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What is the “Random Moment Problem”?

@ Classical moment problem (on R): Which sequences are sequences of
moments of probability measures? Aim: Describe all moment
sequences.
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What is the “Random Moment Problem”?

@ Classical moment problem (on R): Which sequences are sequences of
moments of probability measures? Aim: Describe all moment

sequences.
@ Aim of random moment problem: Describe typical moment sequences.

@ Idea: Consider probability distribution on “moment sequences” and
study their (probabilistic) behavior!
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What is the “Random Moment Problem”?

@ Classical moment problem (on R): Which sequences are sequences of
moments of probability measures? Aim: Describe all moment

sequences.
@ Aim of random moment problem: Describe typical moment sequences.

@ Idea: Consider probability distribution on “moment sequences” and
study their (probabilistic) behavior!

@ We consider moments of (probability) measures on E = [0, 1]
(Hausdorff-MP), E = R, (Stielties-MP) and E = R (Hamburger-MP).
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The n-th Moment Space

@ Approach via n-th moment spaces:
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The n-th Moment Space

@ Approach via n-th moment spaces: n-th moment space for
E=[0,1],R:,R

Mu(E) = {(m1,...,m,,) T mp= /Xj,u(dx), 1<j<npe P(E)},

P(E) set of Borel probability measures on E with existing moments.
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The n-th Moment Space

@ Approach via n-th moment spaces: n-th moment space for
E=[0,1],R:,R

Mu(E) = {(m1,...,m,,) T mp= /Xj,u(dx), 1<j<npe 77(E)}7

P(E) set of Borel probability measures on E with existing moments.
1

The moment space Mo([0, 1])
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The n-th Moment Space

@ Approach via n-th moment spaces: n-th moment space for
E=[0,1],R:,R

My(E) = {(m1,...,m,,) Cmp= /Xj,u(dx), 1<j<npe 77(E)}7

P(E) set of Borel probability measures on E with existing moments.
1

The moment space Mo([0, 1])

@ Approach: Equip M ,(E) with probability distribution and study

asymptotic (n — oo) behavior.
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Uniform distribution on M ([0, 1])

@ Chang, Kemperman, Studden '93: If (m{” ..., m{") € Mx([0,1])
uniformly distributed, then as n — oo for any fixed /

(M, om™) = (i (o), - - Milgo.1))s

in probability,
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Uniform distribution on M ([0, 1])

@ Chang, Kemperman, Studden '93: If (m{” ..., m{") € Mx([0,1])
uniformly distributed, then as n — oo for any fixed /

(m{”,....m{"™) — (my (110,17)5 - - - » Mi(2g0,17)),

in probability, where m;(uo,1;) is the j-th moment of the measure

1
T/ X(1 —X)

po,13(dx) = 1p0,11(x)dx.  arcsine distribution
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Uniform distribution on M ([0, 1])

@ Chang, Kemperman, Studden '93: If (m{” ..., m{") € Mx([0,1])
uniformly distributed, then as n — oo for any fixed /

(mﬁ"), ey mf")) — (m1 (N[0,1])7 Ceey m/(p,[o”))7

in probability, where m;(uo,11) is the j-th moment of the measure

1

———————1p0,1j(X)dx. arcsine distribution
T/ x(1—x)

,lL[oJ](dX) =

@ Fluctuations v/n ((mﬁ”’, om™y = (my (1o,1)s-- - m,(u[m]))), are
Gaussian: Strong dependence between coordinates mj, ..., mp.
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Uniform distribution on M ([0, 1])

@ Chang, Kemperman, Studden '93: If (m{” ..., m{") € Mx([0,1])
uniformly distributed, then as n — oo for any fixed /

(mS"), ey mf")) — (m1 (N[0,1])7 Ceey m,(u[oﬂ))?

in probability, where m;(uo,11) is the j-th moment of the measure

1

———————1p0,1j(X)dx. arcsine distribution
T/ x(1—x)

po,13(dx) =

@ Fluctuations v/n ((mﬁ”’, om™y = (my (1o,1)s-- - m,(u[m]))), are
Gaussian: Strong dependence between coordinates mj, ..., mp.

@ M,([0, 1]) interesting convex body (far from being isotropic).
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Canonical Moments

@ Proof of Chang,Kemperman,Studden uses canonical moments
(Skibinsky): Parametrize moment space M ([0, 1]) by canonical
moments yi, ..., ¥n,
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Canonical Moments

@ Proof of Chang,Kemperman,Studden uses canonical moments
(Skibinsky): Parametrize moment space M ([0, 1]) by canonical

moments yi, ..., ¥n,
Y= m; — mj
=,
m; —m
where [mj_, mj+] is the moment range given my, ..., mj_.
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Canonical Moments

@ Proof of Chang,Kemperman,Studden uses canonical moments
(Skibinsky): Parametrize moment space M ([0, 1]) by canonical

moments yi, ..., ¥n,
Y= m; — mj
=,
mi —m;
where [mj_, mj+] is the moment range given my, ..., mj_.

@ Canonical moments are relative positions in the moment space.
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Canonical Moments

@ Proof of Chang,Kemperman,Studden uses canonical moments
(Skibinsky): Parametrize moment space M ([0, 1]) by canonical

moments yi,..., Y,
Y= m; — mj
=
my —m
where [mj_, mj+] is the moment range given my, ..., m;_.

@ Canonical moments are relative positions in the moment space.
@ Map
my,:=(my,....,mp) —=Yn:=W1,...,¥n)

is diffeomorphism from M ([0, 1])° onto (0, 1)".
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Properties of uniform distribution on M ([0, 1])
@ Jacobian of the map y, := (y1,...,¥n) = My :=(mMy,...,mp)is

n
det Pn;”—y(y”)] ‘ = H(yf(1 — )" = =it (1= log(y;(1-))
n j:1
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Properties of uniform distribution on M ([0, 1])
@ Jacobian of the map y, := (y1,...,¥n) = My :=(mMy,...,mp)is

n
‘det Pn;”—y(y”)] ‘ = H(yf(1 — )" = =it (1= log(y;(1-))
n j:1

@ Thus: Ifm{” = (m{" ... m{") is uniformly distributed on M,([0, 1]),
then
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Properties of uniform distribution on M ([0, 1])
@ Jacobian of the map y, := (y1,...,¥n) = My :=(mMy,...,mp)is

n
‘det Pn;”—y(y”)] ‘ = H(yf(1 — )" = =it (1= log(y;(1-))
n j:1

@ Thus: Ifm{” = (m{" ... m{") is uniformly distributed on M,([0, 1]),
then

@ »",...,y" are (stochastically) independent, / = 1,..., nl
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Properties of uniform distribution on M ([0, 1])
@ Jacobian of the map y, := (y1,...,¥n) = My :=(mMy,...,mp)is

n
‘det Pn;”—y(y”)] ‘ = H(yf(1 — )" = =it (1= log(y;(1-))
n j:1

@ Thus: Ifm{” = (m{" ... m{") is uniformly distributed on M,([0, 1]),
then

@ »",...,y" are (stochastically) independent, / = 1,..., nl
Q v L ,y,(”) are nearly identically distributed if n>> /!
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Properties of uniform distribution on M ([0, 1])
@ Jacobian of the map y, := (y1,...,¥n) = My :=(mMy,...,mp)is

n
‘det Pn;”—y(y”)] ‘ = H(yf(1 — )" = =it (1= log(y;(1-))
n j:1

@ Thus: Ifm{” = (m{" ... m{") is uniformly distributed on M,([0, 1]),
then

Q y1"), . ,y,(”) are (stochastically) independent, / = 1,..., n!
Q ...,y are nearly identically distributed if n > /!
(5 yj(n) is beta(n —j +1,n — j + 1)-distributed.
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Properties of uniform distribution on M ([0, 1])

@ Jacobian of the map y, := (y1,...,¥n) = My :=(mMy,...,mp)is

n
‘det Pma';(y")] ‘ = H(yj(1 —y))" T = eXi(n=i)logi(1-y)
n ]:1

@ Thus: Itm{”) = (m{" ... m{") is uniformly distributed on M,([0, 1]),
then

@ »",...,y" are (stochastically) independent, / = 1,..., nl
Q y\”,....y!" are nearly identically distributed if n > /!
(3 yj(n) is beta(n — j + 1, n — j + 1)-distributed.

@ Question: Properties 1 and 2 meaningful. What if property 3 is dropped?
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Canonical Coordinates for M,(R;) and M,(R)

@ Cases E = R, ,R. Dette,Nagel'12 provide good parametrizations:
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Canonical Coordinates for M,(R;) and M,(R)

@ Cases E = R, ,R. Dette,Nagel'12 provide good parametrizations:

@ For m, € Mp(R,) define the canonical coordinates

yi = mj — m/._
R e——
mj,1 — mj_1
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Canonical Coordinates for M,(R;) and M,(R)

@ Cases E = R, ,R. Dette,Nagel'12 provide good parametrizations:

@ For m, € Mp(R,) define the canonical coordinates

m,-—m.

J
Y= —m——.
m/-,1 — mj_1

@ Diffeom., product domain, Jacobian factorizes, (nearly) identical distr.
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Canonical Coordinates for M,(R;) and M,(R)

@ Cases E = R, ,R. Dette,Nagel'12 provide good parametrizations:

@ For m, € Mp(R,) define the canonical coordinates

m; — m/.‘

mj_q — m._

Y= .
J—1

@ Diffeom., product domain, Jacobian factorizes, (nearly) identical distr.

@ For m, € M,(R) define the canonical coordinates

Q(j+1)/25 Jj odd,
i = |
ﬂj/Z? J even,

aj € R, g; € Ry recurrence coeff. of orth. polynomials generated by mj,.
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Canonical Coordinates for M,(R;) and M,(R)

@ Cases E = R, ,R. Dette,Nagel'12 provide good parametrizations:

@ For m, € Mp(R,) define the canonical coordinates

m; — m/.‘

mj_q — mj__1

Yj =
@ Diffeom., product domain, Jacobian factorizes, (nearly) identical distr.
@ For m, € M,(R) define the canonical coordinates
Q(j+1)/25 Jj odd,

= |
ﬂj/Z? J even,

aj € R, g; € Ry recurrence coeff. of orth. polynomials generated by mj,.

@ Diffeom., product domain, Jacobian factorizes, (nearly) identical distr.
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General distributions on M,(E)

@ For Vi, Vo € C?(R) with super-logarithmic growth define distribution P, £
on M,(E) with density

T

L2 [3]
Pre(my) ccexp [ =0 > Vi(yg—1(mn) = 'y Va(y(m))]-
Jj=1 Jj=1

N‘
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General distributions on M,(E)

@ For Vi, Vo € C?(R) with super-logarithmic growth define distribution P, £
on M,(E) with density

T

L2 [3]
Pre(my) ccexp [ =0 > Vi(yg—1(mn) = 'y Va(y(m))]-
j=1 j=1

N‘

@ Odd canonical coordinates yé/f'L determined by V4, even yz(jf’) by V..
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General distributions on M,(E)

@ For Vi, Vo € C?(R) with super-logarithmic growth define distribution P, £
on M,(E) with density

T

L% L3]
Pre(Mn) scoxp | =1 Y Vi(yai-1(mn) = 0y Va(yzi(mn))] -
j=1 j=1

N‘

@ Odd canonical coordinates yélf'L determined by V4, even yz(jf’) by V..

@ Under P, g, canonical coordinates yj(”) are independent, odd/even ones
nearly identically distributed for n > j (like uniform distribution on
Ma([0, 1])).
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General distributions on M,(E)

@ For Vi, Vo € C?(R) with super-logarithmic growth define distribution P, £
on M,(E) with density

T

L% L3]
Pre(Mn) scoxp | =1 Y Vi(yai-1(mn) = 0y Va(yzi(mn))] -
j=1 j=1

N‘

@ Odd canonical coordinates yg'L determined by V4, even yz(jf’) by V..

@ Under P, g, canonical coordinates yj(”) are independent, odd/even ones
nearly identically distributed for n > j (like uniform distribution on
Man([0, 1])).

@ Question: How do the random ordinary moments m{", ... m"” behave
for n — oo, I fixed?
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Universality

Theorem (Dette-Tomecki-V., Electron. J. Probab. ’18)

For (mﬁ"), ..,m") ~ P, g, | fixed and generic V;, Vo, we have for n — oo

(m?, ..o m™) 2% (my (ug), ..., mi(ue))-
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Universality

Theorem (Dette-Tomecki-V., Electron. J. Probab. ’18)

For (ms”), ..,m") ~ P, g, | fixed and generic V;, Vo, we have for n — oo

(M, m™) 225 (my (), - . mi(uE))-

Limiting measure pg given by (a, b, y7, y5 constants depending on E, Vi, V),

* * *® b .
(1—%) 6o+(y1+};V*2 1) 51+V27(:v Xa()1 X’)(1[ab]() , fE=[0,1],
(1-35), 20+ a2 MmO . HE=R,,

27r1y2* V(x = a)(b—x)1[a(x)dx , fE=R.

These measures are universal!

M. Venker (Bochum) Random Moment Problem 26.07.2019 9



Universality

Theorem (Dette-Tomecki-V., Electron. J. Probab. ’18)

For (ms”), ..,m") ~ P, g, | fixed and generic V;, Vo, we have for n — oo

(M m™Y 22 (g (ue), . mi(ue)).

Limiting measure pg given by (a, b, y7, y5 constants depending on E, Vi, V),

- “ys—1 VE—a-») ,

( B %)4_ 0o + (y1 };ng )+51 + 2ny; x(1—x) 1[a,b](X)dX ) if E = [Oa 1]7
v 1 (x—a)(b—x) . B

(1 - ﬁ)ﬁw o= PO () . fE=R,,

27372* (x — a)(b — x)1 (a5 (x)dx . fE=R.

These measures are universall They are called Kesten-McKay,
Marchenko-Pastur and semicircle distribution, respectively.
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Random Moment Problem under Constraints

@ Question: What are typical moment sequences if some moments are
already known?
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Random Moment Problem under Constraints

@ Question: What are typical moment sequences if some moments are
already known?

@ Constraint C: Indices i1 < --- < iy and values ¢;,, ..., C;,.
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Random Moment Problem under Constraints

@ Question: What are typical moment sequences if some moments are
already known?

@ Constraint C: Indices i1 < --- < iy and values ¢;,, ..., C;,.
PE) = {neP(E)|V1<j<k:mn)=oc},

MG(E) = {(m(n), ..., mna(n)) | u € PE(E)}.
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Random Moment Problem under Constraints

@ Question: What are typical moment sequences if some moments are
already known?
@ Constraint C: Indices /j < --- < ix and values ¢;, ..., ;.
PY(E) = {ne P(E)|¥1<j<k:myu) =},
MG(E) = {(m(p), .., mp(p)) | € PE(E)}.
1 1

0 1 0 1
(a) Constraint m; = 0.3125 (b) Constraint ms = 0.1
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Results for Constrained Random Moment Problems

@ Consider probability distribution P, £ on M (E) (w.r.t. variables

mg ::(mj,j:1,...,n,j7éi1,...,ik)).
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Results for Constrained Random Moment Problems

@ Consider probability distribution P, £ on M (E) (w.r.t. variables
mg = (mj,j: 1,...,n,j7éi1,...,ik)).

@ Most interesting case: ik > k, then some coordinates are dependent!
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Results for Constrained Random Moment Problems

@ Consider probability distribution P, £ on M¢(E) (w.r.t. variables
mg = (mj,j: 1,...,n,j7éi1,...,ik)).

@ Most interesting case: ik > k, then some coordinates are dependent!

Theorem (Dette-Tomecki-Venker, Ann. Probab. 19+)
Given constraint C, for generic V1, V> with some growth conditions

(M7 m™) 22 (g (), ... my(pg))
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Results for Constrained Random Moment Problems

@ Consider probability distribution P, £ on M¢(E) (w.r.t. variables
mﬁ = (m/,j: 1,...,n,j7éi1,...,ik)).

@ Most interesting case: ik > k, then some coordinates are dependent!

Theorem (Dette-Tomecki-Venker, Ann. Probab. 19+)
Given constraint C, for generic V1, Vo with some growth conditions
(mi?, . m™) 225 (my (ug), ..., mi(ug))

where the universal measure ;& has the form

ﬁ wue(dx) + atoms. Bernstein-Szeg6 class

p(x) is polynomial with deg(p) < ix, strictly positive on [a, b].
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Special Case: Uniform Distribution on M¢([0, 1])

dx arcsine distribution

1
dX = —
po,11(0x) )
d
Jlog =g dupy ppo) < o
m

00 else

’C(M[o,u | ) =
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Special Case: Uniform Distribution on M¢([0, 1])

o,17(dx) = ;dx arcsine distribution
' m/x(1 = Xx)

Jlog el dp 1y oy < i

00 else

K(uo, | 1) =

Theorem (Dette-Tomecki-V., Ann. Probab. ’19+)
For (m{", ..., m{™) uniform on MS([0,1]), I fixed:

(m{”, ..o m™) 2= (m (i 1)), - (1))

1§01 IS unique minimizer of K(pupo 1| -) over P([0, 1]).
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Conclusion

@ [f truncated random moment sequences are chosen such that the
canonical coordinates are independent and (nearly) identically
distributed, then
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Conclusion

@ [f truncated random moment sequences are chosen such that the
canonical coordinates are independent and (nearly) identically
distributed, then typical moment sequences belong to the families of
Kesten-McKay (E = [0, 1]), Marchenko-Pastur (E = R ) and semicircle
(E = R) distributions, respectively.
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Conclusion

@ [f truncated random moment sequences are chosen such that the
canonical coordinates are independent and (nearly) identically
distributed, then typical moment sequences belong to the families of
Kesten-McKay (E = [0, 1]), Marchenko-Pastur (E = R ) and semicircle
(E = R) distributions, respectively.

@ If a few moments are fixed a priorily, then the typical moment sequences
belong to the larger Bernstein-Szegb class.
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Conclusion

@ [f truncated random moment sequences are chosen such that the
canonical coordinates are independent and (nearly) identically
distributed, then typical moment sequences belong to the families of
Kesten-McKay (E = [0, 1]), Marchenko-Pastur (E = R ) and semicircle
(E = R) distributions, respectively.

@ If a few moments are fixed a priorily, then the typical moment sequences
belong to the larger Bernstein-Szegb class.

@ We also have results on Gaussian fluctuations, moderate and large
deviations. ..
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Thank you very much for your attention!
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