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Discrete truncated moment problem
This talk focus on

K discrete subset of Rdfor d = 1; n ∈N or d ≥ 2,n = 2

mainly K = N0 or K = Zd.

d−dimensional truncated K−moment problem of degree n

Given m :=
(

m(0), . . . ,m(n)
)

with m(k) a tuple(
m(k)

j1,...,jd

)
jr∈N0;∑d

r=1 jr=k

with m(k)
j1,...,jd

∈ R.
Find a nonnegative Radon measure µ supported in K s.t.

m(k)
j1,...,jd

=
∫

K
xj1

1 . . . xjd
d µ(dx), ∀ k; jr ∈N0 with ∑

r
jr = n

W.l.o.g. we can assume m0 = 1 and µ is a probability measure on K.
We can use that the set is discrete

m(k)
j1,...,jd

= ∑
x∈K

xj1
1 . . . xjd

d µ({x}),
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Motivation for the discrete TMP

Main motivation (for me)

Moment problem for point processes

Complex systems, Material science, Statistical mechanics

Point processes

Let R be a Riemannian manifold.

K :=

{
∑
i∈I

δri ∈ D′(R) : I countable and ri ∈ R ∈
}
⊂ D′(R)

A measure µ on K is called a point process.

K is infinite dimensional d = ∞.

all element of K are Radon measures.

Interpretation: µ is probability to find point configuration η.

T. Kuna On truncated discrete moment problems



Relation to Nd
0-TMP

For η = ∑i∈I δri ∈ K, define

NA(η) := η(A) = number of points in η which are in A

By definition NA : K→N0.

Finite dimensional distribution of µ

One-dimensional distributions µA:

µA(C) := µ({η : NA(η) ∈ C})
Push-forward of µ w.r.t. NA.

Two-dimensional distribution µA1,A2 given by

µA1,A2 (C1 × C2) := µ({η : NAi (η) ∈ Ci})

and so on

Support of µA is N0.

Support of µA1,A2 is N0 ×N0.

and so on
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General convex analysis

Generalized Tchakaloff Thm (Richter-Bayer-Teichmann)

m has a N0−representing measure
m

∃N ∈N s.t. m has a
{0, 1, . . . ,N}−representing measure

criterion to solve {0, 1, . . . ,N}-TMP

criterion to solve N0-TMP depending on (unbeknown) N
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Solving {0, 1, . . . ,N}-TMP
Fix n,N ∈N s.t. N ≥ n.

Aim:

Characterize the set SN of all n−tuple admitting m = (m1, . . . ,mn) ∈ Rn a
{0, 1, . . . ,N}-representing probability measures.

Every {0, 1, . . . ,N}-representing probability for m is a convex
combination of probabilities concentrated at k = 0, 1, . . . ,N.

Hence SN is the convex hull of AN := {(k, k2, . . . , kn)|k = 0, 1, . . . ,N}

Classical convex analysis yields, that SN is the intersection of finitely
many closed half-spaces H containing AN whose

bounding hyperplanes ∂H↔
(

∂H contains at least n points
from AN

)

bounding hyperplanes ∂H↔


polynomials of degree n

with leading coefficient ±1
n distinct roots in {0, 1, . . . ,N}
nonnegative on {0, 1, . . . ,N}


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Solving {0, 1, . . . ,N}-TMP

Pn,N :=


polynomials of degree n

with leading coefficient +1
n distinct roots in {0, 1, . . . ,N}
nonnegative on {0, 1, . . . ,N}


If n = 2j even, any P ∈ Pn,N is of the form:

P(x) =
(
x− k1

)(
x− (k1 + 1)

)
. . .
(
x− kj

)(
x− (kj + 1)

)
with zeros k1 < k1 + 1 < k2 < k2 + 1 < . . . < kj in {0, 1, . . . ,N}.
If n = 2j + 1 odd, any P ∈ Pn,N is of the form:

P(x) = x
(
x− k1

)(
x− (k1 + 1)

)
. . .
(
x− kj

)(
x− (kj + 1)

)
with zeros 0 < k1 < k1 + 1 < k2 < k2 + 1 < . . . < kj in {0, 1, . . . ,N}.

Qn,N:=


polynomials of degree n

with leading coefficient −1
n distinct roots in {0, 1, . . . ,N}

nonnegative on {0, 1, . . . ,N}

= {P(x)(N− x)|P ∈ Pn−1,N−1}
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From {0, 1, . . . ,N}-TMP to N0-TMP

Generalized Tchakaloff Thm (Richter-Bayer-Teichmann)

m has a N0−representing probability
m

∃N ∈N s.t. m has a
{0, 1, . . . ,N}−representing probability

criterion to solve {0, 1, . . . ,N}-TMP

m has a {0, 1, . . . ,N}-repr. prob.
m

Lm(p) ≥ 0, ∀p ∈ Pn,N ∪Qn,N

first criterion to solve N0-TMP

m has a N0−representing probability
m

∃N ∈N s.t.
Lm(p) ≥ 0 for all p ∈ Pn,N ∪Qn,N

Problem: How to identify or get rid of N?
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N independent condition

Note that Pn,N ⊂ Pn,N+1

Define Pn :=
⋃

N∈N Pn,N .(
m has a N0-representing measure

)
⇒
(

Lm(p) ≥ 0 ∀p ∈ Pn.
)

Recall(
m has a N0-repr. prob.

)
⇔
(

m has a {0, 1, . . . ,N}-repr. prob.
for some N large enough

)
The condition(

Lm(p) ≥ 0 ∀p ∈ Qn,M

)
⇔
(

Lm((M− x)p) ≥ 0MLm(p) ≥ Lm(xp)Lm(p) ≥
1
M

Lm(xp) ∀p ∈ Pn−1,M

)
which implies that

Lm(p) ≥ 0, ∀p ∈ Pn−1 and if Lm(p) = 0 for some p ∈ Pn−1, then Lm(xp) = 0

Necessary conditions

m has a N0−repr. prob. ⇒ Lm(p) ≥ 0, ∀p ∈ Pn ∪ Pn−1
if Lm(p) = 0 for some p ∈ Pn−1 then Lm(xp) = 0
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Theorem (Infusino, K., Lebowitz, Speer, 2017)

m has a N0−repr. prob. ⇔ Lm(p) ≥ 0, ∀p ∈ Pn ∪ Pn−1
if Lm(p) = 0 for some p ∈ Pn−1 then Lm(xp) = 0

Moreover, non of the conditions can be dropped.

Proof of⇐: One need to derive an a priori bound on N using only the above
conditions not realizability.
Previous results:

Karlin and Studden 1966 on K = N0 ∪ {∞}.
Solvability condition depending on an unknown parameter

The best one could hope to obtain using Semi-algebraic techniques is
conditions

Lm
((

x− k
)(

x− (k + 1)
)
p2) ≥ 0 ∀p polynomial and ∀k ∈N0

Challenge:
Can one reduce the conditions further by making them m dependent?
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m dependent conditions: what was known

Case n = 1:(
m = (m1) is realizable

)
⇔
(

m1 ≥ 0
)

Case n = 2: (Yamada 1961)(
m = (m1,m2) is realizable

)
⇒
(

m2 − (m1)
2 ≥ bm1cdm1e

)
Case n = 2: (K., Lebowitz, Speer 2009)(

m = (m1,m2) is realizable
)
⇔
(

m1 > 0; m2 − (m1)
2 ≥ bm1cdm1e

or m1 = 0 and m2 = 0

)

Kwerel 1975, Prekopa et al. 1986: K = {0, 1, . . . ,N}
some explicit (necessary) conditions for n = 2, 3
but no explicit conditions for n ≥ 4.

T. Kuna On truncated discrete moment problems



m dependent conditions
We partition the set of all m := (m1, . . . ,mn) ∈ Rn realizable on N0 into:

(i) m := (m1, . . . ,mn) is B-realisable if

∃p ∈
n⋃

k=1

Pk with Lm(p) = 0

(ii) otherwise m is I -realisable, i.e.

∀p ∈
n⋃

k=1

Pk one has Lm(p) > 0

Main Theorem (Infusino, K., Lebowitz, Speer, 2017)

Let m := (m1, . . . ,mn) ∈ Rn.
If (m1, . . . ,mn−1) is I-realisable, then ∃ p(n)m ∈ Pn s.t.

Lm(q) ≥ Lm(p
(n)
m ), ∀ q ∈ Pn

We call such a p(n)m a minimizing polynomial for m.

p(n)m does not
depend on mn

Challenge: How to find p(n)m
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Finding p(2)m : case n = 2
Let m = (m1,m2) ∈ R2 be such that m1 is I-realisable, i.e. m1 > 0.

P2 :=
{

tk(x) := (x− k)(x− k− 1)|k ∈N0

}

Case n = 2, m1 > 0(
(m1,m2) realisable on N0

)
⇔ m2 − (m1)

2 ≥ bm1cdm1e

Case: n=2

P(2)
m (x) =

(
x− k

)(
x− (k + 1)

)
for k = bm1c

corresponds to condition

m2 − (m1)
2 ≥ bm1cdm1e.

Connection to Stieltjes TMP

Case n = 2, m1 > 0(
(m1,m2) realisable on [0,+∞)

)
⇔
∣∣∣∣ 1 m1

m1 m2

∣∣∣∣ ≥ 0⇔ m2 −m2
1 ≥ 0
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Connection between N0−TMP & [0,+∞)−TMP
Let m = (m1, . . . ,mn−1,mn) ∈ Rn s.t. (m1, . . . ,mn−1) is I-realizable on N0

⇓
(m1, . . . ,mn−1) is I-realizable on [0,+∞)

Take the smallest m̂n ∈ R s.t. m̂ := (m1, . . . ,mn−1, m̂n) is realizable on [0,+∞)

Curto-Fialkow 1991
⇓

m̂ is B-realizable on [0,+∞)

m̂ has a unique [0,+∞)−representing probability ν

the support of ν is given by the zeros of a polynomial determined only
by (m1, . . . ,mn−1).

n = 2 : supp(ν) = {m1}
n = 3 : supp(ν) = {0,m2/m1}

n = 2 : supp(ν) = {m1}, zeros of p(2)m = {bm1c, bm1c+ 1};
n = 3 : supp(ν) = {0,m2/m1}, zeros of p(2)m = {0, bm2/m1c, bm2/m1c+ 1}.

Conjecture

The zeros of p(n)m are the nearest integers to the points in supp(ν)

True for n = 2, 3 but false for n ≥ 4!
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Finding p(n)m : case n ≥ 4
Let m = (m1, . . . ,mn−1,mn) ∈ Rn s.t. (m1, . . . ,mn−1) is I-realizable on N0.

Theorem*

At least one pair of zeros of p(2)m consists of the nearest integers to a point yi ∈ supp(ν),
i.e. ∃yi ∈ supp(ν) s.t. p(n)m (byic) = 0 = p(n)m (dyie).

Notation Take the smallest m̃n ∈ R s.t. m̃ := (m1, . . . ,mn−1, m̃n) is realizable on N0.
Sm := supp(unique N0−representing probability for m̃)⊆ zero set of p(n)m

Sketch of algorithm to find p(n)m for n ≥ 4

1 use Curto-Fialkow ’91 to compute supp(ν) =

{
(y1, . . . , yb n

2 c)
if n even

(0, y1, . . . , yb n
2 c
) if n odd

2 For each yj in supp(ν) construct Mj(m) in a particular way such that

S (n)m = S (n−2)
Mj(m)

t {byic, byic+ 1}.

3 Construct inductively S (n−2)
Mj(m)

.

4 Construct for each of the choices a polynomial Q

5 p is the Q such that Lm(Q) is minimal.

we do not know a priori the right yi, so in the worst case we need b n
2 c! stages.
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Explicit formulas for n = 4

Suppose (m1,m2,m3) is I-realizable, i.e.


m1 > 0
m2 −m2

1 > bm1cdm1e
m3m1 −m2

2 ≥
⌊

m2
m1

⌋ ⌈
m2
m1

⌉
m2

1

Curto-Fialkow 1991⇒ supp(ν) = {y1, y2} with y1, y2 solutions of:∣∣∣∣ 1 m1
m1 m2

∣∣∣∣ x2 −
∣∣∣∣ 1 m1
m2 m3

∣∣∣∣ x +
∣∣∣∣m1 m2
m2 m3

∣∣∣∣ = 0

Define Y1 := by1c, Y2 := by2c and

t1 =
m3 − (2Y2 + 1)m2 + Y2(Y2 + 1)m1
m2 − (2Y2 + 1)m1 + Y2(Y2 + 1)m0

, T1 = bt1c;

t2 =
m3 − (2Y1 + 1)m2 + Y1(Y1 + 1)m1
m2 − (2Y1 + 1)m1 + Y1(Y1 + 1)m0

, T2 = bt2c.

Take p(4)m (x) = (x− T1)(x− T1 − 1)(x− T2)(x− T2 − 1),
and compute the associated condition

Lm
(
p(4)m

)
≥ 0
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Final remarks and open problems

Further remarks

our results can be easily adapted to solve the M−TMP when M ⊂ R is
a general discrete set which is bounded below:

byc the largest element of M not greater than y
byc+ 1 the smallest element of M larger than y

generalization to any unbounded discrete subset of R, e.g. Z

K = Z can be treated in the same way

and generalization as above
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TMP for K = Zd
0 and n = 2

Three fundamental points:

Classify polynomials non-negative on Zd
0.

All non-negative polynomials on Z2 of degree 2 are squares.

We have a complete classification of these polynomials

Done for d = 2. True for d ≤ 5.

Unclassified for d > 5: key words L-polytopes, empty spheres [Voronoi],
[Delone], [Ryshkov], [Erdahl ’92].

Identify minimal set of polynomials

Additional spurious conditions appear.

Done for d = 2. Seems doable for all n.

Identify pm

In d = 2 there exists an algorithm which will give pm.

Spurious solutions are the root of complications.

Something radical new needed like distance to spurious solutions.
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Thank you for you
attention
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