A factorization problem related to the convolution of positive definite functions.

J.-P. Gabardo

McMaster University Department of Mathematics and Statistics gabardo@mcmaster.ca

International Workshop on Operator Theory and its Application IWOTA 2019 Instituto Superior Técnico, Lisbon, Portugal June 22–26, 2019

(日) (문) (문) (문) (문)

Convolution equations

- Let G be a locally compact abelian (l.c.a.) group.
- A set $S \subset G$ is called symmetric if

$$0 \in S$$
 and $x \in S \iff -x \in S$.

• A function $f: G \mapsto \mathbb{C}$ is positive definite (p.d.) if for any $x_1, \ldots, x_m \in G$ and any $\xi_1, \ldots, \xi_m \in \mathbb{C}$, we have

$$\sum_{i,j=1}^{m} f(x_i - x_j) \,\xi_i \,\overline{\xi_j} \ge 0.$$

• Note that if $f \neq 0$, then f(0) > 0 and f(-x) = f(x), so the support of f is symmetric.

• By Bochner's theorem, any continuous p.d. function on G has an integral representation in the form

$$f(x) = \int_{\hat{G}} \xi(x) \, d\mu(\xi), \quad x \in G,$$

where μ is a bounded, positive Borel measure on the dual group $\hat{G}.$

• Let us consider first the case of a finite group G. Then, up to a group isomorphism,

$$G = \mathbb{Z}/m_1\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/m_r\mathbb{Z},$$

for certain integers $m_1, \ldots m_r \geq 2$.

• The characters of G are given by functions $\chi:G\to \mathbb{T}$ of the form

$$\chi(x) = e^{2\pi i x_1 a_1/m_1} \dots e^{2\pi i x_r a_r/m_r}, \quad x = (x_1, \dots, x_r) \in G,$$

where $a = (a_1, \dots, a_r) \in G.$

• If $f: G \to \mathbb{C}$ is a function, its Fourier transform is the function $\hat{f}: \hat{G} \to \mathbb{C}$ defined by

$$\hat{f}(\chi) = \mathcal{F}f(\chi) = \sum_{x \in G} f(x) \,\overline{\chi(x)}.$$

• The convolution of two functions f and g on G is the function f * g on G defined by

$$(f*g)(x) = \sum_{y \in G} f(x-y) g(y), \quad x \in G.$$

• We have the usual "exchange" formula

$$\mathcal{F}(f * g)(\chi) = \mathcal{F}f(\chi) \mathcal{F}g(\chi), \quad \chi \in \hat{G}.$$

• Note that a function $f: g \to \mathbb{C}$ is p.d. if and only if $\hat{f} \ge 0$.

- For S ⊂ G symmetric, we will denote by PD(S), the set of positive definite functions which vanish outside of S.
- If S ⊂ G is a symmetric set, we associate with it the symmetric set S* consisting of the points in G which are not in S together with 0, i.e. S* = (G \ S) ∪ {0}.

Suppose that G is a finite abelian group. Let $f : G \to \mathbb{C}$ be positive definite and let $S \subset G$ be a symmetric set. Then, there exist $g \in \mathcal{PD}(S)$ and $h \in \mathcal{PD}(S^*)$ such that f = g * h.

• Note that the method of the proof is based on the Lagrange multipliers method and is non-constructive.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

• Also, the functions g and h need not be unique.

- The previous result to extended to other l.c.a groups using standard "approximation" arguments such as periodization, weak-* compactness,etc...
- The exact statement of the result will depend on the group G.
- For example, the statement for the group \mathbb{Z}^d reads as follows.

Let $S \subset \mathbb{Z}^d$ be a finite symmetric set and let $S^* = (\mathbb{Z}^d \setminus S) \cup \{0\}$. Then, given any $f \in \mathcal{PD}(\mathbb{Z}^d)$, there exists $g \in \mathcal{PD}(S)$ and $h \in \mathcal{PD}(S^*)$ such that f = g * h on \mathbb{Z}^d .

• Note that the convolution product makes sense as g has finite support. Alternatively, \hat{g} is a trigonometric polynomial so the product $\hat{g} \hat{h}$ is well defined.

- We consider next the case of \mathbb{R}^d .
- In this setting, we will actually consider two different set-ups, the first one dealing with a symmetric open set $U \subset \mathbb{R}^d$ with $|U| < \infty$, where |.| denotes the Lebesgue measure and the other involving a symmetric open set $U \subset \mathbb{R}^d$ whose complement is compact.
- Note that now it makes no sense to consider continuous p.d. functions supported on $(\mathbb{R}^d \setminus U) \cup \{0\}$ since this set does not contain a neighborhood of 0.
- Instead one has to consider positive definite distributions on \mathbb{R}^d equal to a multiple of the Dirac mass δ_0 on the open set U.
- It turns out that these are tempered distributions and their Fourier transforms are unbounded tempered measure by the Bochner-Schwartz theorem. In fact such a measure μ is translation-bounded i.e. there exists C > 0 such that

$$\mu(x+[0,1]^d) \le C, \quad x \in \mathbb{R}^d.$$
(1)

Let $U \subset \mathbb{R}^d$ be a symmetric open set with $|U| < \infty$ and let $K \subset \mathbb{R}^d$ be the closed set defined by $K = (\mathbb{R}^d \setminus U) \cup \{0\}$. Then, given any continuous positive definite function f on \mathbb{R}^d , there exists a continuous positive definite function g on \mathbb{R}^d such that g = 0 on $\mathbb{R}^d \setminus \overline{U}$ and a positive definite distribution h supported on K with $h = \delta_0$ on U and with a Fourier transform $\mu = \mathcal{F}(T)$ which is a translation-bounded measure such that

$$f = g * h$$
 on \mathbb{R}^d .

Furthermore, g = 0 a.e. on ∂U and if $U = int(\overline{U})$, the function g actually vanishes on $\mathbb{R}^d \setminus U$.

• Note that the convolution product can be defined as $\mathcal{F}^{-1}(\hat{g}\,\hat{h})$. Since $g \in L^1(\mathbb{R}^d)$, \hat{g} is continuous and so $\hat{g}\,\hat{h}$ is well-defined.

• The second version is as follows.

Theorem

Let $U \subset \mathbb{R}^d$ be a symmetric open set such that the set $K \subset \mathbb{R}^d$ defined by $K = (\mathbb{R}^d \setminus U) \cup \{0\}$ is compact. Then, given any continuous positive definite function f on \mathbb{R}^d , there exists a continuous positive definite function g on \mathbb{R}^d such that g = 0 on $\mathbb{R}^d \setminus \overline{U}$ and a positive definite distribution h supported on K with $h = \delta_0$ on U and with a Fourier transform \hat{h} which is a continuous bounded function such that

$$f = g * h$$
 on \mathbb{R}^d .

Furthermore, the function g constructed above is zero a.e. on ∂U and if $U = int(\overline{U})$, the function g actually vanishes on $\mathbb{R}^d \setminus U$.

Connection with the truncated trigonometric moment problem

- We consider the case $G = \mathbb{Z}^d$ for simplicity.
- Suppose that V is a finite subset of \mathbb{Z}^d . Then the set $U := V V = \{v v' : v, v' \in V\}$ is symmetric.
- If f is p.d. on \mathbb{Z}^d and we write f = g * h with $g \in \mathcal{PD}(U)$ and $h \in \mathcal{PD}(U^*)$ with $h = \delta_0$ on U.
- Thus h is a solution of the truncated trigonometric moment problem which consists in extending the data corresponding to the identity operator on $\ell^2(V)$, i.e. we have

$$\sum_{k,l \in V} h(k-l) \, x(k) \, \overline{x(l)} = \sum_{k \in V} |x(k)|^2 = \int_{\mathbb{T}^d} |\hat{x}|^2 \, d\mu, \quad x \in \ell^2(V)$$

and $\mu = \mathcal{F}(h)$ is a positive Borel measure on $\mathbb{T}^d = \hat{G}$, called a representing measure.

The Turán problem

Definition

Let U be a symmetric open set in the l.c.a. group G. Then, we will denote by $\mathcal{T}_G(U)$ the supremum of the quantity $\int_U g(x) dx$, where g ranges over all positive definite functions with $\operatorname{supp}(g) \Subset U$ and satisfying g(0) = 1 ($dx = \operatorname{Haar}$ measure).

- The Turán problem, which asks to compute the value of $\mathcal{T}_G(U)$ was first proposed by Turán and Stechkin
- Many authors studied the problem for particular sets U mainly in \mathbb{R}^d and \mathbb{T}^d .
- On ℝ^d, special attention has been given to convex symmetric sets (Siegel, Arestov and Berdysheva, Gorbachov,...) and products of symmetric intervals in T^d (Gorbachev and Manoshina,...).

- The problem has been studied recently in the general setting of l.c.a. groups by Kolountzakis and Révész.
- It turns out that the Turán problem is related in an essential way to the previous convolution identity where the p.d. function is the constant function f(x) = 1.
- We will discuss here the problem when G is a finite group and $G = \mathbb{R}^d$.

• If G is finite, any subset of G is open and if $S \subset G$ is symmetric, $\mathcal{T}_G(S)$ is the largest possible value of a sum $\sum_{k \in S} g(k)$ where g is p.d., supported on S and satisfies g(0) = 1.

Let G be a finite abelian group and let $S \subset G$ be a symmetric set. If $g_0 \in \mathcal{PD}(S)$ and $h_0 \in \mathcal{PD}(S^*)$ satisfy $g_0(0) = 1 = h_0(0)$ as well as $g_0 * h_0 = 1$ on G (g_0 and h_0 exist by our previous result), then we have

$$\mathcal{T}_G(S) = \sum_{k \in S} g_0(k)$$
 and $\mathcal{T}_G(S^*) = \sum_{k \in S^*} h_0(k).$

In particular, we have the identity

$$\mathcal{T}_G(S) \, \mathcal{T}_G(S^*) = |G|.$$

• We call the Turán problem for S^* the dual Turán problem.

- The analogue of this result holds for $G = \mathbb{R}^d$, but we first have to find what to should replace $\mathcal{T}_G(S^*)$ in that case.
- If *h* is a positive-definite tempered distribution, we define the density of *h* to be the number

$$\mathcal{D}(h) := \lim_{\epsilon \to 0^+} \left\langle h(x), \epsilon^{d/2} e^{-\epsilon \pi |x|^2} \right\rangle$$

- Note that if $\mu = \mathcal{F}(h)$, we have $\mathcal{D}(h) = \mu(\{0\})$.
- If $U \subset \mathbb{R}^d$ is symmetric and $K = (\mathbb{R}^d \setminus U) \cup \{0\}$, the dual Turán problem consists in maximizing the quantity $\mathcal{D}(h)$ over all p.d. distributions supported on K and equal to δ_0 on U.
- We denote the supremum of these quantities by $ilde{\mathcal{T}}_G(K)$.

Let $U \subset \mathbb{R}^d$ be a symmetric open with $|U| < \infty$. set. Let g_0 be a continuous p.d. function supported on \overline{U} with $g_0(0) = 1$ and let h_0 be a p.d. distribution supported on K with $h_0 = \delta_0$ on U such that $g_0 * h_0 = 1$ on \mathbb{R}^d (as constructed in our previous result). Then,

$$\mathcal{T}_G(U) = \int_U g_0(x) \, dx$$
 and $\tilde{\mathcal{T}}_G(K) = \mathcal{D}(h_0)$

In particular, we have the identity

$$\mathcal{T}_G(U) \, \tilde{\mathcal{T}}_G(K) = 1.$$

THANK YOU!