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Discrete truncated moment problem

This talk focus on
K discrete subset of Rford =1; n € Nord >2,n =2
mainly K = N or K = Z¢.

d—dimensional truncated K—moment problem of degree n

Givenm := (m(o) ..... m(")) with m®) a tuple

(m(k) )
) ) d
Juedd ] eNo; Yoy o=k

W.lo.g. we can assume my = 1 and y is a probability measure on K.
We can use that the set is discrete

44444 =Y (),

xeK
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Motivation for the discrete TMP

Main motivation (for me)
@ Moment problem for point processes

@ Complex systems, Material science, Statistical mechanics

Point processes

Let R be a Riemannian manifold.

K:= {Z‘Sri € D'(R) : Icountable and 7; € R 6} c D'(R)
i€l

A measure y on K is called a point process.

@ Kis infinite dimensional d = oo.
@ all element of K are Radon measures.

@ Interpretation: u is probability to find point configuration 7.
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Relation to IN-TMP

For 7 = Y ;1 6, € K, define

Na(n) := n(A) = number of points in # which are in A
By definition N4 : K — INj.

Finite dimensional distribution of y

@ One-dimensional distributions i4:

1#a(C) == p({n : Na(y) € C})
Push-forward of y w.r.t. Ny4.

@ Two-dimensional distribution 4, 4, given by

Hay,A,(C1 x Co) == p({n : Na,(n) € Ci})

@ and so on

@ Support of p4 is INp.
@ Support of pa, 4, is Ny x No.
@ and soon
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General convex analysis

Generalized Tchakaloff Thm (Richter-Bayer-Teichmann)

A

m has a Ny —representing measure

) criterion to solve {0, 1, ..., N}-TMP
IN € Ns.tmhasa
{0,1,..., N} —representing measure /

criterion to solve INyp-TMP depending on (unbeknown) N
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Solving {0,1,..., N}-TMP

Fixn,N € Ns.t. N > n.

Characterize the set Sy of all n—tuple admitting m = (my,...,m,) € R" a
{0,1, ..., N}-representing probability measures.

@ Every {0,1,..., N}-representing probability for m is a convex
combination of probabilities concentrated atk = 0,1, ..., N.

@ Hence Sy is the convex hull of Ay := {(k, k2, ..., k")|k=0,1,...,N}

@ Classical convex analysis yields, that Sy is the intersection of finitely
many closed half-spaces H containing Ay whose

0H contains at least 1 points )

bounding hyperplanes 0H ( from An

polynomials of degree n
with leading coefficient £1
n distinct roots in {0, 1, ..., N}
nonnegative on {0,1,...,N}

bounding hyperplanes 0H <>
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Solving {0,1,..., N}-TMP

polynomials of degree n
with leading coefficient +1
n distinct roots in {0, 1, ..., N}
nonnegative on {0, 1, ..., N}

P)Z,N' =

@ Ifn = 2jeven, any P € P, y is of the form:

withzerosk1<k1—|—1<k2<k2+1<...<k]'in{0,l ..... N}.
@ Ifn=2j+1o0dd, any P € P, y is of the form:

withzeros 0 <kj <kj +1<hky <ky+1<...<kin{0,1,...,N}.

polynomials of degree n
0, nim with leading coefficient —1 _g
N1y distinct roots in {0, 1, ..., N} |

nonnegative on {0, 1, ..., N}
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From {0, 1, ..., N}-TMP to No-TMP

Generalized Tchakaloff Thm (Richter-Bayer-Teichmann)

v

criterion to solve {0,1,..., N}-TMP

m has a INg—representing probability
mhasa {0,1,..., N}-repr. prob.

dN € Nstmhasa T
{0,1,..., N} —representing probability Lu(p) >0, ¥p € Pyn U Qun

N g

first criterion to solve INo-TMP

m has a INg—representing probability

IN € N s.t.
Lu(p) > 0forallp € P,nUQu N

Problem: How to identify or get rid of N?
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N independent condition

@ Note that P,y C Py N+1
@ Define Py, := Unen PuN-

<m has a Ng-representing measure ) = (Lm (p) >0 Vpe Pn.)

@ Recall
(m has a No-repr. prob. ) & ( mhasa {0,1,..., N}-repr. prob. )

for some N large enough

@ The condition
1
(Lnp) 20 Vp € Quu) & (Lu((M=x)p) = OMLu(p) > Lu(xp)Lu(p) > 1~
which implies that

Lu(p) >0,Vp € P,—q| and |ifL,(p) = Ofor somep € P,_1, thenL,,(xp) =0

Necessary conditions

Liu(p) >0, ¥p € Py UPy_1

mhas a No—repr. prob. = if Ly, (p) = 0 for some p € P, then Ly, (xp) =0
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Theorem (Infusino, K., Lebowitz, Speer, 2017)

Lyu(p) >0, Vp € PuUP,_q
if Ly (p) = 0 for some p € P,_q then Ly (xp) =0
Moreover, non of the conditions can be dropped.

m has a No—repr. prob.

Proof of <: One need to derive an a priori bound on N using only the above
conditions not realizability.
Previous results:

@ Karlin and Studden 1966 on K = Ny U {oo}.
Solvability condition depending on an unknown parameter

@ The best one could hope to obtain using Semi-algebraic techniques is
conditions

Lu((x—k)(x— (k+1))p*) >0  Vp polynomial and Vk € Ny

Challenge:
Can one reduce the conditions further by making them m dependent?
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m dependent conditions: what was known

Casen = 1:

(m = (mq) is realizable) & (m1 > 0)

4

Case n = 2: (Yamada 1961)

(m = (mq,my) is realizable) = ((my— (m)* > [m][m] )

| A

Case n = 2: (K., Lebowitz, Speer 2009)

o 2
(m = (my,my) is realizable) & ( ?rlm>1 O: gfmd(:;l): g L | [ )

A\

Kwerel 1975, Prekopa et al. 1986: K = {0, 1, ..., N}

some explicit (necessary) conditions for n = 2,3
but no explicit conditions for n > 4.
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m dependent conditions

We partition the set of all m := (my, ..., my) € R" realizable on INj into:
(i) m:= (mq,..., my) is B-realisable if

n
Jp € |J Prwith Lu(p) =0
k=1

(ii) otherwise m is I -realisable, i.e.

n
Vp € | J Pronehas Ly (p) > 0
k=1

Main Theorem (Infusino, K., Lebowitz, Speer, 2017)

If (mq,..., my,_1) is I-realisable, then 3 p,(; ) e Py s.t. PS;') does not

depend on m
Ln(9) > Lu(pl), ¥qe Py P "

(n)

We call such a p;,” a minimizing polynomial for m.

4

Challenge: How to find p,(,’,l)
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- . 2
Finding p,,’: case n = 2
Let m = (my,my) € R? be such that m; is I-realisable, i.e. m; > 0.

Py = {tk(x) =x—-k(x—-k-1lke N()}

Casen=2,m; >0

((ml, my) realisable on ]N0> & my — (m1)2 > |my|[my]

<

PP (x) = (x—K) (x— (k+1)) fork = [my]

corresponds to condition

my — (m)* = |my | [mi].

Connection to Stieltjes TMP

Casen=2,m; >0

((ml, my) realisable on [0, +oo)> & ‘ Loom

>0&m—m? >0

mp My
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Connection between INg—TMP & [0, +00) —TMP

Letm = (mq,..., My_1,My) € R s.t. (mq, ..., my,_1) is I-realizable on Ny
\
(mq,..., my,_1) is I-realizable on [0, +o0)
Take the smallest 7i1,, € R s.t. i1 := (my, ..., my,_1, fity) is realizable on [0, +co)
Curto-Fialkow 1991
U

@ 11 is B-realizable on [0, +o0)
@ 71 has a unique [0, +o0) —representing probability v

@ the support of v is given by the zeros of a polynomial determined only
by (ml, ooy mn,l).

n=2:  sup(v) = {m}
n=23: supp(v) ={0,my/my}
n=2: supp(v) = {m1}, Zeros ofp,(n2> ={|mq], [m|+1}

n=23: supp(v) ={0,my/mi}, zerosofpS?:{O, |my/myq], [ma/mq] + 1}.

Conjecture

(n)

The zeros of p,,’ are the nearest integers to the points in supp(v)
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Finding p,,’: case n > 4

Letm = (my,..., My—_1,my) € R"s.t. (mq, ..., my_1) is I-realizable on Nj.

At least one pair of zeros of pyf Consists of the nearest integers to a point y; € supp(v),

ie. 3y; € supp(v) s.t. pi (i) = 0 = p ([i])-

Notation Take the smallest /71, € R s.t. i1 := (my, ..., my_1, 17y, is realizable on INj.
S := supp(unique INy—representing probability for 71) C zero set of p,(,',")

Sketch of algorithm to find p,(,',') forn >4

(yl,-..,yw) if n even
(Ovyu...,yL%J) if n odd

@ use Curto-Fialkow 91 to compute supp(v) = {

© For each y; in supp(v) construct M; () in a particular way such that
8 = Sy Uil Lyl +13-

0 Construct inductively S(n( z;

@ Construct for each of the choices a polynomial Q
@ pis the Q such that L, (Q) is minimal.

I we do not know a priori the right y;, so in the worst case we need | 5 |! stages.
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Explicit formulas for n = 4

mp >0
Suppose (mq, my, m3) is I-realizable, i.e. ¢ M2~ mi > |my][m]

— 2 my | | my 2
msmy mzz Lm ml-‘ my

Curto-Fialkow 1991 = supp(v) = {y1, y>} with y1, y» solutions of:

1 mq
mp My

1 m
22— 1
mp mg

m m
X 1 2
my M3

Define Y1 := [y1], Y2 := |y2] and

- ms — (2Y2+1)m2+Y2(Y2+1)m1 T, = I_i’lj'

my — (2Y2+1)m1 +Y2(Y2+1)m0 ' '
; _ om3— (2Y1 + 1)m2 + Y1(Y1 + 1)1’711 T, — I_f J
? my— (Y1 + Dy + Y (Y1 +Dmg ' 727 2

4
Take pli) (x) = (x = T1)(x = T1 = 1) (x — To) (x — T» — 1),
and compute the associated condition

Lu(pi’) 2 0
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Final remarks and open problems

Further remarks

@ our results can be easily adapted to solve the M—TMP when M C R is
a general discrete set which is bounded below:

ly] A\ the largest element of M not greater than y
ly| +1 "\ the smallest element of M larger than y

@ generalization to any unbounded discrete subset of R, e.g. Z

@ K = Z can be treated in the same way

@ and generalization as above
v
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TMP for K = Z4 and n = 2

Three fundamental points:

Classify polynomials non-negative on Zg.

@ All non-negative polynomials on Z? of degree 2 are squares.
@ We have a complete classification of these polynomials
@ Done ford = 2. True ford < 5.

@ Unclassified for d > 5: key words L-polytopes, empty spheres [Voronoi],
[Delone], [Ryshkov], [Erdahl "92].

Identify minimal set of polynomials

@ Additional spurious conditions appear.

@ Done for d = 2. Seems doable for all n.

Identify p,

@ Ind = 2 there exists an algorithm which will give py,.

@ Spurious solutions are the root of complications.

@ Something radical new needed like distance to spurious solutions.
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Thank you for you
attention




