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The Classical Truncated K-Moment Problem (TKMP)

Given an n-dimensional multisequence of degree m,

β ≡ β(m) = {βi : i ∈ Z
n
+, |i | ≤ m},

and a closed set K ⊆ Rn, TKMP seeks conditions on β such that
there exists a positive Borel measure µ on Rn, with supp µ ⊆ K ,
satisfying

βi =

∫

Rn

x idµ(x) (|i | ≤ m)

(x ≡ (x1, . . . , xn), i ≡ (i1, . . . , in) ∈ Zn
+, x

i := x i11 · · · x inn ).

µ is a K -representing measure. For K = Rn, we have the
Truncated Moment Problem (TMP) and µ is a representing
measure.
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Positivity of the Riesz functional

Let P := R[x1, . . . , xn] and let Pk := {p ∈ P : deg p ≤ k}. Given
β ≡ β(m), define the Riesz functional Lβ : Pm −→ R by

∑
aix

i 7−→ Lβ(
∑

aix
i ) :=

∑
aiβi

If β has a K -representing measure µ, then Lβ is K-positive, i.e.,

p ∈ Pm, p|K ≥ 0 =⇒ Lβ(p) ≥ 0 .
(Proof: Lβ(p) =

∫
K
pdµ ≥ 0.)

Grigoriy Blekherman and Lawrence Fialkow
The core variety of a multisequence in the truncated moment p



Solution to Classical Full K -Moment Problem
We first briefly review the classical Full Multivariable K -Moment
Problem for β ≡ β(∞).

Theorem [M. Riesz (n = 1) [1923], Haviland (n > 1) [1935]]

β ≡ β(∞) has a K -representing measure if and only if the corre-
sponding functional Lβ is K -positive.

Concrete conditions for K -positivity are known in some special
cases, e.g., in the solutions of Stieltjes [1896] for K = [0,+∞),
Hamburger [1921] for K = R, Hausdorff [1923] for K = [0, 1], and
K. Schmüdgen for K a compact basic semialgebriac set S [1991].
In these cases, there is a concrete description of the polynomials
that are positive on K . M. Dritshel talk: Fejer-Riesz describes
positive trigonometric polynomials

A connection between the Full and Truncated Moment Problems:
Theorem [Stochel, 2001]

β(∞) has a K -representing measure if and only if β(m) has a K -
representing measure for each m ≥ 1.
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Moment matrices
For a multisequence β ≡ β(2d) with Riesz functional Lβ, the
moment matrix Md has rows and columns X i indexed by the
monomials in Pd , x

i ≡ x i11 · · · x inn (|i | ≡ i1 + · · · in ≤ d) in
degree-lexicographic order. For p, q ∈ Pd , with coefficient vectors
p̂, q̂ relative to the basis of monomials, we have

〈Md p̂, q̂〉 := Lβ(pq).

In the “concrete” cases of Riesz-Haviland for the full K -moment
problem, weighted sums-of-squares decompositions for positive
polynomials permit the equivalence of K -positivity for Lβ with
positive semidefiniteness conditions for a finite family of infinite
moment matrices and associated “localizing matrices”. In the
Schmüdgen decomposition, there are no degree bounds
([Scheiderer]), so the decomposition cannot directly be used in
TKMP. Moment matrix extension methods (flat extensions) apply
in principle, but may be difficult to apply.(The quartic theorem in
Aljaz Zalar’s talk does not extend to degree 6.)
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More on the role of K -positivity in TKMP

Tchakaloff’s Theorem [1957]

Let β ≡ β(m). For K compact, if Lβ is K -positive, then β has a
K -representing measure µ satisfying card supp µ ≤ dim Pm.

Note. Concrete criteria for the case when K is compact are known
only in some special cases (e.g., n = 1 and K = [a, b]). For the
closed disk, the problem is largely unsolved. For K non-compact,
Riesz-Haviland is false.
Truncated Riesz-Haviland [CF,2009].

Let β = β(2d) or β = β(2d+1) and let K be a closed subset of Rn.
β has a K -representing measure if and only if β can be extended to
a sequence β̃ ≡ β(2d+2) such that L

β̃
is K -positive.

Low-rank Theorem [Blekherman, PAMS, 2015]

Given β = β(2d), if Md is positive semidefinite and satisfies
rank Md ≤ 3d − 3, then Lβ is positive.

Note. In this case, β(2d−1) has a representing measure by TRH.
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The core variety of a truncated moment functional
[J. Operator Theory, to appear]

The core variety provides an approach to establishing the existence
of representing measures based on methods of convex analysis. For
the polynomial case, this was introduced in [F.,JMAA, 2017], and
some of the ideas go back to [F.-Nie, JFA, 2009]. The core variety
has also been studied by P. di Dio and K. Schmüdgen [JFA, 2017]
and in Schmüdgen’s recent book [2017].

Let X be a T1 space and let W be a finite dimensional subspace of
C (X ) (or of B(X )). Consider a linear functional L : W 7→ R.

Problem. When does L have a finitely atomic representing
measure, i.e., when does L belong to the convex cone generated by
the point evaluations δx (x ∈ X ), where δx(f ) = f (x) (f ∈ W )?
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(Basic Example) Let W = Pm[x1, . . . , xn]. Given a multisequence
β ≡ β(m), β0 > 0, let L = Lβ , the Riesz functional. Consider the
case m = 2d and suppose p ∈ Pd satisfies Md p̂ = 0. Then
Lβ(p

2) = 〈Md p̂, p̂〉 = 0. Note that if µ is any representing measure
for L, then supp µ ⊆ Z(p). For if there exists x0 ∈ supp µ with
p(x0) 6= 0, then p2 > 0 in an open neighborhood of x0, so
0 <

∫
p2dµ = L(p2) = 0. Thus, the common zeros of such

polynomials p contains the support of any representing measure;
this set of common zeros is called the variety of Md and it plays a
significant role in the work of [C-F] in establishing representing
measures via flat extensions of moment matrices. More generally,
for p ∈ Pm, if p ∈ ker L and p|Rn ≥ 0, then supp µ ⊆ Z(p).
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Define V0 := X and for i ≥ 0, define

Vi+1 :=
⋂

f ∈ker L, f |Vi≥0

Z(f ).

We define the core variety of L by

CV(L) :=
⋂

i≥0

Vi .

Note. In the Basic Example (TMP), it is equivalent to start with
V0 := V (Md), the variety of Md ; this facilitates calculation of the
core variety.
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For the continuous case, when W is a finite dimensional subspace
of C (X ), representing measures are always supported in the core
variety:

Proposition

If µ is a representing measure for L, then supp µ ⊆ CV(L).

Note: In the polynomial case, if µ is a representing measure, then
rank Md (β) ≤ card supp µ ≤ card CV(Lβ) ≤ card V(i). Thus, if
card Vi < rank Md for some i , then β has no representing
measure.
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Example with M3 ≻ 0, Lβ positive, but no measure [F, 2017].
With n = 2, consider M3(β) defined as follows:

































8 0 0 6 0 6 0 0 0 0

0 6 0 0 0 0 6 0 4 0

0 0 6 0 0 0 0 4 0 6

6 0 0 6 0 4 0 0 0 0

0 0 0 0 4 0 0 0 0 0

6 0 0 4 0 6 0 0 0 0

0 6 0 0 0 0 8 0 6 0

0 0 4 0 0 0 0 6 0 6

0 4 0 0 0 0 6 0 6 0

0 0 6 0 4 0 0 6 0 8


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



























.

M3 is positive definite, and results of [F-Nie, JFA, 2012] imply
that Lβ is positive. The de-homogenized Robinson polynomial
r(x , y) is in ker Lβ. Since r is nonnegative and has exactly 8 affine
zeros, it follows that card V1 ≤ 8 < 10 = rank M3, so β has no
representing measure. Further, f (x , y) := 2− x2 − y2 and
g(x , y) := 3

2x
2y2 − x2y4 are in ker Lβ, are nonnegative on the

zeros of r , and have no common zeros on this set, so
CV(Lβ) = V2 = ∅.
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Nonempty core variety and representing measures

We now assume there is some ρ ∈ W such that ρ|X > 0 and
L(ρ) > 0; in the classical polynomial case, we have ρ ≡ 1.

Core Variety Theorem

L ∈ W ∗ has a representing measure if and only if its core variety
V ≡ CV(L) is nonempty. In this case, the union of the supports of
all f.a.r.m. for L is precisely V, as is the union of the supports of
all representing measures in the C (X ) case. Further, there exists
k ≤ dim W such that CV(L) = Vk , and if some Vj is finite, then
CV(L) = Vj or CV(L) = Vj+1.

Instead of discussing the proof of this result, we will consider a
more general version.
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The Core Set problem
Let V be a finite dimensional real vector space with norm || · || and
dual space V ′. Let F ≡ F0 be a proper subset of V , 0 6∈ F , and
let C ≡ C0 denote the conical hull of F . For a nonzero element
L ∈ V , we refer to an element F0 ∈ F as a support point for L if L
admits a representation

L =

m∑

j=0

ajFj , (1)

where each aj > 0 and each Fj ∈ F . The core set of L, CS(L), is
the set of all support points of L, so L ∈ C if and only if
CS(L) 6= ∅.
In the Basic Example (TMP), let V = W ′, let F = {δx : x ∈ Rn},
and let L = Lβ. Thus, the core set of L is nonempty if and only if
L admits a finitely atomic representing measure.
Problem. Describe a procedure for computing CS(L).
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Observe that if F ≡ F0 is a support point for L, then F belongs to
the set

F1 := {F ∈ F0 : Q(F ) = 0 ∀ Q ∈ V ′ ∋ Q|F0 ≥ 0 and Q(L) = 0}.
(2)

To see this, suppose to the contrary that F0 ∈ F \ F1. Then there
exists Q ∈ V ′ such that Q|F ≥ 0 and Q(L) = 0, but Q(F0) > 0.

Then (1) implies 0 = Q(L) =

m∑

j=0

ajQ(Fj) > 0, a contradiction.

For each i ≥ 0, we now iteratively define

Fi+1 = {F ∈ Fi : Q(F ) = 0 ∀ Q ∈ V ′ ∋ Q|Fi ≥ 0 andQ(L) = 0}.
(3)

We also set F∞ :=
⋂

i≥0

Fi . An induction based on the above

argument shows CS(L) ⊆ F∞, so if F∞ = ∅, then L 6∈ C .
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Our main result is the following converse.

Theorem

Let L be a nonzero element of V . Then there exists k ≤ dim V
such that F∞ = Fk and thus CS(L) = Fk . Therefore, L belongs to
C if and only if Fk is nonempty, in which case the support points
of L are precisely the elements of Fk .

In the case of the truncated moment problem for β, we see that β
has a finitely atomic representing measure if and only if the core
set of Lβ is nonempty, in which case the core set is the set
{δx : x is a support point for some f.a.r.m. for β}. In the core
variety paper, we also showed that if β has any representing
measure, then the core variety is nonempty, so β has a finitely
atomic representing measure (Bayer-Teichmann Theorem, now
attributed to Richter (1957)).
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Outline of the proof
We have already verified the following:

Lemma (inclusion)

CS(L) ⊆ F∞.

For i ≥ 1, letCi := conhull(Fi ) and Vi := lin.span(Fi); clearly
Fi+1 ⊆ Fi and Vi+1 ⊆ Vi . An application of the definitions shows
that if Fi+1 is a proper subset of Fi , then dim Vi+1 < dim Vi .

Lemma (stability)

There exists k ≤ dim V such that we have stability, i.e., Fk+1 = Fk ,
whence F∞ = Fk .

From the inclusion lemma we see that if F∞ = ∅, then CS(L) = ∅,
so L 6∈ C . In view of the stability lemma, we seek to show that if
Fk 6= ∅, then CS(L) = Fk and, in particular, L is an element of C .
We first recall the notion of strict positivity.
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Strict positivity
Let W denote a finite dimensional real vector space with norm
|| · ||, and let W ′ denote the dual space of W . For x ∈ W , let
x̂ ∈ W ′′ be defined by x̂(Q) = Q(x) (Q ∈ W ′); the map x 7→ x̂ is
an isometric linear isomorphism. For a subset S in W , S∗ denotes
the dual cone, i.e., S∗; = {Q ∈ W ′ : Q(x) ≥ 0 ∀x ∈ S}. We say
that Q ∈ S∗ is strictly S-positive (or strictly positive with respect
to S) if Q(x) > 0 for each nonzero x ∈ S .

Proposition (strict positivity)

If S is a closed set in W , then Q ∈ W ′ is strictly S-positive if and
only if Q ∈ int(S∗).
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Returing to the proof of the theorem, we now assume that there
exists a functional ρ ∈ V ′ such that ρ|F > 0 and ρ(L) > 0. This
assumption is natural, becasue in the classical TMMP for
multisequence β, we have 1 ∈ W ≡ Pm, so we can let
ρ = 1̂ ∈ V ′(= W′′); then for each F ≡ δx in F , ρ(δx) = δx(1) = 1,
and also ρ(Lβ) = Lβ(1) = β0 > 0. Using ρ, we establish a property
for L consistent with membership of L in Ck .

Lemma (consistency)

If Fk = Fk+1 6= ∅, then L is Fk -consistent, i.e., if Q ∈ V ′ satisfies
Q|Fk ≡ 0, then Q(L) = 0.

Grigoriy Blekherman and Lawrence Fialkow
The core variety of a multisequence in the truncated moment p



Restriction
Now let Wk := {Q|Vk : Q ∈ V ′}. Define a linear functional
L̃ : Wk −→ R by L̃(Q|Vk) := L̂(Q) (= Q(L)). Consistency implies
that L̃ is well-defined. Using ρ together with stability, we have the
following:

Lemma (strict positivity of L̃)

If Fk = Fk+1 6= ∅, then L̃ is strictly positive with respect to Ck :=
{Q|Vk ∈ Wk : Q|Fk ≥ 0}.

Since Ck is a closed cone in Wk , the previous result and the
strict-positivity Proposition (above) imply that L̃ belongs to the
interior of the dual cone C∗

k . We next present a concrete
description of this dual cone.
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For G ∈ Vk , we define Ğ ∈ W ′
k by

Ğ (Q|Vk) := (Q|Vk)(G ) = Q(G ).

Proposition (dual space of Wk).

If Fk = Fk+1 6= ∅, then W ′
k = {Ğ : G ∈ Vk}.

Corollary

C∗
k = {Ğ ∈ W ′

k : Q ∈ V ′, Q|Ck ≥ 0 =⇒ Q(G ) ≥ 0}.

Let Γ := { Ğ : G ∈ Ck}, a convex cone. The preceding result and
the Separation Theorem for closed convex cones now imply:

Proposition (approximation)

C∗
k ⊆ Γ.
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Conclusion of the proof

Proof.
Suppose CS(L) ≡ Fk 6= ∅. We first show that L ∈ Ck . We have
L̃ ∈ int(C∗

k) ⊆ int(Γ) = int(Γ) (since Γ is convex). Thus, L̃ ∈ Γ, so

there exists G ∈ Ck such that L̃ = Ğ . Now G is of the form
G =

∑
aiFi with each ai > 0 and each Fi ∈ Fk . For each Q ∈ V ′,

L̂(Q) = Q(L) = L̃(Q|Vk) =
∑

ai F̆i (Q|Vk) =
∑

aiQ(Fi)

=
∑

ai F̂i(Q) =
∑̂

aiFi(Q). Thus, L̂ =
∑̂

aiFi in V ′′, so
L =

∑
aiFi in V (with each Fi ∈ Fk). This completes the proof

that L is an element of Ck .

Now let F ∈ Fk . Since L̃ ∈ int(C∗
k), there exists ǫ > 0 such that

L̃− ǫF̆ ∈ int(C∗
k). Then, exactly as above, we see that there are

positive reals b1, . . . , bq and elements H1, . . . ,Hq in Fk such that
L− ǫF =

∑
biHi . Thus L = ǫF +

∑
biHi , whence F is a support

point for L.
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