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Simple zeros of the zeta function

I The Riemann zeta function is the analytic continuation to C \ {1} of

ζ(s) =

∞∑
n=1

1

ns
for Re(s) > 1

I All nontrivial zeros lie in the open strip 0 < Re(ρ) < 1 and are
conjectured (RH) to be of the form ρ = 1

2 + iγ

I Simplicity conjecture: The zeros of ζ are simple

I Definition: N(T ) is the number of zeros ρ = β + iγ
with 0 < β < 1 and 0 < γ ≤ T counting multiplicities

I Notation: N(T ) =
∑

0<γ≤T 1

I N∗(T ) =
∑

0<γ≤T mρ, where mρ is the multiplicity of ρ

I Simplicity conjecture implies N∗(T ) = N(T )

First goal
Find small c ≥ 1 for which we can prove (under RH or GRH):

N∗(T ) ≤ (c+ o(1))N(T )
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Results for N ∗

N∗(T ) ≤ (c+ o(1))N(T )

c assuming RH c assuming GRH

Montgomery 1.3333
Cheer, Goldston 1.3275

Goldston, Gonek, Özlük, Snyder 1.3262
New 1.3208 1.3155

This gives the best known bound for the percentage of
distinct nontrivial zeros of ζ

Source of improvements:
Optimizing over Schwartz functions instead of bandlimited functions
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Cohn-Elkies bound

∆n = optimal center density of a sphere packing in Rn
by spheres of radius 1/2

∆n ≤ inf
{
f(0) : f ∈ S(Rn), f̂(0) = 1, f̂ ≥ 0, f(x) ≤ 0 for ‖x‖ ≥ 1

}
Proof of the inequality when we restrict to Lattice packings:

Suppose Λ is the center set of a sphere packing and f is feasible for the
above optimization problem. We may assume f to be radial. Consider
C =

∑
x∈Λ f(x). We have C ≤ f(0). By Poisson summation we have

C =
1

det(Λ)

∑
x∈Λ∗

f̂(x) ≥ 1

det(Λ)
.

I Note 1: For n = 8, 24 this bound is sharp (by Viazovska et al.)
I Note 2: The above C really is the following double sum:

C = lim
r→∞

1

vol(Br)

∑
x,y∈Λ∩Br

f(x− y)
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LP bound for N ∗

Lemma: Under RH we have

N∗(T ) ≤ (c+ o(1))N(T ),

with

c = inf
{
Z(f) : f ∈ S(R), f̂(0) = 1, f̂ ≥ 0, f(x) ≤ 0 for |x| ≥ 1

}
,

where

Z(f) = f(0) + 2

∫ 1

0

f(x)x dx



LP bound for N ∗

Proof: Consider the double sum

C =
∑

0<γ,γ′≤T

w(γ − γ′)f̂
(

log(T )

2π
(γ − γ′)

)
, w(u) =

4

4 + u2

Then, C ≥ N∗(T ). By Fourier inversion we have

C = N(T )

∫ ∞
−∞

f(x)F (x, Y ) dx

with Montgomery’s function

F (x, T ) =
1

N(T )

∑
0<γ,γ′≤T

T ix(γ−γ′)w(γ − γ′)

(Here we use the identity T ix(γ−γ′) = e2πi
log(T )

2π (γ−γ′).)
We know that F (x, T ) ≥ 0, so

C ≤ N(T )

∫ 1

−1

f(x)F (x, Y ) dx
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LP bound for N ∗

Under RH we have the information [Goldston-Montgomery 1987]:

F (x, T ) = (T−2|x| log(T ) + |x|)(1 + o(1)) uniformly for |x| ≤ 1

For large T , T−2|x| log(T ) becomes the Dirac delta at 0, so

C ≤ N(T )

∫ 1

−1

f(x)F (x, Y ) dx

≤ N(T )

(
f(0) + 2

∫ 1

0

f(x)x dx+ o(1)

)
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Optimization

I Cohn and Elkies restrict to radial Schwartz functions of the form

f(x) = p(‖x‖)e−π‖x‖
2

with p(u) =

d∑
k=0

pku
2k

I The Fourier transform can be computed in terms of Legendre polys:

f̂(x) =

d∑
k=0

pk
πk

k!
L
n/2−1
k (π‖x‖2)e−π‖x‖

2

I One approach is to specify f and f̂ by their real roots and optimize
the root locations, which works extremely well for sphere packing in
8 and 24 dimensions [e.g., Cohn-Miller 2016]

I Instead we use semidefinite programming to optimize over f as was
also done for binary sphere packing [Vallentin-Oliveira-dL 2014]
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and use Arb to verify the results using ball arithmetic
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Pair correlation

Montgomery’s pair correlation conjecture:

N(x, T ) :=
∑

0<γ,γ′≤T
0<γ′−γ≤ 2πx

log T

1 ∼ N(T )

∫ x

0

(
1− sin(πy)2

(πy)2

)
dy

Second goal
Find small c > 0 for which we can prove N(T ) = O(N(c, T ))

assuming RH or GRH and N(T ) ∼ N∗(T )
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Pair correlation

Lemma: Suppose RH holds and N(t) ∼ N∗(T ). Suppose ε > 0 and

f ∈ S(R) with f̂(0) = 0, f̂ ≥ 0, and

r(f) := inf{λ : f(x) ≤ 0 for |x| > λ} <∞

Then, N(T ) = O(N(P(f) + ε, T )), where

P(f) = inf{λ > 0 : pf (λ) > 0},

and

pf (λ) = −1 +
λ

r(f)
+

2r(f)

λ

∫ λ
r(f)

0

f̂(x)x dx

The optimization approach is similar to the approach mentioned earlier,
with the addition of Brent’s method and binary search to find the
optimal sign changes
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Pair correlation

Assuming RH (or GRH) and N(T )∼N∗(T ) we have

N(T ) = O(N(c, T ))

RH GRH

Montgomery 0.68

Goldston, Gonek, Özlük, Snyder 0.6072 0.5781
Carneiro, Chandee, Littmann, Milinovich 0.6068
New 0.6039 0.5769



Thank you!


