extended from Banach algebras to complete lb algebras.

Definition 3.2.6. Let X be a K–vector space. A map ‖ · ‖ : X → R+ is said
to be a quasi-norm if

1. ∀x ∈ X : ‖x‖ = 0 ⇐⇒ x = 0,

2. ∀x ∈ X∀λ ∈ K : ‖λx‖ = |λ| ‖x‖,
3. ∃k ≥ 1 : ‖x+ y‖ ≤ k(‖x‖+ ‖y‖),∀x, y ∈ X.

If k = 1 this coincides with the notion of norm.

Example 3.2.7.
Let 0 < p < 1 and consider the space Lp([0, 1]) with ‖ · ‖p : Lp([0, 1]) → R+

defined by ‖f‖p := (
∫ 1

0 |f(x)|p dx)
1
p for all f ∈ Lp([0, 1]). Then the Minkowski
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3. Further special classes of topological algebras

inequality does not hold but we still have that ‖f + g‖p ≤ 2
1−p
p (‖f‖+ ‖g‖) for

all f, g ∈ Lp([0, 1]) and so that ‖ · ‖p is a quasi-norm.

Proposition 3.2.8. Let (X, τ) be a Hausdorff TVS. Then (X, τ) is lb if and
only if τ is induced by a quasi-norm on X.

Proof.
Assume that (X, τ) is lb and F(o) is its filter of neighbourhoods of the origin.
Then there exists balanced and bounded U ∈ F(o) and B := {αU : α > 0}
is a basis of neighbourhoods of the origin in (X, τ) because for any N ∈ F(o)
there exists λ > 0 s.t. U ⊆ λN ⇒ B 3 1

λU ⊆ N . Consider the Minkowski
functional pU (x) := inf{α > 0 : x ∈ αU}. In the proof of Lemma 2.2.7 we
have already seen that if U is absorbing and balanced, then 0 ≤ pU (x) < ∞
and pU (λx) = |λ| pU (x) for all x ∈ X and all λ ∈ K. If pU (x) = 0, then
x ∈ αU for all α > 0 and so x ∈

⋂
α>0 αU = {o}, i.e. x = o. Since X is a

TVS, ∃ V ∈ F(o) s.t. V + V ⊆ U and also ∃ α > 0 s.t. αU ⊆ V as B is
a basis of neighbourhoods. Therefore, αU + αU ⊆ V + V ⊆ U and taking
k ≥ max{1, 1

α}, we obtain U + U ⊆ 1
αU ⊆ kU as U is balanced.

Let x, y ∈ X and ρ > pU (x), δ > pU (y), then x ∈ ρU, y ∈ δU since U is
balanced, and so x

ρ ,
y
δ ∈ U . Thus,

x+ y

ρ+ δ
=

ρ

ρ+ δ

x

ρ
+

δ

ρ+ δ

y

δ
∈ U + U ⊆ kU.

and we obtain x + y ∈ k(ρ + δ)U which implies pU (x + y) ≤ k(ρ + δ). As
ρ > pU (x) and δ > pU (y) were chosen arbitrarily, we conclude pU (x + y) ≤
k(pU (x) + pU (y)). Hence, pU is a quasi-norm.

Let BpU
1 := {x ∈ X : pU (x) ≤ 1}. Then we have U ⊆ BpU

1 ⊆ (1 + ε)U for
all ε > 0. Indeed, if x ∈ U , then pU (x) ≤ 1 and so x ∈ BpU

1 . If x ∈ BpU
1 , then

pU (x) ≤ 1 and so ∀ε > 0 ∃ α with α ≤ 1 + ε s.t. x ∈ αU . This gives that
x ∈ (1 + ε)U as U is balanced and so αU ⊆ (1 + ε)U . Since {εBpU

1 : ε > 0} is
a basis of τpU , this implies τ = τpU .
Conversely, assume that τ = τq for a quasi-norm q on X and Fq(o) its filter of
neighbourhoods of the origin. The collection B := {εBq

1 : ε > 0} is a basis of
neighbourhoods of the origin in (X, τ) (by Theorem 1.2.6). Let us just show
that ∀N ∈ Fq(o) ∃V ∈ Fq(o) s.t. V + V ⊆ N . Indeed, 1

2kB
q
1 + 1

2kB
q
1 ⊆ Bq

1

because if x, y ∈ Bq
1, then

q

(
x+ y

2k

)
=

1

2k
q(x+ y) ≤ k(q(x) + q(y))

2k
≤ 2k

2k
= 1
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and so x+y
2k ∈ B

q
1. Then for all N ∈ Fq(o) there is some ε > 0 s.t. εBq

1 ⊆ N
and so ε

2kB
q
1 + ε

2kB
q
1 ⊆ εB

q
1 ⊆ N . Since B is a basis for τq, for any N ∈ Fq(o)

there exists ε > 0 s.t. εBq
1 ⊆ N , which implies Bq

1 ⊆ 1
εN . Therefore, Bq

1 is
bounded and so τq is a lb TVS.

Using the previous proposition and equipping the space in Example 3.2.7
with pointwise multiplication, we get an example of lb but not lc algebra (see
Sheet 5). An example of lc but not lb algebra is given by the following.

Example 3.2.9. Let K be any compact subset of (R, ‖ · ‖) and let us consider
the algebra C∞(K) of all real valued infinitely differentiable functions on K
equipped with pointwise operations. Using the same technique as in Exam-
ple 3.1.17, we can show that C∞(K) endowed with the topology τK , generated
by the family {rn : n ∈ N0} where rn(f) := sup

j=0,...,n
supx∈K |(D(j)f)(x)| for

any f ∈ C∞(K), is a Fréchet lmc algebra, i.e. an lc metrizable and complete
algebra.

Denote now by C∞(R) the space of all real valued infinitely differentiable
functions on R and by C∞c (K) its subset consisting of all the functions f ∈
C∞(R) whose support lies in K, i.e.

C∞c (K) := {f ∈ C∞(R) : supp(f) ⊆ K},

where supp(f) denotes the support of the function f , that is the closure in
(R, ‖ · ‖) of the subset {x ∈ R : f(x) 6= 0}. Then it is easy to see that
C∞c (K) = C∞(K) and this is a linear subspace of C∞(R). Indeed, for any
f, g ∈ C∞c (K) and any λ ∈ R, we clearly have f +g ∈ C∞(R) and λf ∈ C∞(R)
but also supp(f + g) ⊆ supp(f)∪ supp(g) ⊆ K and supp(λf) = supp(f) ⊆ K,
which gives f + g, λf ∈ C∞c (K).

Let C∞c (R) be the union of the subspaces C∞c (K) as K varies in all possible
ways over the family of compact subsets of R, i.e. C∞c (R) consists of all the
functions belonging to C∞(R) having compact support (this is what is actually
encoded in the subscript “c”). In particular, the space C∞c (R) is usually called
space of test functions and plays an essential role in the theory of distributions.

Consider a sequence (Kj)j∈N of compact subsets of R s.t. Kj ⊆ Kj+1,∀j ∈
N and

⋃∞
j=1Kj = R. Then C∞c (R) =

⋃∞
j=1 C∞c (Kj), as an arbitrary compact

subset K of R is contained in Kj for some sufficiently large j, and we have that
C∞c (Kj) ⊆ C∞c (Kj+1). For any j ∈ N, we endow C∞c (Kj) with the topology
τj := τKj defined as above. Then (C∞c (Kj), τKj ) is a Fréchet lmc algebra and
τj+1 �C∞c (Kj)= τj. Denote by τind the finest lc topology on C∞c (R) such that
all the inclusions C∞c (Kj) ⊆ C∞c (R) are continuous (τind does not depend on
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3. Further special classes of topological algebras

the choice of the sequence of compact sets Kj’s provided they fill R). Then it
is possible to show that (C∞c (R), τind) is a complete lc algebra but not Baire.
Hence, Proposition 3.1.13 provides that (C∞c (R), τind) is not metrizable and so
not lb by Proposition 3.2.4.

Definition 3.2.10. Let X be a K–vector space and 0 < α ≤ 1. A map
q : X → R+ is an α–norm if
1. ∀x ∈ X : q(x) = 0 ⇐⇒ x = 0,
2. ∀x ∈ X∀λ ∈ K : q(λx) = |λ|α q(x),
3. ∀x, y ∈ X : q(x+ y) ≤ q(x) + q(y).
If α = 1, this coincides with the notion of norm.

Definition 3.2.11. A TVS (X, τ) is α–normable if τ can be induced by an
α–norm for some 0 < α ≤ 1.

In order to understand how α−norms relates to lb spaces we need to
introduce a generalization of the concept of convexity.

Definition 3.2.12. Let 0 < α ≤ 1 and X a K−vector space.
• A subset V of X is α−convex if for any x, y ∈ V we have tx+ sy ∈ V

for all t, s > 0 such that tα + sα = 1.
• A subset V of X is absolutely α−convex if for any x, y ∈ V we have
tx+ sy ∈ V for all t, s ∈ K such that |t|α + |s|α ≤ 1.
• For any W ⊆ X, Γα(W ) denotes the smallest absolutely α−convex sub-

set of X containing W , i.e.

Γα(W ) :=

{
n∑
i=1

λiwi : n ∈ N, wi ∈W,λi ∈ K s.t.
n∑
i=1

|λi|α ≤ 1

}
.

Proposition 3.2.13. Let (X, τ) be a TVS and 0 < α ≤ 1. Then (X, τ) is
α–normable if and only if there exists an α–convex, bounded neighbourhood of
the origin.

Proof.
Suppose that τ is induced by an α–norm q, i.e. the collection of all Bq

r :=
{x ∈ X : q(x) ≤ r} for all r > 0 is a basis of neighbourhoods of the origin
for τ . Then for any x, y ∈ Bq

1 and any t, s ∈ K such that |t|α + |s|α ≤ 1 we
have that

q(tx+ sy) ≤ |t|αq(x) + |s|αq(y) ≤ |t|α + |s|α ≤ 1,

i.e. Bq
1 is absolutely α−convex. Also, the definition of α−norm easily implies

that
∀ρ > 0,∀x ∈ Bq

1, q(ρ
1
α ) = ρq(x) ≤ ρ
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and so that Bq
1 ⊆ ρ−

1
αBq

ρ. Hence, Bq
1 is a bounded absolutely α−convex

neighbourhood of the origin.
Conversely, suppose that V is an α–convex bounded neighbourhood of the

origin in (X, τ).
Claim 1: W.l.o.g. we can always assume that V is absolutely α–convex.

Then, as we showed in the proof of Proposition 3.2.8, the Minkowski functional
pV of V is a quasi-norm generating τ . Hence, defining q(x) := pV (x)α,∀x ∈ X
we can prove that

Claim 2: q is an α−norm.
Now V ⊆ Bq

1 because for any x ∈ V we have that q(x) ≤ 1. Also, for any
x ∈ Bq

1 we have that pV (x) ≤ 1 and so for any ε > 0 there exists ρ > 0 s.t.
x ∈ ρV and ρ < pV (x) + ε ≤ 1 + ε. Then x ∈ ρV ⊆ (1 + ε)V as V is balanced.
Then we have just showed that

∀ε > 0, V ⊆ Bq
1 ⊆ (1 + ε)V,

which in turn provides that τ is generated by q.
Let us now complete the proof by showing both claims.

Proof. of Claim 1
By assumption V is α–convex bounded neighbourhood of the origin in (X, τ).
If V is also balanced, then there is nothing to prove as V is already absolutely
α–convex. If V is not balanced, then we can replace it with Γα(W ) for some
W balanced neighbourhood of the origin in X such that W ⊆ V (the existence
of such a W is given by Theorem 1.2.6 as (X, τ) is a TVS). In fact, we can
show that Γα(W ) ⊆ V , which provides in turn that Γα(W ) is both bounded
and absolutely α–convex.

Let z ∈ Γα(W ). Then z =
∑n

i=1 λiwi for some n ∈ N, wi ∈ W, and some
λi ∈ K s.t.

∑n
i=1 |λi|α ≤ 1. Take ρ > 0 such that ρα =

∑n
i=1 |λi|α and for each

∈ {1, . . . , n} set εi := λi
|λi|ρ. Then

z =

n∑
i=1

λiwi =

n∑
i=1

|λi|
ρ
εiwi. (3.5)

As ρα ≤ 1, we have ρ ≤ 1 and so |εi| ≤ 1. Then by the balancedness of W ,

for each i ∈ {1, . . . , n}, we get that εiwi ∈ W ⊂ V . Since
∑n

i=1

(
|λi|
ρ

)α
= 1

and V is α−convex, (3.5) provides that z ∈ V .

Proof. of Claim 2
Since pV is a quasi-norm on X, we have that ∀x ∈ X, pV (x) ≥ 0, which clearly
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implies that ∀x ∈ X, q(x) = pV (x)α ≥ 0. Moreover, we have that x = 0 if and
only if pV (x) = 0, which is equivalent to q(x) = 0. The positive homogeneity
of pV gives in turn that

∀x ∈ X, ∀λ ∈ K, q(λx) = pV (λx)α = |λ|αpV (x)α = |λ|αq(x). (3.6)

To show the triangular inequality for q, let us fix x, y ∈ X and choose ρ, σ ∈ R+

such that ρ > pV (x) and σ > pV (y). Then there exist λ, µ > 0 such that
x ∈ λV , λ < ρ and y ∈ µV , µ < σ. These together with the balancedness of
V imply that x ∈ ρV and y ∈ σV . Hence, we have x

ρ ,
y
σ ∈ V and so, by the

α−convexity of V we can conclude that

x+ y

(ρα + σα)
1
α

=
ρ

(ρα + σα)
1
α

· x
ρ

+
σ

(ρα + σα)
1
α

· y
σ
∈ V.

Then pV

(
x+y

(ρα+σα)
1
α

)
≤ 1 and so q

(
x+y

(ρα+σα)
1
α

)
≤ 1. Then, by using (3.6),

we get that

(
1

(ρα+σα)
1
α

)α
· q(x+ y) ≤ 1, that is q(x+ y) ≤ ρα +σα. Since this

holds for all ρ, σ ∈ R+ such that ρ > pV (x) and σ > pV (y), we obtain that
q(x+ y) ≤ pV (x)α + pV (y)α.

Corollary 3.2.14. Every α–normable TVS is lb.

The converse also holds and in proving it the following notion turns out
to be very useful.

Definition 3.2.15. If (X, τ) is an lb TVS, then for any balanced, bounded,
neighbourhood U of the origin in X we define

C(U) := inf{λ : U + U ⊆ λU}.

The concavity module C(X) of X is defined as follows

C(X) := inf{C(U) : Ubalanced, bounded, neighbourhood of o in X}.

Theorem 3.2.16. Let (X, τ) be a TVS. Then (X, τ) is lb if and only if τ is
induced by some α–norm for some 0 < α ≤ 1.

Proof. The sufficiency is given by the previous corollary. As for the necessity,
it is possible to show that if (X, τ) is lb then there exists a bounded α−convex
neighbourhood of the origin for all 0 < α < α0, where α0 := log 2

logC(X) (see

Sheet 5). Hence, the conclusion follows by Proposition 3.2.13.
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In the context of lb algebras, it might happen that the α−norm defining
the topology is actually submultiplicative. This is actually the case if the
considered algebra is complete.

Definition 3.2.17. An α−normed algebra is a K−algebra endowed with the
topology induced by a submultiplicative α−norm.

Theorem 3.2.18. Any lb Hausdorff complete algebra can be made into an
α−normed algebra for some 0 < α ≤ 1.

Proof. Sketch
Let (X, τ) be a Hausdorff complete lb algebra. For convenience let us assume
that X is unital but the proof can be adapted also to the non-unital case.

As (X, τ) is lb, Theorem 3.2.16 ensures that the exists 0 < α ≤ 1 such that
τ is induced by an α−norm q. Consider the space L(X) of all linear continuous
operators onX equipped with pointwise addition and scaler multiplication and
with the composition as multiplication. Then the operator norm on L(X)

defined by ‖`‖ := supx∈X\{o}
q(`(x))
q(x) for all ` ∈ L(X) is a submultiplicative

α−norm. Since (X, q) is complete, it is possible to show that it is topologically
isomorphic to (L(X), ‖ · ‖). If we denote by ϕ such an isomorphism, we then
get that (X, p) with p(x) := ‖ϕ(x)‖ for all x ∈ X is an α−normed algebra.

Proposition 3.2.19. Let (X, τ) be an lb Hausdorff TA. Show that if (X, τ)
has jointly continuous multiplication, then (X, τ) is α–normable.

Proof. (see Sheet 6)

3.3 Projective limit algebras

The class of topological algebras which we are going to introduce in this section
consisits of algebras obtained as a projective limit of a family of TAs and
then endowed with the so-called projective topology associated to the natural
system of maps given by the projective limit construction. Therefore, we are
first going to introduce in general the notion of projective topology w.r.t. a
family of maps, then we will focus on the projective limit construction from
both an algebraic and topological point of view.

3.3.1 Projective topology

Let {(Eα, τα) : α ∈ I} be a family of TVSs over K (I is an arbitrary index
set). Let E be a vector space over the same field K and, for each α ∈ I, let
fα : E → Eα be a linear mapping. The projective topology τproj on E w.r.t.
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the family {(Eα, τα), fα, I} is the coarsest topology on E for which all the
mappings fα (α ∈ I) are continuous.

It is easy to check that (E, τproj) is a TVS and that a basis of neighbour-
hoods of the origin is given by:

Bproj :=

{⋂
α∈F

f−1
α (Uα) : F ⊆ I finite, Uα ∈ Bα,∀α ∈ F

}
, (3.7)

where Bα is a basis of neighbourhoods of the origin in (Eα, τα).

Remark 3.3.1. Note that the projective topology τproj coincides with the ini-
tial topology given by the map

ϕ : E →
(∏

α∈I Eα
)

x 7→ (fα(x))α∈I .

Recall that the initial topology is defined as the coarsest topology on E such that
ϕ is continuous or equivalently as the topology on E generated by the collection
of all ϕ−1(U) when U is a neighbourhood of the origin in

(∏
α∈I Eα, τprod

)
.

Let us first introduce some properties of the projective topology in the
TVS setting.

Lemma 3.3.2. Let E be a vector space over K endowed with the projective
topology τproj w.r.t. the family {(Eα, τα), fα, I}, where each (Eα, τα) is a TVS
over K and each fα a linear mapping from E to Eα. Let (F, τ) be an arbitrary
TVS and g a linear mapping from F into E. The mapping g : F → E is
continuous if and only if, for each α ∈ I, fα ◦ g : F → Eα is continuous.

Proof.
Suppose that g : F → E is continuous. Since by definition of τproj all fα’s are
continuous, we have that for each α ∈ I, fα ◦ g : F → Eα is continuous.

Conversely, suppose that for each α ∈ I the map fα ◦ g : F → Eα is
continuous and let U be a neighbourhood of the origin in (E, τproj). Then
there exists a finite subset F of I and for each α ∈ F there exists Uα ∈ Bα
such that

⋂
α∈F f

−1
α (Uα) ⊆ U . Therefore, we obtain

g−1(U) ⊇ g−1

(⋂
α∈F

f−1
α (Uα)

)
=
⋂
α∈F

g−1
(
f−1
α (Uα)

)
=
⋂
α∈F

(fα ◦ g)−1(Uα),

which yields that g−1(U) is a neighbourhood of the origin in (F, τ) since the
continuity of all fα ◦ g’s ensures that (fα ◦ g)−1(Uα) is a neighbourhood of the
origin in (F, τ).
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Proposition 3.3.3. Let E be a vector space over K endowed with the pro-
jective topology τproj w.r.t. the family {(Eα, τα), fα, I}, where each (Eα, τα)
is a TVS over K and each fα a linear mapping from E to Eα. Then τproj
is Hausdorff if and only if for each 0 6= x ∈ E, there exists an α ∈ I and a
neighbourhood Uα of the origin in (Eα, τα) such that fα(x) /∈ Uα.

Proof.
Suppose that (E, τproj) is Hausdorff and let 0 6= x ∈ E. By Proposition 1.3.2,
there exists a neighbourhood U of the origin in E not containing x. Then, by
(3.7), there exists a finite subset F ⊆ I and, for any α ∈ F , there exists Uα
neighbourhood of the origin in (Eα, τα) s.t.

⋂
α∈F f

−1
α (Uα) ⊆ U . Hence, as x /∈

U , there exists α ∈ F s.t. x /∈ f−1
α (Uα), i.e. fα(x) /∈ Uα. Conversely, suppose

that there exists α ∈ I and a neighbourhood Vα of the origin in (Eα, τα)
such that fα(x) /∈ Vα. Let Bα be a basis of neighbourhoods of the origin in
(Eα, τα). Then there exists Uα ∈ Bα such that Uα ⊆ Vα. Hence, x /∈ f−1

α (Uα)
and f−1

α (Uα) ∈ Bproj (see (3.7)), that is, we have found a neighbourhood of
the origin in (E, τproj) not containing x. This implies, by Proposition 1.3.2,
that τproj is a Hausdorff topology.

Coming back to the context of TAs, we have the following result.

Theorem 3.3.4. Let E be a K−algebra endowed with the projective topology
τproj w.r.t. the family {(Eα, τα), fα, I}, where each (Eα, τα) is a TA over K
(resp. a TA with continuous multiplication) and each fα a homomorphism
from E to Eα. Then (E, τproj) is a TA (resp. a TA with continuous multipli-
cation).

Proof.
As each (Eα, τα) is a TVS, it is easy to verify that (E, τproj) is a TVS. There-
fore, it remains to show that left and right multiplication are both continuous.
For any x ∈ E, consider the left multiplication `x : E → E. For each α ∈ I
we get that:

∀ y ∈ E, (fα ◦ `x)(y) = fα(xy) = fα(x)fα(y) = `fα(x)(fα(y)) = (`fα(x) ◦ fα)(y).
(3.8)

Since fα(x) ∈ Eα and (Eα, τα) is a TA, we have that `fα(x) : Eα → Eα is
continuous and so `fα(x) ◦ fα is continuous. Hence, by (3.8), we have that
fα ◦ `x is continuous for all α ∈ I and so by the previous lemma we have that
`x is continuous. Similarly, we get the continuity of the right multiplication
in E. Hence, (E, τproj) is a TA.
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3. Further special classes of topological algebras

If each (Eα, τα) is a TA with continuous multiplication, then by combining
Remark 3.3.1 and Proposition 1.4.1 we can conclude that (E, τproj) is a TA.

Proposition 3.3.5. Let E be a K−algebra endowed with the projective topol-
ogy τproj w.r.t. the family {(Eα, τα), fα, I}, where each (Eα, τα) is an lc (resp.
lmc) algebra over K and each fα a homomorphism from E to Eα. Then
(E, τproj) is an lc (resp. lmc) algebra.

Proof.
By assumption, we know that each (Eα, τα) is a TA and so Theorem 3.3.4
ensures that (E, τproj) is a TA, too. Moreover, as each (Eα, τα) is an lc (resp.
lmc) algebra, there exists a basis Bα of convex (resp. m-convex) neighbour-
hoods of the origin in (Eα, τα). Then the corresponding Bproj (see (3.7)) also
consists of convex (resp. m-convex) neighbourhoods of the origin in (E, τproj).
In fact, any B ∈ Bproj is of the form B =

⋂
α∈F f

−1
α (Uα) for some F ⊆ I finite

and Uα ∈ Bα, ∀α ∈ F . Since all the Uα’s are convex (resp. m-convex) and the
preimage of a convex (resp. m-convex) set under a homomorphism is convex
(resp. m-convex by Proposition 2.1.3-d)), we get that B is a finite intersection
of convex (resp. m-convex) sets and so it is convex (resp. m-convex).

Corollary 3.3.6. Let (A, τ) be an lc (resp. lmc) algebra and M a subalgebra
of A. If we endow M with the relative topology τM induced by A, then (M, τM )
is an lc (resp. lmc) algebra.

Proof.
Recalling that τM coincides with the projective topology on M induced by
id : M → A (see Corollary 1.4.2), the conclusion easily follows from the
previous proposition (applied for I = {1}, E1 = A and τ1 = τ , E = M and
f1 = id).

Corollary 3.3.7. Any subalgebra of a Hausdorff TA is a Hausdorff TA.

Proof. This is a direct application of Proposition 3.3.3 and Corollary 1.4.2.

Example 3.3.8. Let {(Eα, τα) : α ∈ I} be a family of TAs over K. Then
the Cartesian product F =

∏
α∈I Eα equipped with coordinatewise operation

is a K−algebra. Consider the canonical projections πα : F → Eα defined
by πα(x) := xα for any x = (xβ)β∈I ∈ F , which are all homomorphisms.
Then the product topology τprod on F is the coarsest topology for which all
the canonical projections are continuous and so coincides with the projective
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3.3. Projective limit algebras

topology on F w.r.t. {(Eα, τα), πα : α ∈ I} 2. Hence, by Theorem 3.3.4 we
have that (F, τprod) is a TA.

Recalling that a cartesian product of complete Hausdorff TAs endowed
with the product topology is a complete Hausdorff TA and applying Proposi-
tion 3.3.5, Corollary 3.3.6 and Proposition 3.3.3 to the previous example, we
can easily prove the following properties

• any Cartesian product of lc (resp. lmc) algebras endowed with the prod-
uct topology is an lc (resp. lmc) algebra

• any subalgebra of a Cartesian product of lc (resp. lmc) endowed with
the relative topology is a TA of the same type

• a cartesian product of Hausdorff TAs endowed with the product topology
is a Hausdorff TA.

3.3.2 Projective systems of TAs and their projective limit

In this section we are going to discuss the concept of projective system (resp.
projective limit) first for just K-algebras and then for TAs.

Definition 3.3.9. Let (I,<) be a directed partially ordered set (i.e. for all
α, β ∈ I there exists γ ∈ I such that α ≤ γ and β ≤ γ). A projective system
of algebras {Eα, fαβ, I} is a family of K−algebras {Eα, α ∈ I} together with
a family of homomorphisms fαβ : Eβ → Eα defined for all α ≤ β in I such
that fαα is the identity on Eα and fαβ ◦ fβγ = fαγ for all α ≤ β ≤ γ, i.e. the
diagram

Eγ

Eβ Eα

fβγ fαγ

fαβ

commutes.

2We could have also directly showed that the equivalence of the two topologies using
their basis of neighbourhoods of the origin. Indeed

Bproj
(3.7)
=

{⋂
α∈F

π−1
α (Uα) : F ⊆ I finite, Uα ∈ Bα, ∀α ∈ F

}

=

∏
α∈F

Uα ×
∏

α∈I\F

Eα : F ⊆ I finite, Uα ∈ Bα,∀α ∈ F

 = Bprod.
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3. Further special classes of topological algebras

Definition 3.3.10. Given a projective system of algebras S := {Eα, fαβ, I},
we define the projective limit of S (or the projective limit algebra associated
with S) to be the triple {ES , fα, I}, where

ES :=

{
x := (xα)α∈I ∈

∏
α∈I

Eα : xα = fαβ(xβ), ∀α ≤ β in I

}

and, for any α ∈ I, fα : ES → Eα is defined by fα := πα �ES (where
πα :

∏
β∈I Eβ → Eα is the canonical projection, see Example 3.3.8).

It is easy to see from the previous definitions that ES is a subalgebra of∏
α∈I Eα. Indeed, for any x, y ∈ ES and for any λ ∈ K we have that for all

α ≤ β in I the following hold

λxα + yα = λfαβ(xβ) + fαβ(yβ) = fαβ(λxβ + yβ)

and
xαyα = fαβ(xβ)fαβ(yβ) = fαβ(xβyβ),

i.e. λx+y, xy ∈ ES . Note that the fα’s are not necessarily surjective and also
that

fα = fαβ ◦ fβ, ∀α ≤ β in I,

since for all x := (xα)α∈I ∈ ES we have fα(x) = xα = fαβ(xβ) = fαβ(fβ(x)).
Also, we can show that {ES , fα, I} satisfies the following universal prop-

erty: given a K−algebra A and a family of homomorphism {gα : A→ Eα, α ∈
I} such that gα = fαβ ◦ gβ for all α ≤ β in I, there exists a unique homomor-
phism ϕ : A→ ES such that gα = fα ◦ ϕ for all α ∈ I, i.e. the diagram

A

ES

Eβ Eα

ϕ

gαgβ

fβ
fα

fαβ

commutes. In fact, the map ϕ : A → ES defined by ϕ(a) := (gα(a))α∈I for
all a ∈ A is a homomorphism such that (fα ◦ ϕ)(a) = (ϕ(a))α = gα(a), for all
a ∈ A. Moreover, if there exists ϕ′ : A → ES such that gα = fα ◦ ϕ′ for all
α ∈ I, then for all a ∈ A we get

ϕ(a) = (gα(a))α∈I =
(
(fα ◦ ϕ′)(a)

)
α∈I =

(
(ϕ′(a))α

)
α∈I = ϕ′(a),
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3.3. Projective limit algebras

i.e. ϕ′ ≡ ϕ on A.
These considerations allows to easily see that one can give the following

more general definition of projective limit algebra.

Definition 3.3.11. Given a projective system of algebras S := {Eα, fαβ, I},
a projective limit of S (or a projective limit algebra associated with S) is a
triple {E, hα, I}, where E is a K−algebra; for any α ∈ I, hα : E → Eα is a
homomorphisms such that hα = fαβ ◦hβ, ∀α ≤ β in I; and the following uni-
versal property holds: for any K−algebra A and any family of homomorphism
{gα : A→ Eα, α ∈ I} such that gα = fαβ ◦ gβ for all α ≤ β in I, there exists
a unique homomorphism ϕ : A→ E such that gα = hα ◦ ϕ for all α ∈ I.

It is easy to show that {E, hα, I} is unique up to (algebraic) isomorphisms,
i.e. if {Ẽ, h̃α, I} fulfills Definition 3.3.11 then there exists a unique isomor-
phism between E and Ẽ. This justifies why in Definition 3.3.10 we have called
{ES , fα, I} the projective limit of S. (Indeed, we have already showed that
{ES , fα, I} fulfills Definition 3.3.11.)

The definitions introduced above for algebras can be easily adapted to the
category of TAs.

Definition 3.3.12. Let (I,<) be a directed partially ordered set. A projective
system of TAs {(Eα, τα), fαβ, I} is a family of K-algebras {(Eα, τα) : α ∈ I}
together with a family of continuous homomorphisms fαβ : Eβ → Eα defined
for all α ≤ β in I such that fαα is the identity on Eα and fαβ ◦ fβγ = fαγ for
all α ≤ β ≤ γ, i.e. the diagram

Eγ

Eβ Eα

fβγ fαγ

fαβ

commutes. Equivalently, a projective system of TAs is a projective system of
algebras {Eα, fαβ, I} in which each Eα is endowed with a topology τα making
(Eα, τα) into a TA and all the homomorphisms fαβ continuous.

Definition 3.3.13. Given a projective system S := {(Eα, τα), fαβ, I} of TAs,
we define the projective limit of S (or the projective limit TA associated with
S) to be the triple {(ES , τproj), fα, I} where {ES , fα, I} is the projective limit
algebra associated with {Eα, fαβ, I} and τproj is the projective topology on ES
w.r.t. the family {(Eα, τα), fα : α ∈ I}.

Similarly, to the algebraic case, one could give the following more general
definition of projective limit TA.
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3. Further special classes of topological algebras

Definition 3.3.14. Given a projective system of TAs S := {(Eα, τα), fαβ, I},
a projective limit of S (or a projective limit TA associated with S) is a
triple {(E, τ), hα, I} where (E, τ) is a TA; for any α ∈ I, hα : E → Eα is a
continuous homomorphism such that hα = fαβ ◦ hβ, for all α ≤ β in I; and
the following universal property holds: for any TA (A,ω) and any family of
continuous homomorphism {gα : A → Eα, α ∈ I} such that gα = fαβ ◦ gβ for
all α ≤ β in I, there exists a unique continuous homomorphism ϕ : A → E
such that gα = hα ◦ ϕ for all α ∈ I.

It is easy to show that {(E, τ), hα, I} is unique up to topological isomor-
phisms. We have already showed that ES is an algebra such that the family
of all fα := πα �ES (α ∈ I) fulfills fα = fαβ ◦ fβ, ∀α ≤ β in I. Endowing ES
with the projective topology τproj w.r.t. {(Eα, τα), fα, I}, we get by Theorem
3.3.4 that (ES , τproj) is a TA and that all fα’s are continuous. Also, for any
TA (A,ω) and any family of continuous homomorphism {gα : A→ Eα, α ∈ I}
such that gα = fαβ ◦ gβ for all α ≤ β in I, we have already showed that
ϕ : A → ES defined by ϕ(a) := (gα(a))α∈I for all a ∈ A is the unique ho-
momorphism such that gα = fα ◦ ϕ for all α ∈ I. But ϕ is also continuous
because for any U ∈ Bproj we have U =

⋂
α∈F f

−1
α (Uα) for some F ⊂ I finite

and some Uα ∈ Bα for all α ∈ F and so ϕ−1(U) =
⋂
α∈F ϕ

−1(f−1
α (Uα)) =⋂

α∈F (fα ◦ ϕ)−1(Uα) =
⋂
α∈F g

−1
α (Uα) ∈ Bω. Hence, {(ES , τproj), fα, I} satis-

fies Definiton 3.3.14.

Remark 3.3.15.
From the previous definitions one can easily deduce the following:

a) the projective limit of a projective system of Hausdorff TAs is a Hausdorff
TA (easily follows by Proposition 3.3.3).

b) the projective limit of a projective system of Hausdorff TAs {(Eα, τα), fα,β, I}
is a closed subalgebra of (

∏
α∈I Eα, τprod) (see Sheet 6).

c) the projective limit of a projective system of complete Hausdorff TAs is a
complete Hausdorff TA (see Sheet 6).

Corollary 3.3.16. A projective limit of lmc algebras is an lmc algebra.

Proof.
Let {(Eα, τα), fα,β, I} be a projective system of lmc algebras. Then its pro-
jective limit {(ES , τproj), fα, I} is an lmc algebra by Proposition 3.3.5.

This easy corollary brings us to a very natural but fundamental question:
can any lmc algebra be written as a projective limit of a projective system of
lmc algebras or at least as a subalgebra of such a projective limit? The whole
next section will be devoted to show a positive answer to this question.
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3.3. Projective limit algebras

3.3.3 Arens-Michael decomposition

This section will be devoted to the Arens-Michael decomposition theorem,
which was independently conceived by Arens and Michael in the early days
of the theory of TAs (1952). This result is so important because it provides a
device to reduce basic questions about lmc algebra to analogous ones for the
corresponding factor Banach algebras. Since the theory of Banach algebras
has been heavily studied, being able to reduce to Banach algebras is very
advantageous and so much desirable.

Before stating the Arens-Michael decomposition theorem, let us recall the
completion theorem for TVS and two useful lemmas about projective limit
algebras.

Theorem 3.3.17.
Let X be a Haudorff TVS. Then there exists a complete Hausdorff TVS X̂
and a mapping i : X → X̂ with the following properties:

a) The mapping i is a topological monomorphism.

b) The image of X under i is dense in X̂.

c) For every complete Hausdorff TVS Y and for every continuous linear map
f : X → Y , there is a continuous linear map f̂ : X̂ → Y such that the
diagram

X Y

X̂

i

f

f̂

is commutative. Furthermore:

I) Any other pair (X̂1, i1), consisting of a complete Hausdorff TVS X̂1

and of a mapping i1 : X → X̂1 such that properties (a) and (b) hold
substituting X̂ with X̂1 and i with i1, is topologically isomorphic to (X̂, i).
This means that there is a topological isomorphism j of X̂ onto X̂1 such
that the diagram

X X̂1

X̂

i

i1

j

is commutative.

II) Given Y and f as in property (c), the continuous linear map f̂ is unique.

Lemma 3.3.18. Let {(AS , τproj), gα, J} be the projective limit of the projective
system S := {(Aα, τα), gαβ, J} of TAs. Then a basis of neighbourhoods of the
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3. Further special classes of topological algebras

origin in (AS , τproj) is given by

B̃proj := {g−1
α (Vα) : Vα ∈ Bα, α ∈ J},

where each Bα is a basis of neighbourhoods of the origin in (Aα, τα).

Proof.
By the continuity of the gα’s, we know that B̃proj is a collection of neighbour-
hoods of the origin in (AS , τproj). We want to show that it is a basis.

By (3.7), we have that a basis of neighbourhoods of the origin in (AS , τproj)
is given by

Bproj :=

⋂
β∈F

g−1
β (Vβ) : F ⊆ I finite, Vβ ∈ Bβ, ∀β ∈ F

 .

As J is directed, for any finite subset F of I there exists α ∈ J such that
β ≤ α for all β ∈ F . Then we have that gβ = gβα ◦ gα for all β ∈ F and so

⋂
β∈F

g−1
β (Vβ) =

⋂
β∈F

(gβα◦gα)−1(Vβ) =
⋂
β∈F

g−1
α (g−1

βα(Vβ)) = g−1
α

⋂
β∈F

g−1
βα(Vβ)

 .

Set Wα :=
⋂
β∈F g

−1
βα(Vβ). Since for all β ∈ F the map gβα : Aα → Aβ is

continuous, we get that for all β ∈ F the set g−1
βα(Vβ) is a neighbourhood of

the origin in (Aα, τα) and so is Wα. Then there exists Vα ∈ Bα such that
Vα ⊆Wα. Hence, we obtain⋂

β∈F
g−1
β (Vβ) = g−1

α (Wα) ⊇ g−1
α (Vα)

and so we have showed that for anyM ∈ Bproj there exists M̃ ∈ B̃proj such that

M̃ ⊆M , i.e. B̃proj is a basis of neighbourhoods of the origin in (AS , τproj).

Lemma 3.3.19. Let {(AS , τproj), gα, J} be the projective limit of the projective
system S := {(Aα, τα), gαβ, J} of TAs and W a linear subspace of AS . Then

W
τproj =

⋂
α∈J

g−1
α

(
gα(W )

τα
)

= projlim(S1),

where S1 denotes the projective system
{
gα(W )

τα
, gαβ �

gβ(W )
, J
}

of TAs (here

gα(W )
τα

is intended as endowed with the relative topology induced by τα).

70



3.3. Projective limit algebras

In particular, if W is closed in (AS , τproj) then

W = projlim(S2) = projlim(S1),

where S2 denotes the projective system
{
gα(W ), gαβ �gβ(W ), J

}
of TAs (here

gα(W ) is intended as endowed with the relative topology induced by τα).

Proof.
Since S is a projective system of TAs, by Definition 3.3.12, we have that for
any α ≤ β the map gαβ : Aβ → Aα is a continuous homomorphism fulfilling

gαα = id, ∀α ∈ J (3.9)

and

gαβ ◦ gβγ = gαγ , ∀α ≤ β ≤ γ in J. (3.10)

Also, by Definition 3.3.14 we have that for any α ∈ J the map gα : AS → Aα
is a continuous homomorphism such that

gα = gαβ ◦ gβ, ∀α ≤ β in J. (3.11)

For any α ∈ J , we have that gα(W ) ⊆ Aα and so (3.9) provides that
gαα �gα(W )= id �gα(W ). Moreover, for any α ≤ β ≤ γ in J , the relation
(3.11) implies that gβγ(gγ(W )) ⊆ gβ(W ), which in turn gives that for any
x ∈ gγ(W ):

gαβ �gβ(W )

(
gβγ �gγ(W ) (x)

)
= gαβ(gβγ(x))

(3.10)
= gαγ(x) = gαγ �gγ(W ) (x).

Endowing each gβ(W ) with the subspace topology induced by τβ, we have
that gαβ �gβ(W ) is continuous for any α ≤ β in J . Hence, we have showed that
S2 is a projective system of TAs.

By the continuity of the gαβ’s for all α ≤ β in J , we also get that

gβγ(gγ(W )) ⊆ gβγ(gγ(W ))
(3.11)

= gβ(W ),∀β ≤ γ in J (3.12)

Therefore, for any α ≤ β ≤ γ in J and for any x ∈ gγ(W ) we obtain that

gαβ �
gβ(W )

(
gβγ �

gγ(W )
(x)
)

= gαβ(gβγ(x))
(3.10)

= gαγ(x) = gαγ �
gγ(W )

(x).

Hence, we have showed that S1 is a projective system of TAs, too.
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Then

projlim(S1) =
{
x := (xα)α∈J : xα ∈ gα(W ), ∀α ∈ J and

xα = gαβ(xβ), ∀α ≤ β in J}
(3.12)

=
{
x := (xα)α∈J : xα ∈ gα(W ), α ∈ J

}
= {x ∈ AS : gα(x) ∈ gα(W ),∀α ∈ J} =

⋂
α∈J

g−1
α (gα(W ))

and similarly projlim(S2) =
⋂
α∈J g

−1
α (gα(W )).

For any α ∈ J , the continuity of gα provides that gα(W ) ⊆ gα(W ) and so
W ⊆ g−1

α (gα(W ))). Hence,

W ⊆
⋂
α∈J

g−1
α (gα(W ))) = projlim(S1).

Conversely, suppose that x ∈ projlim(S1). Then x ∈ g−1
α (gα(W ))) for all

α ∈ J , that means gα(x) ∈ gα(W ) for all α ∈ J . Hence, for each α ∈ J , we
have that for any neighbourhood Vα of the origin in (Aα, τα), the following
holds (gα(x) + Vα)∩ gα(W ) 6= ∅ and so (x+ g−1

α (Vα))∩W 6= ∅. This gives by
Lemma 3.3.18 that for any U neighbourhood of the origin in (AS , τproj) the
sets x+U and W have non-empty intersection, i.e. x ∈W . We have therefore
showed that W = projlim(S1).

If W is closed, then W = W . However, we have

W ⊆
⋂
α∈J

g−1
α (gα(W )) ⊆

⋂
α∈J

g−1
α (gα(W )) = projlim(S1) = W = W

i.e. W = projlim(S2) = projlim(S1).

Suppose now that (E, τ) is a Hausdorff lmc algebra. Then, by Theo-
rem 2.1.11 there exists a basis M := {Uα}α∈I of neighbourhoods of the
origin in (E, τ) consisting of m-barrels. For each α ∈ I, let pα be the
Minkowski functional of Uα. Then we have showed in Section 2.2 that {pα}α∈I
is a family of submultiplicative seminorms on E generating τ . For each
α ∈ I, we define Nα := ker(pα) which is a closed ideal in (E, τ). Then
we can take the quotient Eα := E/Nα and endow it with the quotient norm
qα(ρα(x)) := infy∈Nα pα(x − y) where ρα : E → Eα denotes the correspond-
ing quotient map. With a similar proof to the one of Proposition 1.4.9
we can prove that is (Eα, qα) is a normed algebra. Taking the completion
(Êα, q̂α) of each (Eα, qα), we get a family of Banach algebras. If we denote
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by iα : Eα → Êα the canonical injection (which is an injective continuous and
open homomorphism), then ρα := iα◦ρα is a continuous open homomorphism.
For convenience, from now on we will just denote (Eα, qα) by Eα and (Êα, q̂α)
by Êα.

We define a partial order on I by setting:

α ≤ β ⇔ Uβ ⊆ Uα ⇔ pα(x) ≤ pβ(x), ∀x ∈ X.

Then (I,≤) is directed because M is a basis and so for any α, β ∈ I we have
Uα ∩Uβ ∈M, i.e. there exists γ ∈ I such that Uγ ⊆ Uα ∩Uβ and so Uγ ⊆ Uα
and Uγ ⊆ Uβ, i.e. α ≤ γ and β ≤ γ. Also, for any α ≤ β in I we have
Nβ ⊆ Nα and hence

fαβ : Eβ → Eα
x+Nβ 7→ x+Nα

is a well-defined surjective homomorphism and the following holds

ρα = fαβ ◦ ρβ, ∀α ≤ β in I. (3.13)

Then all fαβ’s are continuous homomorphisms and for any α ≤ β ≤ γ in I
and any x ∈ Eβ, we have

fαβ(fβγ(x+Nγ)) = fαβ(x+Nβ) = x+Nα = fαγ(x+Nγ),

i.e. fαγ = fαβ ◦ fβγ .
Hence, {(Eα, qα), fαβ, I} is a projective system of normed algebras. More-

over, for any α ≤ β in I there exists fαβ : Êβ → Êα continuous and linear
such that fαβ ◦ iβ = iα ◦ fαβ where iα (resp. iβ) denotes the embedding of Eα
(resp. Eβ) in Êα (resp. Êβ). Then it is easy to check that {(Êα, q̂α), fαβ, I}
is a projective system of Banach algebras.

We are ready now for the Arens-Michael decomposition theorem.

Theorem 3.3.20. Let (E, τ) be a Hausdorff lmc algebra and M := {Uα}α∈I
a basis of neighbourhoods of the origin in (E, τ) consisting of m-barrels. Con-
sider the projective system {Eα, fαβ, I} of normed algebras and the projective

system {Êα, fαβ, I} of Banach algebras introduced above. Then there exist the
following topological monomorphisms

E ↪→ projlim{(Eα, qα), fαβ, I} ↪→ projlim{(Êα, qα), fαβ, I} ∼= Ê. (3.14)

If in addition (E, τ) is complete, then the maps in (3.14) are all topological
isomorphisms. In this case, the expression E = projlim{(Êα, qα), fαβ, I} is
called the Arens-Michael decomposition of E w.r.t. M.
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Proof.
For convenience, let us denote by P and P̂ the projective systems {Eα, fαβ, I}
and {Êα, fαβ, I}, respectively.

For any x ∈ E, let us define φ(x) := (ρα(x))α∈I . Then φ(E) ⊆ projlim(P).
Indeed, for any x ∈ E and α ≤ β in I we have(

φ(x)
)
α

= ρα(x)
(3.13)

= fαβ(ρβ(x)) = fαβ

((
φ(x)

)
β

)
.

Then the following hold:
• φ is a homomorphism, as each ρα is a homomorphism and projlim(P) is
equipped with coordinatewise operations. Let us just show that φ is multi-
plicative: for all x, y ∈ E,

φ(xy) = (ρα(xy))α∈I = (ρα(x)ρα(y))α∈I = (ρα(x))α∈I (ρα(y))α∈I = φ(x)φ(y).

• φ is injective, because

φ(x) = 0⇒ ρα(x) = 0, ∀α ∈ I ⇒ x ∈ Nα, ∀α ∈ I ⇒ pα(x) = 0, ∀α ∈ I ⇒ x = 0,

where in the last implication we used that E is Hausdorff and so {pα}α∈I is
a separating family of seminorms.
• φ is continuous, because Lemma 3.3.18 guarantees that for any neighbour-
hood U of the origin in projlim(P), there exist α ∈ I and a neighbourhood Vα
of the origin in Eα such that f−1

α (Vα) ⊆ U . Then ρ1
α(Vα) = φ−1(f−1

α (Vα)) ⊆
φ−1(U) and so, by the continuity of ρα we have that φ−1(U) is a neighborhood
of the origin in E.
• φ is an open map. Indeed, recalling that M := {Uα}α∈I is a basis of
neighbourhoods of the origin in (E, τ), we can show that for any α ∈ I the

set V :=
(
ρα
(

1
2Uα

)
×
∏
β∈I\{α}Eβ

)
∩ φ(E) is a neighbourhood of the ori-

gin in projlim(P) such that V ⊆ φ(Uα). Fix α ∈ I. Then the openness
of ρα implies that ρα(1

2Uα) is a neighbourhood of the origin in Eα and so
ρα
(

1
2Uα

)
×
∏
β∈I\{α}Eβ is a neighbourhood of the origin in

∏
γ∈I Eγ endowed

with the product topology. Hence, V is a neighbourhood of the origin in
projlim(P).

Moreover, for any x := (xγ)γ∈I ∈ V we have that:
a) x ∈ φ(E), i.e. there exists y ∈ E such that φ(y) = x
b) xα ∈ ρα

(
1
2Uα

)
c) xβ ∈ Eβ for all β 6= α in I.
Then

ρα(y) = fα(φ(y))
(a)
= fα(x) = xα

(b)
∈ ρα

(
1

2
Uα

)
,
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3.3. Projective limit algebras

which implies that there exists z ∈ 1
2Uα such that ρα(y) = ρα(z). Therefore,

y = z + w for some w ∈ Nα, which gives in turn

|pα(y)− pα(z)| ≤ pα(y − z) ≤ pα(w) = 0,

and so pα(y) = pα(z) ≤ 1
2 < 1, i.e. y ∈ Uα. Hence, x

(a)
= φ(y) ∈ φ(Uα), that

gives V ⊆ φ(Uα).

We have then just showed that φ : E ↪→ projlim(P) is a topological
monomorphism.

Now, by using Theorem 3.3.17, we get that for any α ≤ β in I the diagram

Eβ Êβ

Eα Êα

fαβ

iβ

fαβ

iα

commutes, where iα and iβ are topological monomorphisms such that iα(Eα) =

Êα and iβ(Eβ) = Êβ. Then [4, E.III.53, Corollary 1] ensures that there exists

a unique topological monomorphism j : projlim(P) ↪→ projlim(P̂) such that
the following diagram commutes

projlim(P) projlim(P̂)

Eα Êα

fα

j

fα

iα
(3.15)

Setting ψ = j ◦ φ we get a topological monomorphism from E to projlim(P̂)
and so ψ(E) is a linear subspace of projlim(P̂). Therefore, Lemma 3.3.19

provides that ψ(E) = projlim(Q), where Q :=
{
fα(ψ(E)), fαβ �

fβ(ψ(E))
, I
}

.

By the commutativity of the diagram (3.15), we know that

fα(ψ(E)) = fα(j(φ(E))) = iα(fα(φ(E))) = iα(ρα(E)) = iα(Eα).

Hence, fα(ψ(E)) = iα(Eα) = Êα and so

ψ(E) = projlim(Q) = projlim(P̂).
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3. Further special classes of topological algebras

This together with the fact that projlim(P̂) is complete (see Remark 3.3.15-c))
implies that Ê is topologically isomorphic to projlim(P̂) by Theorem 3.3.17-I).
Therefore, we have proved that

E
φ
↪→ projlim(P)

j
↪→ projlim(P̂) ∼= Ê.

If in addition E is complete, then E = Ê and so φ and j must be also
isomorphisms.

Using Remark 3.3.15, we can easily derive from Theorem 3.3.20 the fol-
lowing

Corollary 3.3.21.
a) Every Hausdorff lmc algebra can be topologically embedded in a cartesian

product of Banach algebras.
b) Every Fréchet lmc algebra is topologically isomorphic to the projective limit

of a sequence of Banach algebras.

Theorem 3.3.22. Let (E, τ) be a Hausdorff complete lmc algebra and M :=
{Uα}α∈I a basis of neighbourhoods of the origin in (E, τ) consisting of m-
barrels. Then:
a) E is unital if and only if each component of its Arens-Michael decomposi-

tion w.r.t. M is a unital Banach algebra.
b) x ∈ E is invertible if and only if its image into each component of the its

Arens-Michael decomposition of E w.r.t. M is invertible.

Proof.
Let E = projlim{Êα, fαβ, I} be the Arens-Michael decomposition of E w.r.t.M
(see Theorem 3.3.20).

a) Suppose that there exists u ∈ E s.t. for all y ∈ E we have u·y = y = y·u.
For any α ∈ I, set uα := ρα(u) ∈ Êα. By the surjectivity of ρα , we know that
for any xα ∈ Êα there exists x ∈ E such that ρα(x) = xα and so we get that:

xα · uα = ρα(x)ρα(u) = ρα(x · u) = ρα(x) = xα

and similarly we obtain uαxα = xα, i.e. each Êα is unital.
Conversely, suppose that for any α ∈ I there exists uα ∈ Êα s.t. y · uα =

y = uα · y for all y ∈ Êα. Then u := (uα)α∈I belongs to projlim{Êα, fαβ, I}
since for all α ≤ β in I and for all xα ∈ Êα we get:

xα · fαβ(uβ) = ρα(x) · fαβ(uβ) = fαβ(ρβ(x)) · fαβ(uβ)

= fαβ(ρβ(x) · uβ) = fαβ(ρβ(x)) = ρα(x) = xα,
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3.3. Projective limit algebras

i.e. fαβ(uβ) = uα. As the multiplication in projlim{Êα, fαβ, I} is defined
coordinatewise, it is then clear that u := (uα)α∈I is the identity element of
the multiplication in projlim{Êα, fαβ, I}, which is therefore a unital algebra.

b) Suppose that u is the identity element of the multiplication in E and
that x ∈ E is invertible, i.e. there exists y ∈ E s.t. x · y = u = y · x. For each
α ∈ I, we have already showed that uα := ρα(u) is the identity element of the
multiplication in Êα. Hence, we have

ρα(x) · ρα(y) = ρα(x · y) = ρα(u) = uα,

i.e. ρα(x) is invertible in Êα.
Conversely, suppose that x ∈ projlim{Êα, fαβ, I} is s.t. for each α ∈ I

the element ρα(x) is invertible. Then for each α ∈ I there exists yα ∈ Êα
s.t. ρα(x) · yα = uα = yα · ρα(x), where uα is the identity element of the
multiplication in Êα. Now as we have already showed that u := (uα)α∈I is the
identity element of the (coordinatewise) multiplication in projlim{Êα, fαβ, I},
it is enough to prove that (yα)α∈I ∈ projlim{Êα, fαβ, I}. This is indeed true
since for all α ≤ β in I the following holds

ρα(x) · fαβ(yβ) = fαβ(ρβ(x)) · fαβ(yβ) = fαβ(ρβ(x) · yβ) = fαβ(uβ) = yα,

and, hence, fαβ(yβ) = yα.
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Chapter 4

Symmetric tensor algebras

As usual, we consider only vector spaces over the field K of real numbers or
of complex numbers. The aim of this section is to present a way to explicitly
construct an lmc algebra starting from the symmetric tensor algebra of a lc
TVS. For this purpose, we will preliminarily introduce the concept of tensor
product of vector spaces and then endow it with one of the many topologies
which can be defined when the starting space carries an lc structure.

4.1 Tensor product of vector spaces

Let us start with a notion which is central in the definition of tensor product.

Definition 4.1.1.
Let E,F,M be three vector spaces over K and φ : E × F → M be a bilinear
map. E and F are said to be φ−linearly disjoint if:
(LD) For any r, s ∈ N, x1, . . . , xr linearly independent in E and y1, . . . , ys

linearly independent in F , the set {φ(xi, yj) : i = 1, . . . , r, j = 1, . . . , s}
consists of linearly independent vectors in M .

or equivalently if:
(LD)’ For any r ∈ N, any {x1, . . . , xr} finite subset of E and any {y1, . . . , yr}

finite subset of F s.t.
∑r

i=1 φ(xi, yj) = 0, we have that both the following
conditions hold:
• if x1, . . . , xr are linearly independent in E, then y1 = · · · = yr = 0
• if y1, . . . , yr are linearly independent in F , then x1 = · · · = xr = 0.

Definition 4.1.2. A tensor product of two vector spaces E and F over K is
a pair (M,φ) consisting of a vector space M over K and of a bilinear map
φ : E × F →M (canonical map) s.t. the following conditions are satisfied:
(TP1) The image of E × F spans the whole space M .
(TP2) E and F are φ−linearly disjoint.
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4. Symmetric tensor algebras

The following theorem guarantees that the tensor product of any two vec-
tor spaces always exists, satisfies the “universal property” and it is unique up
to isomorphisms. For this reason, the tensor product of E and F is usually
denoted by E ⊗ F and the canonical map by (x, y) 7→ x⊗ y.

Theorem 4.1.3. Let E, F be two vector spaces over K.
(a) There exists a tensor product of E and F .
(b) Let (M,φ) be a tensor product of E and F . Let G be any vector space over

K, and b any bilinear mapping of E × F into G. There exists a unique
linear map b̃ : M → G such that the diagram

E × F G

M

φ

b

b̃

is commutative.
(c) If (M1, φ1) and (M2, φ2) are two tensor products of E and F , then there

is a bijective linear map u such that the diagram

E × F M2

M1

φ1

φ2

u

is commutative.

Proof. (see [16, Theorem 4.1.4])

Examples 4.1.4.

1. Let n,m ∈ N, E = Kn and F = Km. Then E ⊗ F = Knm is a tensor
product of E and F whose canonical bilinear map φ is given by:

φ : E × F → Knm(
(xi)

n
i=1, (yj)

m
j=1

)
7→ (xiyj)1≤i≤n,1≤j≤m.

2. Let X and Y be two sets. For any functions f : X → K and g : Y → K,
we define:

f ⊗ g : X × Y → K
(x, y) 7→ f(x)g(y).

Let E (resp. F ) be the linear space of all functions from X (resp. Y ) to
K endowed with the pointwise addition and multiplication by scalars. We
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4.2. The π−topology on the tensor product of lc TVS

denote by M the linear subspace of the space of all functions from X×Y
to K spanned by the elements of the form f ⊗g for all f ∈ E and g ∈ F .
Then M is actually a tensor product of E and F , i.e. M = E ⊗ F .

Similarly to how we defined the tensor product of two vector spaces we
can define the tensor product of an arbitrary number of vector spaces.

Definition 4.1.5. Let n ∈ N with n ≥ 2 and E1, . . . , En vector spaces over K.
A tensor product of E1, . . . , En is a pair (M,φ) consisting of a vector space
M over K and of a multilinear map φ : E1 × · · · × En →M (canonical map)
s.t. the following conditions are satisfied:

(TP1) The image of E1 × · · · × En spans the whole space M .

(TP2) E1, . . . , En are φ−linearly disjoint, i.e. for any r1, . . . , rn ∈ N and for

any x
(i)
1 , . . . , x

(i)
ri linearly independent in Ei (i = 1, . . . , n), the set{

φ
(
x

(1)
j1
, . . . , x

(n)
jn

)
: j1 = 1, . . . , r1, . . . , jn = 1, . . . , rn

}
consists of linearly independent vectors in M .

Recall that a map is multilinear if it is linear in each of its variables. As
for the case n = 2 it is possible to show that:

(a) There always exists a tensor product of E1, . . . , En.

(b) The universal property holds for E1 ⊗ · · · ⊗ En.

(c) E1 ⊗ · · · ⊗ En is unique up to isomorphisms.

4.2 The π−topology on the tensor product of lc TVS

Given two locally convex TVS E and F , there are various ways to construct
a topology on the tensor product E ⊗F which makes the vector space E ⊗F
in a TVS. Indeed, starting from the topologies on E and F , one can define a
topology on E ⊗ F either relying directly on the seminorms on E and F , or
using an embedding of E ⊗ F in some space related to E and F over which
a natural topology already exists. The first method leads to the so-called
π−topology. The second method may lead instead to a variety of topologies,
which we are not going to investigate in this course.

Definition 4.2.1 (π−topology).
Given two locally convex TVS E and F , we define the π−topology (or projec-
tive topology) on E ⊗ F to be the finest locally convex topology on this vector
space for which the canonical mapping E × F → E ⊗ F is continuous. The
space E ⊗ F equipped with the π−topology will be denoted by E ⊗π F .
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4. Symmetric tensor algebras

A basis of neighbourhoods of the origin in E ⊗π F is given by the family:

B := {convb(Uα ⊗ Vβ) : Uα ∈ BE , Vβ ∈ BF } ,

where BE (resp. BF ) is a basis of neighbourhoods of the origin in E (resp.
in F ), Uα ⊗ Vβ := {x⊗ y ∈ E ⊗ F : x ∈ Uα, y ∈ Vβ}. In fact, on the one
hand, the π−topology is by definition locally convex and so it has a basis
B of convex balanced neighbourhoods of the origin in E ⊗ F . Then, as the
canonical mapping φ is continuous w.r.t. the π−topology, we have that for
any C ∈ B there exist Uα ∈ BE and Vβ ∈ BF s.t. Uα × Vβ ⊆ φ−1(C).
Hence, Uα ⊗ Vβ = φ(Uα × Vβ) ⊆ C and so convb(Uα ⊗ Vβ) ⊆ convb(C) = C
which yields that the topology generated by Bπ is finer than the π−topology.
On the other hand, the canonical map φ is continuous w.r.t. the topology
generated by Bπ, because for any Uα ∈ BE and Vβ ∈ BF we have that
φ−1(convb(Uα ⊗ Vβ)) ⊇ φ−1(Uα ⊗ Vβ) = Uα × Vβ which is a neighbourhood of
the origin in E × F . Hence, the topology generated by Bπ is coarser than the
π−topology.

The π−topology on E ⊗ F can be described by means of the seminorms
defining the locally convex topologies on E and F .

Theorem 4.2.2. Let E and F be two locally convex TVS and let P (resp.Q)
be a family of seminorms generating the topology on E (resp. on F ). The
π−topology on E ⊗ F is generated by the family of seminorms

{p⊗ q : p ∈ P, q ∈ Q},

where for any p ∈ P, q ∈ Q, θ ∈ E ⊗ F we define:

(p⊗ q)(θ) := inf

{
r∑

k=1

p(xk)q(yk) : θ =

r∑
k=1

xk ⊗ yk, , xk ∈ E, yk ∈ F, r ∈ N

}
.

Proof. (see [16, Proposition 4.3.10 and Theorem 4.3.11])

The seminorm p⊗ q on E⊗F defined in the previous proposition is called
tensor product of the seminorms p and q (or projective cross seminorm)

Proposition 4.2.3. Let E and F be two locally convex TVS. E ⊗π F is
Hausdorff if and only if E and F are both Hausdorff.

In analogy with the algebraic case (see Theorem 4.1.3-b), we also have a
universal property for the space E ⊗π F .
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Proposition 4.2.4.
Let E,F be locally convex spaces. The π−topology on E ⊗π F is the unique
locally convex topology on E ⊗ F such that the following property holds:

(UP) For every locally convex space G, the algebraic isomorphism between
the space of bilinear mappings from E × F into G and the space of all
linear mappings from E ⊗F into G (given by Theorem 4.1.3-b) induces
an algebraic isomorphism between B(E,F ;G) and L(E ⊗ F ;G), where
B(E,F ;G) denotes the space of all continuous bilinear mappings from
E×F into G and L(E⊗F ;G) the space of all continuous linear mappings
from E ⊗ F into G.

Proof. Let τ be a locally convex topology on E ⊗ F such that the property
(UP) holds. Then (UP) holds in particular for G = (E ⊗ F, τ). Therefore, by
Theorem 4.1.3-b) the identity id : E ⊗ F → E ⊗ F is the unique linear map
such that the diagram

E × F E ⊗τ F

E ⊗τ F

φ

φ

id

commutes. Hence, we get that φ : E × F → E ⊗τ F has to be continuous.

This implies that τ ⊆ π by definition of π−topology. On the other hand,
(UP) also holds for G = (E ⊗ F, π).

E × F E ⊗π F

E ⊗τ F

φ

φ

id

Hence, since by definition of π−topology φ : E × F → E ⊗π F is continuous,
the id : E ⊗τ F → E ⊗π F has to be also continuous. This means that π ⊆ τ ,
which completes the proof.

4.3 Tensor algebra and symmetric tensor algebra of a vs

Let V be a vector space over K. For any k ∈ N, we define the k−th tensor
power of V as

V ⊗k := V ⊗ · · · ⊗ V︸ ︷︷ ︸
k-times
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and we take by convention V ⊗0 := K. Then it is possible to show that there
exists the following algebraic isomorphism:

∀n,m ∈ N, V ⊗n ⊗ V ⊗m ∼= V ⊗(n+m) (4.1)

We can pack together all tensor powers of V in a unique vector space:

T (V ) :=

∞⊕
k=0

V ⊗k.

We define a multiplication over T (V ) which makes it into a unital K−algebra.
First of all, let us observe that for any k ∈ N0 there is a natural embedding

ik : V ⊗k → T (V ). For sake of notational convenience, in the following we will
identify each g ∈ V ⊗k with ik(g). Then every element f ∈ T (V ) can be
expressed as f =

∑N
k=0 fk for some N ∈ N0 and fk ∈ V ⊗k for k = 0, . . . , N .

Using the isomorphism given by (4.1), for any j, k ∈ N we can define the
following bilinear operation:

· : V ⊗k × V ⊗j → V ⊗(k+j)

((v1 ⊗ · · · ⊗ vk), (w1 ⊗ · · · ⊗ wj)) 7→ v1 ⊗ · · · ⊗ vk ⊗ w1 ⊗ · · · ⊗ wj .
(4.2)

Hence, we get a multiplication · : T (V ) × T (V ) → T (V ) just by defining for
all f, g ∈ T (V ), say f =

∑N
k=0 fk and g =

∑M
j=0 gj for some N,M ∈ N0,

fk ∈ V ⊗k, gj ∈ V ⊗j ,

f · g :=
N∑
k=0

M∑
j=0

fk · gj ,

where fk · gj is the one defined in (4.2). Then we easily see that:
a) · is bilinear on T (V ) × T (V ) as it is bilinear on each V ⊗k × V ⊗j for all

j, k ∈ N0.
b) · is associative, i.e. ∀f, g, h ∈ T (V ), (f · g) · h = f · (g · h). Indeed, if

f =
∑N

k=0 fk, g =
∑M

j=0 gj , h =
∑S

l=0 hl with N,M,S ∈ N0, fk ∈ V ⊗k,
gj ∈ V ⊗j , hl ∈ V ⊗l, then

(f · g) · h =
N∑
k=0

M∑
j=0

S∑
l=0

(fk · gj) · hl =
N∑
k=0

M∑
j=0

S∑
l=0

fk · (gj · hl) = f · (g · h),

where we have just used that V ⊗(k+j)⊗V ⊗l ∼= V ⊗(k+j+l) ∼= V ⊗k⊗V ⊗(j+l)

by (4.1).
c) 1 ∈ K is the identity for the multiplication ·, since K = V ⊗0 and for all

f =
∑N

k=0 fk ∈ T (V ) we have 1 · f =
∑n

k=0(1 · fk) =
∑N

k=0 fk = f .
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Hence, (T (V ), ·) is a unital K−algebra, which is usually called the tensor
algebra of V .

Remark 4.3.1. If {xi}i∈Ω is a basis of the vector space V , then each element
of V ⊗k can be identified with a polynomial of degree k in the non-commuting
variables {xi}i∈Ω and with coefficients in K. Hence, T (V ) is identified with
the non-commutative polynomial ring K〈xi, i ∈ Ω〉.

Proposition 4.3.2. Let V be a vector space over K. For any unital K−algebra
(A, ∗) and any linear map f : V → A, there exists a unique K−algebra homo-
morphism f̄ : T (V )→ A such that the following diagram commutes

V A

T (V )

i1

f

f̄

where i1 is the natural embedding of V = V ⊗1 into T (V ).

Proof.
For any k ∈ N, we define

fk : V × · · · × V︸ ︷︷ ︸
k times

→ A

(v1, . . . , vk) 7→ f(v1) ∗ · · · ∗ f(vk)

which is multilinear by the linearity of f . For k = 0 we define

f0 : K → A
r 7→ r1A.

By the universal property of V ⊗k, we have that there exists a unique linear
map σk : V ⊗k → A s.t. σk(v1 ⊗ · · · ⊗ vk) = fk(v1, . . . , vk) = f(v1) ∗ · · · ∗ f(vk)
and for k = 0 we have σ0(r) = f0(r) = r1A, ∀r ∈ K. Then, by the universal
property of the direct sum, we get that there exists a unique linear map
f̄ : T (V )→ A such that f̄(ik(v1 ⊗ · · · ⊗ vk)) = σk(v1 ⊗ · · · ⊗ vk)

V × · · · × V A

V ⊗k

T (V )

fk

ik

σk

f̄
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In particular, for k = 1 we obtain that f̄(i1(v)) = σ1(v) = f(v).
It remains to show that f̄ is a K−algebra homomorphism from T (V ) to

A. By construction of f̄ , we clearly have that f̄ is linear and

f̄(1T (V )) = f̄(i0(1)) = σ0(1) = f0(1) = 1A.

Let us prove now that for any x, y ∈ T (V ) we get f̄(x · y) = f̄(x) ∗ f̄(y). As f̄
is linear, it is enough to show that for any n,m ∈ N, any x1, . . . , xn ∈ V and
any y1, . . . , ym ∈ V , we get

f̄((x1⊗ · · ·⊗xn) · (y1⊗ · · ·⊗ ym)) = f̄(x1⊗ · · ·⊗xn) ∗ f̄(y1⊗ · · ·⊗ ym). (4.3)

Indeed, by just applying the properties of f̄ , we obtain that:

f̄(x1 ⊗ · · · ⊗ xn) = σn(x1 ⊗ · · · ⊗ xn) = f(x1) ∗ · · · ∗ f(xn)

and
f̄(y1 ⊗ · · · ⊗ ym) = σm(y1 ⊗ · · · ⊗ ym) = f(y1) ∗ · · · ∗ f(ym).

These together with the definition of multiplication in T (V ) give that:

f̄(x1 ⊗ · · · ⊗ xn) ∗ f̄(y1 ⊗ · · · ⊗ ym) = f(x1) ∗ · · · ∗ f(xn) ∗ f(y1) ∗ · · · ∗ f(ym)

= f̄((x1 ⊗ · · · ⊗ xn) · (y1 ⊗ · · · ⊗ ym)).

Consider now the ideal I in (T (V ), ·) generated by the elements v ⊗ w −
w ⊗ v, for all v, w ∈ V . The tensor algebra T (V ) factored by this ideal I
is denoted by S(V ) and called the symmetric (tensor) algebra of V . If we
denote by π the quotient map from T (V ) to S(V ), then for any k ∈ N0

and any element f =
∑n

i=1 fi1 ⊗ · · · ⊗ fik ∈ V ⊗k (here n ∈ N, fij ∈ V for
i = 1, . . . , n, j = 1, . . . , k and n ≥ 1) we have that

π

(
n∑
i=1

fi1 ⊗ · · · ⊗ fik

)
=

n∑
i=1

fi1 · · · fik.

We define the k−th homogeneous component of S(V ) to be the image of V ⊗k

under π and we denoted it by S(V )k. Note that S(V )0 = K and S(V )1 = V .
Hence, we have

S(V ) =

∞⊕
k=0

S(V )k

and so every element f ∈ S(V ) can expressed as f =
∑N

k=0 fk for some N ∈ N,
fk ∈ S(V )k for k = 0, . . . , N .

86



4.4. An lmc topology on the symmetric algebra of a lc TVS

Remark 4.3.3. If {xi}i∈Ω is a basis of the vector space V , then each element
of S(V )k can be identified with a polynomial of degree k in the commuting
variables {xi}i∈Ω and with coefficients in K. Hence, S(V ) is identified with
the commutative polynomial ring K[xi : i ∈ Ω].

The universal property of S(V ) easily follows from the universal property
of T (V ).

Proposition 4.3.4. Let V be a vector space over K. For any unital commu-
tative K−algebra (A, ∗) and any linear map ψ : V → A, there exists a unique
K−algebra homomorphism ψ̄ : S(V ) → A such that the following diagram
commutes

V A

S(V )

ψ

ψ̄

i.e. ψ̄ �V = ψ.

Corollary 4.3.5. Let V be a vector space over K. The algebraic dual V ∗ of
V is algebraically isomorphic to Hom(S(V ),K).

Proof. For any α ∈ Hom(S(V ),K) we clearly have α �V ∈ V ∗. On the
other hand, by Proposition 4.3.4, for any ` ∈ V ∗ there exists a unique ¯̀ ∈
Hom(S(V ),K) such that ¯̀�V = `.

4.4 An lmc topology on the symmetric algebra of a lc TVS

Let V be a vector space over K. In this section we are going to explain
how a locally convex topology τ on V can be naturally extended to a locally
convex topology τ on the symmetric algebra S(V ) (see [14]). Let us start by
considering the simplest possible case, i.e. when τ is generated by a single
seminorm.

Suppose now that ρ is a seminorm on V . Starting from the seminorm ρ
on V , we are going to construct a seminorm ρ̄ on S(V ) in three steps:

1. For k ∈ N, let us consider the projective tensor seminorm on V ⊗k see
Theorem 4.2.2, i.e.

ρ⊗k(g) := (ρ⊗ · · · ⊗ ρ︸ ︷︷ ︸
ktimes

)(g)

= inf

{
N∑
i=1

ρ(gi1) · · · ρk(gik) : g =
N∑
i=1

gi1 ⊗ · · · ⊗ gik, gij ∈ V, N ∈ N

}
.
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4. Symmetric tensor algebras

2. Denote by πk : V ⊗k → S(V )k the quotient map π restricted to V ⊗k and
define ρk to be the quotient seminorm on S(V )k induced by ρ⊗k, i.e.

ρk(f) := inf{ρ⊗k(g) : g ∈ V ⊗k, πk(g) = f}

= inf

{
N∑
i=1

ρ(fi1) · · · ρ(fik) : f =
N∑
i=1

fi1 · · · fik, fij ∈ V,N ∈ N

}
.

Define ρ0 to be the usual absolute value on K.

3. For any h ∈ S(V ), say h = h0 + · · ·+h`, fk ∈ S(V )k, k = 0, . . . , `, define

ρ(f) :=
∑̀
k=0

ρk(fk).

We refer to ρ as the projective extension of ρ to S(V ).

Proposition 4.4.1. ρ is a seminorm on S(V ) extending the seminorm ρ on
V and ρ is also submultiplicative i.e. ρ(f · g) ≤ ρ(f)ρ(g), ∀f, g ∈ S(V )

To prove this result we need an essential lemma:

Lemma 4.4.2. Let i, j ∈ N, f ∈ S(V )i and g ∈ S(V )j. If k = i + j then
ρk(fg) ≤ ρi(f)ρj(g).

Proof.
Let us consider a generic representation of f ∈ S(V )i and g ∈ S(V )j , i.e.
f =

∑
p fp1 · · · fpi with fpk ∈ V for k = 1, . . . , i and g =

∑
q gq1 · · · gqj with

gql ∈ V for l = 1, . . . , j. Then f · g =
∑

p,q fp1 · · · fpigq1 · · · gqj , and so

ρk(f · g) ≤
∑
p,q

ρ(fp1) · · · ρ(fpi)ρ(gq1) · · · ρ(gqj)

=

(∑
p

ρ(fp1) · · · ρ(fpi)

)(∑
q

ρ(gq1) · · · ρ(gqj)

)
.

Since this holds for any representation of f and g, we get ρk(fg) ≤ ρi(f)ρj(g).

Proof. (of Proposition 4.4.1).
It is quite straightforward to show that ρ is a seminorm on S(V ). Indeed
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• Let k ∈ K and f ∈ S(V ). Consider any representation of f , say we take
f =

∑n
j=0 fj with n ∈ N and fj ∈ S(V )j for j = 0, . . . , n. Then using

the definition of ρ and the fact that ρk is a seminorm on S(V )k we get:

ρ(kf) = ρ

 n∑
j=0

kfj

 =

n∑
j=0

ρj(kfj) = |k|
n∑
j=0

ρj(fj) = |k|ρ(f).

• Let f, g ∈ S(V ). Consider any representation of f and g, say we take
f =

∑n
j=0 fj , g =

∑m
i=0 gi with n,m ∈ N, fj ∈ S(V )j for j = 0, . . . , n

and gi ∈ S(V )i for i = 0, . . . ,m. Take N := max{n,m}. Then we can
rewrite f =

∑N
j=0 fj and g =

∑N
i=0 gi, where fj = 0 for j = n+ 1, . . . , N

and gi = 0 for i = m+1, . . . , N . Therefore, using the definition of ρ and
the fact that ρk is a seminorm on S(V )k, we have

ρ(f + g) = ρ

 N∑
j=0

(fj + gj)

 ≤ N∑
j=0

ρj(fj) +

N∑
j=0

ρj(gj) = ρ(f) + ρ(g).

Also, ρ1 = ρ, so ρ restricted to V coincides with ρ. Let us finally show that
ρ is submultiplicative. Let f =

∑m
i=0 fi, g =

∑n
j=0 gj , fi ∈ S(V )i, gj ∈ S(V )j

and set T := {0, . . . ,m} × {0, . . . , n}. Then by using the definition of ρ, the
fact that ρk is a seminorm on S(V )k and Lemma 4.4.2 we obtain

ρ(f · g) =ρ

 m∑
i=0

n∑
j=0

figj

 = ρ

m+n∑
k=0

∑
(i,j)∈T
i+j=k

figj

 =
m+n∑
k=0

ρk

 ∑
(i,j)∈T
i+j=k

figj


≤
m+n∑
k=0

∑
(i,j)∈T
i+j=k

ρk(figj) ≤
m+n∑
k=0

∑
(i,j)∈T
i+j=k

ρi(fi)ρj(gj) =
m∑
i=0

n∑
j=0

ρi(fi)ρj(gj)

=

(
m∑
i=0

ρi(fi)

) n∑
j=0

ρj(gj)

 = ρ(f)ρ(g).

Let us now consider (S(V ), ρ) and any other submultiplicative seminormed
unital commutative K−algebra (A, σ). If α : (S(V ), ρ)→ (A, σ) is linear and
continuous, then clearly α �V : (V, ρ) → (A, σ) is also continuous. However,
if ψ : (V, ρ) → (A, σ) is linear and continuous, then the unique extension ψ
given by Proposition 4.3.4 need not be continuous . All one can say in general
is the following lemma.
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4. Symmetric tensor algebras

Lemma 4.4.3. If ψ : (V, ρ) → (A, σ) is linear and continuous, namely ∃
C > 0 such that σ(ψ(v)) ≤ Cρ(v) ∀ v ∈ V , then for any k ∈ N we have
σ(ψ(g)) ≤ Ckρk(g) ∀ g ∈ S(V )k.

Proof.
Let k ∈ N and g ∈ S(V )k. Suppose g =

∑N
i=1 gi1 · · · gik with gij ∈ V for

j = 1, . . . , N . Then ψ(g) =
∑N

i=1 ψ(gi1) · · ·ψ(gik), and so

σ(ψ(g)) ≤ σ

(
N∑
i=1

ψ(gi1) · · ·ψ(gik)

)
≤

N∑
i=1

σ(ψ(fi1)) · · ·σ(ψ(gik))

≤
N∑
i=1

Cρ(gi1) · · ·Cρ(gik) = Ck
N∑
i=1

ρ(gi1) · · · ρ(gik).

As this holds for any representation of g, we get σ(ψ(g)) ≤ Ckρk(g).

Proposition 4.4.4. If ψ : (V, ρ) → (A, σ) has operator norm ≤ 1, then the
induced algebra homomorphism ψ : (S(V ), ρ) → (A, σ) has operator norm
≤ σ(1).

Recall that given a linear operator L between two seminormed spaces
(W1, q1) and (W2, q2) we define the operator norm of L as follows:

‖L‖ := sup
w∈W1
q1(w)≤1

q2(L(w)).

Proof.
Suppose σ 6≡ 0 on A (if this is the case then there is nothing to prove). Then
there exists a ∈ A such that σ(a) > 0. This together with the fact that σ is a
submultiplicative seminorm gives that

σ(1) ≥ 1. (4.4)

Since ‖ψ‖ ≤ 1, we have that σ(ψ(v)) ≤ ρ(v), ∀ v ∈ V. Then we can apply
Lemma 4.4.3 and get that

∀ k ∈ N, g ∈ S(V )k, σ(ψ(g)) ≤ ρk(g) (4.5)
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Now let f ∈ S(V ), i.e. f =
∑m

k=0 fk with fk ∈ S(V )k for k = 0, . . . ,m. Then

σ(ψ(f)) = σ

(
m∑
k=0

ψ(fk)

)
≤

m∑
k=0

σ(ψ(fk))
(4.5)

≤ σ(ψ(f0)) +
m∑
k=1

ρk(fk)

= σ(f0) +

m∑
k=1

ρk(fk) ≤ σ(1)ρ(f0) +

m∑
k=1

ρk(fk)

(4.4)

≤ σ(1)ρ(f0) +

m∑
k=1

σ(1)ρk(fk) = σ(1)

m∑
k=0

ρk(fk) = σ(1)ρ(f).

Hence, ‖ψ‖ ≤ σ(1).

Using the properties we have showed for the projective extension ρ̄ of ρ
to S(V ), we can easily pass to the case when V is endowed with a locally
convex topology τ (generated by more than one seminorm) and to study how
to extend this topology to S(V ) in a such a way that the latter becomes an
lmc TA.

Let τ be any locally convex topology on a vector space V over K and let
P be a directed family of seminorms generating τ . Denote by τ the topology
on S(V ) determined by the family of seminorms Q := {nρ : ρ ∈ P, n ∈ N}.

Proposition 4.4.5. τ is an lmc topology on S(V ) extending τ and is the
finest lmc topology on S(V ) having this property.

Proof. By definition of τ and by Proposition 4.4.1, it is clear that Q is a di-
rected family of submultiplicative seminorms and so that τ is an lmc topology
on S(V ) extending τ .It remains to show that τ is the finest lmc topology
with extending τ to S(V ). Let µ an lmc topology on S(V ) s.t. µ �V = τ , i.e.
µ extends τ to S(V ). Suppose that µ is finer than τ . Let S be a directed
family of submultiplicative seminorms generating µ and consider the identity
map id : (V, τ) → (V, µ �V ). As by assumption µ �V = τ , we have that id is
continuous and so by Theorem 4.6.3-TVS-I (applied for directed families of
seminorms) we get that:

∀ s ∈ S, ∃n ∈ N, ∃ ρ ∈ P : s(v) = s((id(v)) ≤ nρ(v), ∀ v ∈ V.

Consider the embedding i : (V, nρ) → (S(V ), q). Then ‖i‖ ≤ 1 and so, by
Proposition 4.4.4, the unique extension ī : (S(V ), nρ) → (S(V ), s) of i is
continuous with ‖̄i‖ ≤ q(1). This gives that

s(f) ≤ s(1)nρ(f), ∀ f ∈ S(V ).

Hence, all s ∈ F are continuous w.r.t. τ and so µ must be coarser than τ .
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Chapter 5

Short overview on the moment problem

In this chapter we are going to consider always Radon measures on Hausdorff
topological spaces, i.e. non-negative Borel measures which are locally finite
and inner regular.

5.1 The classical finite-dimensional moment problem

Let µ be a Radon measure on R. We define the n−th moment of µ as

mµ
n :=

∫
R
xnµ(dx)

If all moments of µ exist and are finite, then we can associate to µ the sequence
of real numbers (mµ

n)n∈N0 , which is said to be the moment sequence of µ. The
moment problem exactly addresses the inverse question:

Problem 5.1.1 (The one-dimensional K−Moment Problem (KMP)).
Given a closed subset K of R and a sequence m = (mn)n∈N0 of real numbers,
does there exist a Radon measure µ on R s.t. for any n ∈ N0 we have mn = mµ

n

and µ is supported on K, i.e.

mn =

∫
R
xnµ(dx)︸ ︷︷ ︸

n-th moment of µ

, ∀n ∈ N0 and supp(µ) ⊆ K ?

If such a measure µ does exist we say that µ is a K−representing measure
for m or that m is represented by µ on K.
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Note that there is a bijective correspondence between the set RN0 of all
sequences of real numbers and the set (R[x])∗ of all linear functional from R[x]
to R.

RN0 → (R[x])∗

(mn)n∈N0 7→ Lm : R[x] → R
p(x) :=

∑
j
pjx

j 7→ Lm(p) :=
∑
j
pjmj .

(L(xn))n∈N0 ←[ L

In virtue of this correspondence, we can always reformulate the KMP in terms
of linear functionals

Problem 5.1.2 (The one-dimensional K−Moment Problem (KMP)).
Given a closed subset K of R and a linear functional L : R[x]→ R, does there
exists a Radon measure µ on R s.t.

L(p) =

∫
R
p(x)µ(dx), ∀p ∈ R[x] and supp(µ) ⊆ K ?

As before, if such a measure exists we say that µ is a K−representing
measure for L and that it is a solution to the K−moment problem for L.

Clearly one can generalize the one-dimensional KMP to higher dimension
by considering R[x] := R[x1, . . . , xd] for some d ∈ N (see [15, Section 5.2.2]).

Problem 5.1.3 (The d-dimensional K−Moment Problem (KMP)).
Given a closed subset K of Rd and a linear functional L : R[x] → R, does
there exists a Radon measure µ on Rd s.t.

L(p) =

∫
Rd
p(x)µ(dx), ∀p ∈ R[x] and supp(µ) ⊆ K ?

It is then very natural to ask the following:

Questions
• What if we have infinitely many variables, i.e. we consider R[xi : i ∈ Ω]

where Ω is an infinite index set?
• What if instead of real variables we consider variables in a generic

R−vector space V (even infinite dimensional)?
• What if instead of the polynomial ring R[x] we take any unital commu-

tative R−algebra A?
All these possible generalization of the moment problem usually go under the
name of infinite dimensional moment problem.
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5.2 Moment problem for commutative R−algebras

In this section we are going to give a formulation of the moment problem
general enough to encompass all the possible generalizations addressed in the
previous section. Let us start by introducing some notation and terminology.

Given a unital commutative R−algebra A, we denote by X (A) the char-
acter space of A (see Definition 2.4.6). For any a ∈ A, we define the Gelfand
transform â : X (A) → R as â(α) := α(a), ∀α ∈ X (A). We endow the char-
acter space X (A) with the weakest topology τX (A) s.t. all Gelfand transforms
are continuous, i.e. â is continuous for all a ∈ A.

Remark 5.2.1. X (A) can be seen as a subset of RA via the embedding:

π : X (A) → RA
α 7→ π(α) := (α(a))a∈A = (â(α))a∈A .

If we equip RA with the product topology τprod, then it can be showed (see [19,
Section 5.7]) that τX (A) coincides with the topology induced by π on X (A) from

(RA, τprod), i.e.

τX (A) ≡
{
π−1(O) : O ∈ τprod

}
.

The space
(
X (A), τX (A)

)
is therefore Hausdorff.

Problem 5.2.2 (The KMP for unital commutative R−algebras).
Given a closed subset K ⊆ X (A) and a linear functional L : A → R, does
there exist a Radon measure µ on X (A) s.t. we have

L(a) =

∫
X (A)

â(α)µ(dα),∀a ∈ A and supp(µ) ⊆ K?

lc

α(p) = α

∑
β∈Nd0

pβx
β

 =
∑
β∈Nd0

α(pβ)α(x1)β1 · · ·α(xd)
βd

=
∑
β∈Nd0

pβα(x1)β1 · · ·α(xd)
βd = p (α(x1), . . . , α(xd)) .

Conversely, for any y ∈ Rd we can define the functional αy : R[x] → R by
αy(p) := p(y) for any p ∈ R[x], which is clearly a R−algebra homomorphism.
Hence, we have showed that X(R[x]) ∼= Rd and via this isomorphism we
have that, for any p ∈ R[x], the Gelfand transform p̂ is identified with the
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polynomial p itself. Using these identifications, we get that Problem 5.2.2 for
A = R[x] is nothing but Problem 5.1.3.

Let us come back to the general KMP 5.2.2. Fixed a subset K of X (A),
we denote by

Pos(K) := {a ∈ A : â ≥ 0 on K}.
A necessary condition for the existence of a solution to the KMP 5.2.2 is clearly
that L is nonnegative on Pos(K). In fact, if there exists a K−representing
measure µ for L then for all a ∈ Pos(K) we have

L(a) =

∫
X (A)

â(α)µ(dα) ≥ 0

since µ is nonnegative and supported on K and â is nonnegative on K.
It is then natural to ask if the nonnegativity of L on Pos(K) is also suf-

ficient. For A = R[x] a positive answer is provided by the so-called Riesz-
Haviland theorem (see [15, Theorem 5.2.5]). An analogous result also holds
in this general setting:

Theorem 5.2.3 (Generalized Riesz-Haviland Theorem). Let K ⊆ X (A) closed
and L : A → R linear. Suppose there exists p ∈ A such that p̂ ≥ 0 on K
and for all n ∈ N the set {α ∈ K : p̂(α) ≤ n} is compact. Then L has a
K−representing measure if and only if L(Pos(K)) ⊆ [0,+∞).

This theorem provides a complete solution for the K− moment problem
5.2.2 but it is somehow unpractical! In fact, it reduces the solvability of the
K−moment problem to the problem of characterizing Pos(K). To approach
to this problem we will try to approximate elements in Pos(K) with elements
of A whose Gelfand transform is “more evidently” non-negative, e.g. sum of
even powers of elements of A. In this spirit we consider 2d−power modules of
the algebra A for d ∈ N.

Definition 5.2.4 (2d−power module).
Let d ∈ N. A 2d−power module of A is a subset M of A satisfying 1 ∈
M, M +M ⊆M and a2dM ⊆M for each a ∈ A.

In the case d = 1, 2d−power modules are referred to as quadratic modules.
We denote by

∑
A2d the set of all finite sums

∑
a2d
i , ai ∈ A.

∑
A2d is the

smallest 2d−power module of A.

Definition 5.2.5 (Generated 2d−power module).
Let {pj}j∈J be an arbitrary subset of elements in A (J can have also infinite
cardinality). The 2d−power module of A generated by {pj}j∈J is defined as

M := {σ0 + σ1pj1 + . . .+ σspjs : s ∈ N, j1, . . . , js ∈ J, σ0, . . . , σs ∈
∑

A2d}.
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For any subset M of A, we set

XM := {α ∈ X (A) : â(α) ≥ 0, ∀a ∈M},

which is a closed subset of
(
X (A), τX (A)

)
. If M =

∑
A2d then XM = X (A).

If M is the 2d−power module of A generated by {pj}j∈J then XM := {α ∈
X (A) : p̂j(α) ≥ 0, ∀ j ∈ J}.

Given a 2d−power module M , let us consider the XM−moment problem
for a linear functional L : A→ R. If there exists a XM−representing measure
µ for L, then it is clear that L(M) ⊆ [0,+∞) since M ⊆ Pos(XM ). Under
which assumptions does the converse hold?

The answer is positive when the module M is Archimedean. The main in-
gredient of the proof of this result is the the so-called Jacobi Positivstellensatz,
which holds for Archimedean power modules and provides that Pos(XM ) ⊆
M

ϕ
, where ϕ is the finest locally convex topology on A. This inclusion to-

gether with Proposition 2.4.8 allows to get the desired conclusion by applying
of Hahn-Banach and Riesz-Haviland theorems.

Theorem 5.2.6. Let M be an archimedean 2d−power module of A and L :
A→ R a linear functional. L has a XM−representing measure if and only if
L(M) ⊆ [0,+∞).

Proof. See [13, Corollary 2.6]. The conclusion can be also obtained as a con-
sequence of [11, Theorem 5.5].

A 2d−power module M in A is said to be archimedean if for each a ∈ A
there exists an integer N such that N±a ∈M . If M is a 2d−power module of
A which is archimedean then XM is compact. The converse is false in general
(see [19, Section 7.3]).

Does Theorem 5.2.6 still hold when M is not Archimedean? Can we
find other topologies τ rather than the finest lc topology ϕ on A such that
Pos(XM ) ⊆ M

τ
so that we can get a similar result for τ−continuous linear

functionals on A? In order to attack those questions we are going to in-
vestigate the KMP for linear functionals on some special kind of topological
R−algebras.

5.3 Moment problem for submultiplicative seminormed
R−algebras

In this section we are going to present some results about Problem 5.2.2 when
A a submultiplicative seminormed R−algebra (for more details see [12]).
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Let A be a unital commutative R−algebra and σ be a submultiplicative
seminorm on an R−algebra A, i.e. σ(a·b) ≤ σ(a)σ(b) for all a, b ∈ A (· denotes
the multiplication in A). The algebra A together with such a σ is called a
submultiplicative seminormed R−algebra and is denoted by (A, σ).

We denote the set of all σ−continuous R−algebra homomorphisms from
A to R by sp(σ), which we refer to as the Gelfand spectrum of (A, σ), i.e.

sp(σ) := {α ∈ X (A) : α is σ − continuous}.

We endow sp(σ) with the subspace topology induced by
(
X (A), τX (A)

)
. Then

one can show the following two results (see [12] for a proof).

Lemma 5.3.1.
For any submultiplicative seminormed R−algebra (A, σ) we have:

sp(σ) = {α ∈ X (A) : |α(a)| ≤ σ(a) for all a ∈ A}.

Corollary 5.3.2. The Gelfand spectrum of any submultiplicative seminormed
R−algebra (A, σ) is compact.

An important closure result useful for the Problem 5.2.2 when A a submul-
tiplicative seminormed R−algebra was proved by M. Ghasemi, S. Kuhlmann
and M. Marshall in [12, Theorem 3.7]. We just state it here but we show in
details how this result helps to get better conditions than the ones provided
by the Generalized Riesz-Haviland theorem.

Theorem 5.3.3. Let (A, σ) be a submultiplicative seminormed R−algebra and
M is a 2d−power module of A (not necessarily Archimedean). Then

M
ρ

= Pos(XM ∩ sp(σ)).

Corollary 5.3.4. Let (A, σ) be a submultiplicative seminormed R−algebra,
M is a 2d−power module of A and L : A → R a linear functional. L has a
representing measure supported on XM∩sp(σ) if and only if L is σ−continuous
and L(M) ⊆ [0,+∞).

Proof.
(⇐) By our hypothesis and Theorem 5.3.3, L is nonnegative on Pos(XM ∩
sp(σ)). Hence, by applying Theorem 5.2.3, L has a (XM∩sp(σ))−representing
measure.1

1 Note that we can apply the Generalized Riesz-Haviland Theorem since XM ∩ sp(σ) is
compact in

(
X (A), τX (A)

)
. (This is a direct consequence of Corollary 5.3.2 and of the fact

that XM is a closed subset of
(
X (A), τX (A)

)
).
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5.4. Moment problem for symmetric algebras of lc spaces

(⇒) Suppose that L has a representing measure µ supported on XM ∩ sp(σ).
Then for all b ∈M we have

L(b) =

∫
XM∩sp(σ)

b̂(α)µ(dα) ≥ 0

since µ is nonnegative and supported on a subset of XM . Therefore, we have
got L(M) ⊆ [0,+∞). Also, we have that for all a ∈ A:

|L(a)| ≤
∫
XM∩sp(σ)

|â(α)|µ(dα)

=

∫
XM∩sp(σ)

|α(a)|µ(dα)

Lemma 5.3.1
≤

∫
XM∩sp(σ)

σ(a)µ(dα) = σ(a)µ (XM ∩ sp(σ))

Note that µ (XM ∩ sp(σ)) is finite since µ is Radon and XM ∩ sp(σ) compact.
Hence, L is σ−continuous.

5.4 Moment problem for symmetric algebras of lc spaces

In this section we are going to present some results about Problem 5.2.2 when
A is the symmetric algebra S(V ) of a locally convex space V over R (for more
details see [14]).

Let us start with the simplest case, i.e. when V is a R−vector space
endowed with a seminorm ρ. In Section 5.2, we have showed how to extend the
seminorm ρ to a seminorm ρ on S(V ), which we proved to be submultiplicative
by Proposition 4.4.1. Therefore, (S(V ), ρ) is a submultiplicative seminormed
R−algebra and so we can apply Corollary 5.3.4, obtaining the following result.

Proposition 5.4.1. Let (V, ρ) be a seminormed R-vector space, M a 2d−power
module of S(V ) and L : S(V ) → R a linear functional. L is ρ-continuous
and L(M) ⊆ [0,+∞) if and only if ∃ !µ on V ∗: L(f) =

∫
V ∗
f̂(α)µ(dα) and

suppµ ⊆ XM ∩ B
‖·‖ρ
1 , where ‖ · ‖ρ denotes the operator norm on V ∗, i.e.

‖β‖ρ := sup v∈V
ρ(v)≤1

|β(v)| and B
‖·‖ρ
1 := {β ∈ V ∗ : ‖β‖ρ ≤ 1}.

Proof.
By Proposition 4.4.1, we can apply Corollary 5.3.4 to (S(V ), ρ) and obtain
that: L is ρ-continuous and L(M) ⊆ [0,+∞) if and only if ∃ !µ on X(S(V )):
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L(f) =
∫

X(S(V ))

f̂(α)µ(dα) and suppµ ⊆ XM∩sp(ρ). Now by Corollary 4.3.5 we

know that Hom(S(V ),R) ∼= V ∗, i.e. X(S(V )) ∼= V ∗. Using this isomorphism

we can get that sp(ρ) ∼= B
‖·‖ρ
1 and so the desired conclusion.

Let us prove that sp(ρ) ∼= B
‖·‖ρ
1 . Suppose that α ∈ sp(ρ). Then by

Lemma 5.3.1 we have that |α(f)| ≤ ρ(f) ∀ f ∈ S(V ). Clearly this implies

that |α(v)| ≤ ρ(v) ∀ v ∈ V , so ‖α �V ‖ρ ≤ 1, i.e. α ∈ B
‖·‖ρ
1 . Conversely,

suppose that β ∈ V ∗ s.t. ‖β‖ρ ≤ 1. Denote by β the unique extension of β to
an R-algebra homomorphism β : S(V ) → R. Then, by Proposition 4.4.4, we
get that ‖β‖ρ ≤ 1 and so that |β(f)| ≤ ρ(f) ∀ f ∈ S(V ). Thus β ∈ sp(ρ).

We can generalize this result to (V, τ) locally convex TVS over R by using
Proposition 4.4.5, which provides an extension of τ to an lmc topology τ to
S(V ).

Proposition 5.4.2. Let (V, τ) be a lmc TVS over R whose topology is gen-
erated by a directed family of seminorms P. Let M be a 2d−power mod-
ule of S(V ) and L : S(V ) → R a linear functional. L is τ -continuous
and L(M) ⊆ [0,+∞) if and only if ∃ !µ on V ∗: L(f) =

∫
V ∗
f̂(α)µ(dα) and

suppµ ⊆ XM ∩B
‖·‖ρ
n , for some n ∈ N and ρ ∈ P.

Proof.
By Proposition 4.4.5, we know that τ is a lmc topology on S(V ) generated
by the family Q := {nρ : ρ ∈ P, n ∈ N}. Then Proposition 4.6.1 in TVS-I
guarantees that L is τ -continuous if and only if there exists q ∈ Q s.t. L is
q−continuous, i.e. there exists n ∈ N and ρ ∈ P s.t. L is nρ−continuous.
Thus we reduced to the case of one single seminorm and so we can apply
Proposition 5.4.1 and get that: L is τ -continuous and L(M) ⊆ [0,+∞) if and

only if ∃ !µ on V ∗: L(f) =
∫
V ∗
f̂(α)µ(dα) and suppµ ⊆ XM ∩ B

‖·‖nρ
1 . This

yields the conclusion as B
‖·‖nρ
1 = B

‖·‖ρ
n .

What happens when the assumption of continuity of L is weakened? Can
we get results for this moment problem for measures which are not compactly
supported? Some results in this direction have been obtained in [17] for the
case when V = C∞c (Rd) endowed with the projective topology introduced
in Section 1.4. However, there are still many open questions concerning the
moment problem in this general framework and we are still far from a complete
understanding of the infinite dimensional moment problem.
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