On truncated discrete moment problems

Tobias Kuna

University of Reading, UK

(Joint work with Maria Infusino, Joel Lebowitz, Eugene Speer)

IWOTA 2019
Lisbon - 26th July

Discrete truncated moment problem

This talk focus on
K discrete subset of \mathbb{R}^{d} for $d=1 ; n \in \mathbb{N}$ or $d \geq 2, n=2$
mainly $K=\mathbb{N}_{0}$ or $K=\mathbb{Z}^{d}$.
d-dimensional truncated K-moment problem of degree n
Given $m:=\left(m^{(0)}, \ldots, m^{(n)}\right)$ with $m^{(k)}$ a tuple

$$
\left(m_{j_{1}, \ldots, j_{d}}^{(k)}\right)_{j_{r} \in \mathbb{N}_{0} ; \sum_{r=1}^{d} j_{r}=k}
$$

with $m_{j_{1}, \ldots, j_{d}}^{(k)} \in \mathbb{R}$.
Find a nonnegative Radon measure μ supported in K s.t.

$$
m_{j_{1}, \ldots, j_{d}}^{(k)}=\int_{K} x_{1}^{j_{1}} \ldots x_{d}^{j_{d}} \mu(d x), \quad \forall k ; j_{r} \in \mathbb{N}_{0} \text { with } \sum_{r} j_{r}=n
$$

W.l.o.g. we can assume $m_{0}=1$ and μ is a probability measure on K. We can use that the set is discrete

$$
m_{j_{1}, \ldots, j_{d}}^{(k)}=\sum_{x \in K} x_{1}^{j_{1}} \ldots x_{d}^{j_{d}} \mu(\{x\})
$$

Motivation for the discrete TMP

Main motivation (for me)

- Moment problem for point processes
- Complex systems, Material science, Statistical mechanics

Point processes

Let R be a Riemannian manifold.

$$
K:=\left\{\sum_{i \in I} \delta_{r_{i}} \in \mathcal{D}^{\prime}(R): I \text { countable and } r_{i} \in R \in\right\} \subset \mathcal{D}^{\prime}(R)
$$

A measure μ on K is called a point process.

- K is infinite dimensional $d=\infty$.
- all element of K are Radon measures.
- Interpretation: μ is probability to find point configuration η.

Relation to \mathbb{N}_{0}^{d}-TMP

For $\eta=\sum_{i \in I} \delta_{r_{i}} \in K$, define

$$
N_{A}(\eta):=\eta(A)=\text { number of points in } \eta \text { which are in } A
$$

By definition $N_{A}: K \rightarrow \mathbb{N}_{0}$.

Finite dimensional distribution of μ

- One-dimensional distributions μ_{A} :

$$
\mu_{A}(C):=\mu\left(\left\{\eta: N_{A}(\eta) \in C\right\}\right)
$$

Push-forward of μ w.r.t. N_{A}.

- Two-dimensional distribution $\mu_{A_{1}, A_{2}}$ given by

$$
\mu_{A_{1}, A_{2}}\left(C_{1} \times C_{2}\right):=\mu\left(\left\{\eta: N_{A_{i}}(\eta) \in C_{i}\right\}\right)
$$

- and so on
- Support of μ_{A} is \mathbb{N}_{0}.
- Support of $\mu_{A_{1}, A_{2}}$ is $\mathbb{N}_{0} \times \mathbb{N}_{0}$.
- and so on

General convex analysis

Generalized Tchakaloff Thm (Richter-Bayer-Teichmann)

Solving $\{0,1, \ldots, N\}$-TMP

Fix $n, N \in \mathbb{N}$ s.t. $N \geq n$.

Aim:

Characterize the set S_{N} of all n-tuple admitting $m=\left(m_{1}, \ldots, m_{n}\right) \in \mathbb{R}^{n}$ a $\{0,1, \ldots, N\}$-representing probability measures.

- Every $\{0,1, \ldots, N\}$-representing probability for m is a convex combination of probabilities concentrated at $k=0,1, \ldots, N$.
- Hence S_{N} is the convex hull of $A_{N}:=\left\{\left(k, k^{2}, \ldots, k^{n}\right) \mid k=0,1, \ldots, N\right\}$
- Classical convex analysis yields, that S_{N} is the intersection of finitely many closed half-spaces H containing A_{N} whose
bounding hyperplanes $\partial H \leftrightarrow\binom{\partial H$ contains at least n points }{ from $A_{N}}$
bounding hyperplanes $\partial H \leftrightarrow\left(\begin{array}{c}\text { polynomials of degree } n \\ \text { with leading coefficient } \pm 1 \\ n \text { distinct roots in }\{0,1, \ldots, N\} \\ \text { nonnegative on }\{0,1, \ldots, N\}\end{array}\right)$

Solving $\{0,1, \ldots, N\}$-TMP

$$
\mathcal{P}_{n, N}:=\left(\begin{array}{c}
\text { polynomials of degree } n \\
\text { with leading coefficient }+1 \\
n \text { distinct roots in }\{0,1, \ldots, N\} \\
\text { nonnegative on }\{0,1, \ldots, N\}
\end{array}\right)
$$

- If $n=2 j$ even, any $P \in \mathcal{P}_{n, N}$ is of the form:

$$
P(x)=\left(x-k_{1}\right)\left(x-\left(k_{1}+1\right)\right) \ldots\left(x-k_{j}\right)\left(x-\left(k_{j}+1\right)\right)
$$

with zeros $k_{1}<k_{1}+1<k_{2}<k_{2}+1<\ldots<k_{j}$ in $\{0,1, \ldots, N\}$.

- If $n=2 j+1$ odd, any $P \in \mathcal{P}_{n, N}$ is of the form:

$$
P(x)=x\left(x-k_{1}\right)\left(x-\left(k_{1}+1\right)\right) \ldots\left(x-k_{j}\right)\left(x-\left(k_{j}+1\right)\right)
$$

with zeros $0<k_{1}<k_{1}+1<k_{2}<k_{2}+1<\ldots<k_{j}$ in $\{0,1, \ldots, N\}$.
$\mathcal{Q}_{n, N}:=\left(\begin{array}{c}\text { polynomials of degree } n \\ \text { with leading coefficient }-1 \\ n \text { distinct roots in }\{0,1, \ldots, N\} \\ \text { nonnegative on }\{0,1, \ldots, N\}\end{array}\right)=\left\{P(x)(N-x) \mid P \in \mathcal{P}_{n-1, N-1}\right\}$

From $\{0,1, \ldots, N\}$-TMP to \mathbb{N}_{0}-TMP

Generalized Tchakaloff Thm (Richter-Bayer-Teichmann)

Problem: How to identify or get rid of N ?

N independent condition

- Note that $\mathcal{P}_{n, N} \subset \mathcal{P}_{n, N+1}$
- Define $\mathcal{P}_{n}:=\bigcup_{N \in \mathbb{N}} \mathcal{P}_{n, N}$.

$$
\left(m \text { has a } \mathbb{N}_{0} \text {-representing measure }\right) \Rightarrow\left(L_{m}(p) \geq 0 \quad \forall p \in \mathcal{P}_{n} .\right)
$$

- Recall

$$
\left(m \text { has a } \mathbb{N}_{0} \text {-repr. prob. }\right) \Leftrightarrow\binom{m \text { has a }\{0,1, \ldots, N\} \text {-repr. prob. }}{\text { for some } N \text { large enough }}
$$

- The condition

$$
\left(L_{m}(p) \geq 0 \quad \forall p \in \mathcal{Q}_{n, M}\right) \Leftrightarrow\left(L_{m}((M-x) p) \geq 0 M L_{m}(p) \geq L_{m}(x p) L_{m}(p) \geq \frac{1}{M}\right.
$$

which implies that

$$
L_{m}(p) \geq 0, \forall p \in \mathcal{P}_{n-1} \quad \text { and } \quad \text { if } L_{m}(p)=0 \text { for some } p \in \mathcal{P}_{n-1}, \text { then } L_{m}(x p)=0
$$

Necessary conditions

m has a \mathbb{N}_{0}-repr. prob. $\Rightarrow \begin{aligned} & L_{m}(p) \geq 0, \forall p \in \mathcal{P}_{n} \cup \mathcal{P}_{n-1} \\ & \text { if } L_{m}(p)=0 \text { for some } p \in \mathcal{P}_{n-1} \text { then } L_{m}(x p)=0\end{aligned}$

Theorem (Infusino, K., Lebowitz, Speer, 2017)

m has a \mathbb{N}_{0}-repr.prob. $\Leftrightarrow \quad L_{m}(p) \geq 0, \forall p \in \mathcal{P}_{n} \cup \mathcal{P}_{n-1}$
if $L_{m}(p)=0$ for some $p \in \mathcal{P}_{n-1}$ then $L_{m}(x p)=0$
Moreover, non of the conditions can be dropped.
Proof of \Leftarrow : One need to derive an a priori bound on N using only the above conditions not realizability.
Previous results:

- Karlin and Studden 1966 on $K=\mathbb{N}_{0} \cup\{\infty\}$. Solvability condition depending on an unknown parameter
- The best one could hope to obtain using Semi-algebraic techniques is conditions

$$
L_{m}\left((x-k)(x-(k+1)) p^{2}\right) \geq 0 \quad \forall p \text { polynomial and } \forall k \in \mathbb{N}_{0}
$$

Challenge:

Can one reduce the conditions further by making them m dependent?

m dependent conditions: what was known

Case $n=1$:
$\left(m=\left(m_{1}\right)\right.$ is realizable $) \Leftrightarrow\left(m_{1} \geq 0\right)$

Case $n=2$: (Yamada 1961)
$\left(m=\left(m_{1}, m_{2}\right)\right.$ is realizable $) \Rightarrow\left(m_{2}-\left(m_{1}\right)^{2} \geq\left\lfloor m_{1}\right\rfloor\left\lceil m_{1}\right\rceil\right)$

Case $n=2$: (K., Lebowitz, Speer 2009)
$\left(m=\left(m_{1}, m_{2}\right)\right.$ is realizable $) \Leftrightarrow\binom{m_{1}>0 ; m_{2}-\left(m_{1}\right)^{2} \geq\left\lfloor m_{1}\right\rfloor\left\lceil m_{1}\right\rceil}{$ or $m_{1}=0$ and $m_{2}=0}$

Kwerel 1975, Prekopa et al. 1986: $K=\{0,1, \ldots, N\}$
some explicit (necessary) conditions for $n=2,3$
but no explicit conditions for $n \geq 4$.

m dependent conditions

We partition the set of all $m:=\left(m_{1}, \ldots, m_{n}\right) \in \mathbb{R}^{n}$ realizable on \mathbb{N}_{0} into:
(i) $m:=\left(m_{1}, \ldots, m_{n}\right)$ is B-realisable if

$$
\exists p \in \bigcup_{k=1}^{n} \mathcal{P}_{k} \text { with } L_{m}(p)=0
$$

(ii) otherwise m is I -realisable, i.e.

$$
\forall p \in \bigcup_{k=1}^{n} \mathcal{P}_{k} \text { one has } L_{m}(p)>0
$$

Main Theorem (Infusino, K., Lebowitz, Speer, 2017)

Let $m:=\left(m_{1}, \ldots, m_{n}\right) \in \mathbb{R}^{n}$.
If (m_{1}, \ldots, m_{n-1}) is I-realisable, then $\exists p_{m}^{(n)} \in \mathcal{P}_{n}$ s.t.

$$
L_{m}(q) \geq L_{m}\left(p_{m}^{(n)}\right), \quad \forall q \in \mathcal{P}_{n}
$$

$p_{m}^{(n)}$ does not depend on m_{n}

We call such a $p_{m}^{(n)}$ a minimizing polynomial for m.

Challenge: How to find $p_{m}^{(n)}$

Finding $p_{m}^{(2)}$: case $n=2$

Let $m=\left(m_{1}, m_{2}\right) \in \mathbb{R}^{2}$ be such that m_{1} is I-realisable, i.e. $m_{1}>0$.

$$
\mathcal{P}_{2}:=\left\{t_{k}(x):=(x-k)(x-k-1) \mid k \in \mathbb{N}_{0}\right\}
$$

Case $n=2, m_{1}>0$

$\left(\left(m_{1}, m_{2}\right)\right.$ realisable on $\left.\mathbb{N}_{0}\right) \Leftrightarrow m_{2}-\left(m_{1}\right)^{2} \geq\left\lfloor m_{1}\right\rfloor\left\lceil m_{1}\right\rceil$

Case: $\mathrm{n}=2$

$$
P_{m}^{(2)}(x)=(x-k)(x-(k+1)) \text { for } k=\left\lfloor m_{1}\right\rfloor
$$

corresponds to condition

$$
m_{2}-\left(m_{1}\right)^{2} \geq\left\lfloor m_{1}\right\rfloor\left\lceil m_{1}\right\rceil .
$$

Connection to Stieltjes TMP

Case $n=2, m_{1}>0$

$\left(\left(m_{1}, m_{2}\right)\right.$ realisable on $\left.[0,+\infty)\right) \Leftrightarrow\left|\begin{array}{ll}1 & m_{1} \\ m_{1} & m_{2}\end{array}\right| \geq 0 \Leftrightarrow m_{2}-m_{1}^{2} \geq 0$

Connection between $\mathbb{N}_{0}-$ TMP \& $[0,+\infty)$-TMP

Let $m=\left(m_{1}, \ldots, m_{n-1}, m_{n}\right) \in \mathbb{R}^{n}$ s.t. $\left(m_{1}, \ldots, m_{n-1}\right)$ is I-realizable on \mathbb{N}_{0}

$$
\left(m_{1}, \ldots, m_{n-1}\right) \text { is I-realizable on }[0,+\infty)
$$

Take the smallest $\hat{m}_{n} \in \mathbb{R}$ s.t. $\hat{m}:=\left(m_{1}, \ldots, m_{n-1}, \hat{m}_{n}\right)$ is realizable on $[0,+\infty)$

Curto-Fialkow 1991

\Downarrow

- \hat{m} is B-realizable on $[0,+\infty)$
- \hat{m} has a unique $[0,+\infty)$-representing probability v
- the support of v is given by the zeros of a polynomial determined only by $\left(m_{1}, \ldots, m_{n-1}\right)$.

$$
\begin{array}{ccc}
n=2: & \operatorname{supp}(v)=\left\{m_{1}\right\} \\
n=3: & \operatorname{supp}(v)=\left\{0, m_{2} / m_{1}\right\} & \\
n=2: & \operatorname{supp}(v)=\left\{m_{1}\right\}, & \text { zeros of } p_{m}^{(2)}=\left\{\left\lfloor m_{1}\right\rfloor,\left\lfloor m_{1}\right\rfloor+1\right\} ; \\
n=3: & \operatorname{supp}(v)=\left\{0, m_{2} / m_{1}\right\}, & \text { zeros of } p_{m}^{(2)}=\left\{0,\left\lfloor m_{2} / m_{1}\right\rfloor,\left\lfloor m_{2} / m_{1}\right\rfloor+1\right\} .
\end{array}
$$

Conjecture

The zeros of $p_{m}^{(n)}$ are the nearest integers to the points in $\operatorname{supp}(v)$

Finding $p_{m}^{(n)}:$ case $n \geq 4$

Let $m=\left(m_{1}, \ldots, m_{n-1}, m_{n}\right) \in \mathbb{R}^{n}$ s.t. $\left(m_{1}, \ldots, m_{n-1}\right)$ is I-realizable on \mathbb{N}_{0}.

Theorem*

At least one pair of zeros of $p_{m}^{(2)}$ consists of the nearest integers to a point $y_{i} \in \operatorname{supp}(v)$, i.e. $\exists y_{i} \in \operatorname{supp}(v)$ s.t. $p_{m}^{(n)}\left(\left\lfloor y_{i}\right\rfloor\right)=0=p_{m}^{(n)}\left(\left\lceil y_{i}\right\rceil\right)$.

Notation Take the smallest $\tilde{m}_{n} \in \mathbb{R}$ s.t. $\tilde{m}:=\left(m_{1}, \ldots, m_{n-1}, \tilde{m}_{n}\right)$ is realizable on \mathbb{N}_{0}. $\mathcal{S}_{m}:=\operatorname{supp}$ (unique $\mathbb{N}_{0}-$ representing probability for $\left.\tilde{m}\right) \subseteq$ zero set of $p_{m}^{(n)}$

Sketch of algorithm to find $p_{m}^{(n)}$ for $n \geq 4$
(1) use Curto-Fialkow '91 to compute $\operatorname{supp}(v)= \begin{cases}\left(y_{1}, \ldots, y_{\left.\left\lfloor\frac{n}{2}\right\rfloor\right)}\right) & \text { if } n \text { even } \\ \left(0, y_{1}, \ldots, y_{\left\lfloor\frac{n}{2}\right\rfloor}\right) & \text { if } n \text { odd }\end{cases}$
(2) For each y_{j} in $\operatorname{supp}(v)$ construct $M_{j}(m)$ in a particular way such that $\mathcal{S}_{m}^{(n)}=\mathcal{S}_{M_{j}(m)}^{(n-2)} \sqcup\left\{\left\lfloor y_{i}\right\rfloor,\left\lfloor y_{i}\right\rfloor+1\right\}$.
(3) Construct inductively $\mathcal{S}_{M_{j}(m)}^{(n-2)}$.
(4) Construct for each of the choices a polynomial Q
(5) p is the Q such that $L_{m}(Q)$ is minimal.
we do not know a priori the right y_{i}, so in the worst case we need $\left\lfloor\frac{n}{2}\right\rfloor!$ stages.

Explicit formulas for $n=4$

Suppose $\left(m_{1}, m_{2}, m_{3}\right)$ is I-realizable, i.e. $\left\{\begin{array}{l}m_{1}>0 \\ m_{2}-m_{1}^{2}>\left\lfloor m_{1}\right\rfloor\left\lceil m_{1}\right\rceil \\ m_{3} m_{1}-m_{2}^{2} \geq\left\lfloor\frac{m_{2}}{m_{1}}\right\rfloor\left\lceil\frac{m_{2}}{m_{1}}\right\rceil m_{1}^{2}\end{array}\right.$
Curto-Fialkow $1991 \Rightarrow \operatorname{supp}(v)=\left\{y_{1}, y_{2}\right\}$ with y_{1}, y_{2} solutions of:

$$
\left|\begin{array}{cc}
1 & m_{1} \\
m_{1} & m_{2}
\end{array}\right| x^{2}-\left|\begin{array}{cc}
1 & m_{1} \\
m_{2} & m_{3}
\end{array}\right| x+\left|\begin{array}{ll}
m_{1} & m_{2} \\
m_{2} & m_{3}
\end{array}\right|=0
$$

Define $Y_{1}:=\left\lfloor y_{1}\right\rfloor, Y_{2}:=\left\lfloor y_{2}\right\rfloor$ and

$$
\begin{array}{lll}
t_{1}=\frac{m_{3}-\left(2 \Upsilon_{2}+1\right) m_{2}+\Upsilon_{2}\left(Y_{2}+1\right) m_{1}}{m_{2}-\left(2 \Upsilon_{2}+1\right) m_{1}+\Upsilon_{2}\left(Y_{2}+1\right) m_{0}}, & T_{1}=\left\lfloor t_{1}\right\rfloor \\
t_{2}=\frac{m_{3}-\left(2 \Upsilon_{1}+1\right) m_{2}+\Upsilon_{1}\left(\Upsilon_{1}+1\right) m_{1}}{m_{2}-\left(2 \Upsilon_{1}+1\right) m_{1}+Y_{1}\left(Y_{1}+1\right) m_{0}}, & T_{2}=\left\lfloor t_{2}\right\rfloor
\end{array}
$$

Take $p_{m}^{(4)}(x)=\left(x-T_{1}\right)\left(x-T_{1}-1\right)\left(x-T_{2}\right)\left(x-T_{2}-1\right)$, and compute the associated condition

$$
L_{m}\left(p_{m}^{(4)}\right) \geq 0
$$

Final remarks and open problems

Further remarks

- our results can be easily adapted to solve the \mathbb{M} - TMP when $\mathbb{M} \subset \mathbb{R}$ is a general discrete set which is bounded below:

- generalization to any unbounded discrete subset of \mathbb{R}, e.g. \mathbb{Z}
- $K=\mathbb{Z}$ can be treated in the same way
- and generalization as above

TMP for $K=\mathbb{Z}_{0}^{d}$ and $n=2$

Three fundamental points:

Classify polynomials non-negative on \mathbb{Z}_{0}^{d}.

- All non-negative polynomials on \mathbb{Z}^{2} of degree 2 are squares.
- We have a complete classification of these polynomials
- Done for $d=2$. True for $d \leq 5$.
- Unclassified for $d>5$: key words L-polytopes, empty spheres [Voronoi], [Delone], [Ryshkov], [Erdahl '92].

Identify minimal set of polynomials

- Additional spurious conditions appear.
- Done for $d=2$. Seems doable for all n.

Identify p_{m}

- In $d=2$ there exists an algorithm which will give p_{m}.
- Spurious solutions are the root of complications.
- Something radical new needed like distance to spurious solutions.

Thank you for you attention

