Pair correlation estimates for the zeros of the zeta function via semidefinite programming

Andrés Chirre (IMPA)
Felipe Gonçalves (Universität Bonn)
David de Laat (TU Delft)

IWOTA, July 26, 2019, Lisbon

Simple zeros of the zeta function

- The Riemann zeta function is the analytic continuation to $\mathbb{C} \backslash\{1\}$ of

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}} \quad \text { for } \quad \operatorname{Re}(s)>1
$$

Simple zeros of the zeta function

- The Riemann zeta function is the analytic continuation to $\mathbb{C} \backslash\{1\}$ of

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}} \quad \text { for } \quad \operatorname{Re}(s)>1
$$

- All nontrivial zeros lie in the open strip $0<\operatorname{Re}(\rho)<1$ and are conjectured (RH) to be of the form $\rho=\frac{1}{2}+i \gamma$

Simple zeros of the zeta function

- The Riemann zeta function is the analytic continuation to $\mathbb{C} \backslash\{1\}$ of

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}} \quad \text { for } \quad \operatorname{Re}(s)>1
$$

- All nontrivial zeros lie in the open strip $0<\operatorname{Re}(\rho)<1$ and are conjectured (RH) to be of the form $\rho=\frac{1}{2}+i \gamma$
- Simplicity conjecture: The zeros of ζ are simple

Simple zeros of the zeta function

- The Riemann zeta function is the analytic continuation to $\mathbb{C} \backslash\{1\}$ of

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}} \quad \text { for } \quad \operatorname{Re}(s)>1
$$

- All nontrivial zeros lie in the open strip $0<\operatorname{Re}(\rho)<1$ and are conjectured (RH) to be of the form $\rho=\frac{1}{2}+i \gamma$
- Simplicity conjecture: The zeros of ζ are simple
- Definition: $N(T)$ is the number of zeros $\rho=\beta+i \gamma$ with $0<\beta<1$ and $0<\gamma \leq T$ counting multiplicities

Simple zeros of the zeta function

- The Riemann zeta function is the analytic continuation to $\mathbb{C} \backslash\{1\}$ of

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}} \quad \text { for } \quad \operatorname{Re}(s)>1
$$

- All nontrivial zeros lie in the open strip $0<\operatorname{Re}(\rho)<1$ and are conjectured (RH) to be of the form $\rho=\frac{1}{2}+i \gamma$
- Simplicity conjecture: The zeros of ζ are simple
- Definition: $N(T)$ is the number of zeros $\rho=\beta+i \gamma$ with $0<\beta<1$ and $0<\gamma \leq T$ counting multiplicities
- Notation: $N(T)=\sum_{0<\gamma \leq T} 1$

Simple zeros of the zeta function

- The Riemann zeta function is the analytic continuation to $\mathbb{C} \backslash\{1\}$ of

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}} \quad \text { for } \quad \operatorname{Re}(s)>1
$$

- All nontrivial zeros lie in the open strip $0<\operatorname{Re}(\rho)<1$ and are conjectured (RH) to be of the form $\rho=\frac{1}{2}+i \gamma$
- Simplicity conjecture: The zeros of ζ are simple
- Definition: $N(T)$ is the number of zeros $\rho=\beta+i \gamma$ with $0<\beta<1$ and $0<\gamma \leq T$ counting multiplicities
- Notation: $N(T)=\sum_{0<\gamma \leq T} 1$
- $N^{*}(T)=\sum_{0<\gamma \leq T} m_{\rho}$, where m_{ρ} is the multiplicity of ρ

Simple zeros of the zeta function

- The Riemann zeta function is the analytic continuation to $\mathbb{C} \backslash\{1\}$ of

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}} \quad \text { for } \quad \operatorname{Re}(s)>1
$$

- All nontrivial zeros lie in the open strip $0<\operatorname{Re}(\rho)<1$ and are conjectured (RH) to be of the form $\rho=\frac{1}{2}+i \gamma$
- Simplicity conjecture: The zeros of ζ are simple
- Definition: $N(T)$ is the number of zeros $\rho=\beta+i \gamma$ with $0<\beta<1$ and $0<\gamma \leq T$ counting multiplicities
- Notation: $N(T)=\sum_{0<\gamma \leq T} 1$
- $N^{*}(T)=\sum_{0<\gamma \leq T} m_{\rho}$, where m_{ρ} is the multiplicity of ρ
- Simplicity conjecture implies $N^{*}(T)=N(T)$

Simple zeros of the zeta function

- The Riemann zeta function is the analytic continuation to $\mathbb{C} \backslash\{1\}$ of

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}} \quad \text { for } \quad \operatorname{Re}(s)>1
$$

- All nontrivial zeros lie in the open strip $0<\operatorname{Re}(\rho)<1$ and are conjectured (RH) to be of the form $\rho=\frac{1}{2}+i \gamma$
- Simplicity conjecture: The zeros of ζ are simple
- Definition: $N(T)$ is the number of zeros $\rho=\beta+i \gamma$ with $0<\beta<1$ and $0<\gamma \leq T$ counting multiplicities
- Notation: $N(T)=\sum_{0<\gamma \leq T} 1$
- $N^{*}(T)=\sum_{0<\gamma \leq T} m_{\rho}$, where m_{ρ} is the multiplicity of ρ
- Simplicity conjecture implies $N^{*}(T)=N(T)$

First goal

Find small $c \geq 1$ for which we can prove (under RH or GRH):

$$
N^{*}(T) \leq(c+o(1)) N(T)
$$

Results for N^{*}

$$
N^{*}(T) \leq(c+o(1)) N(T)
$$

	c assuming RH	c assuming GRH
Montgomery	1.3333	
Cheer, Goldston	1.3275	
Goldston, Gonek, Özlük, Snyder		1.3262
New	1.3208	1.3155

Results for N^{*}

$$
N^{*}(T) \leq(c+o(1)) N(T)
$$

	c assuming RH	c assuming GRH
Montgomery	1.3333	
Cheer, Goldston	1.3275	
Goldston, Gonek, Özlük, Snyder		1.3262
New	1.3208	1.3155

This gives the best known bound for the percentage of distinct nontrivial zeros of ζ

Results for N^{*}

$$
N^{*}(T) \leq(c+o(1)) N(T)
$$

	c assuming RH	c assuming GRH
Montgomery	1.3333	
Cheer, Goldston	1.3275	
Goldston, Gonek, Özlük, Snyder		1.3262
New	1.3208	1.3155

This gives the best known bound for the percentage of distinct nontrivial zeros of ζ

Source of improvements:
Optimizing over Schwartz functions instead of bandlimited functions

Cohn-Elkies bound

$\Delta_{n}=$ optimal center density of a sphere packing in \mathbb{R}^{n} by spheres of radius $1 / 2$

Cohn-Elkies bound

$\Delta_{n}=$ optimal center density of a sphere packing in \mathbb{R}^{n} by spheres of radius $1 / 2$

$$
\Delta_{n} \leq \inf \left\{f(0): f \in S\left(\mathbb{R}^{n}\right), \hat{f}(0)=1, \hat{f} \geq 0, f(x) \leq 0 \text { for }\|x\| \geq 1\right\}
$$

Cohn-Elkies bound

$\Delta_{n}=$ optimal center density of a sphere packing in \mathbb{R}^{n} by spheres of radius $1 / 2$

$$
\Delta_{n} \leq \inf \left\{f(0): f \in S\left(\mathbb{R}^{n}\right), \hat{f}(0)=1, \hat{f} \geq 0, f(x) \leq 0 \text { for }\|x\| \geq 1\right\}
$$

Proof of the inequality when we restrict to Lattice packings:

Cohn-Elkies bound

$\Delta_{n}=$ optimal center density of a sphere packing in \mathbb{R}^{n}
by spheres of radius $1 / 2$

$$
\Delta_{n} \leq \inf \left\{f(0): f \in S\left(\mathbb{R}^{n}\right), \hat{f}(0)=1, \hat{f} \geq 0, f(x) \leq 0 \text { for }\|x\| \geq 1\right\}
$$

Proof of the inequality when we restrict to Lattice packings:
Suppose Λ is the center set of a sphere packing and f is feasible for the above optimization problem.

Cohn-Elkies bound

$\Delta_{n}=$ optimal center density of a sphere packing in \mathbb{R}^{n}
by spheres of radius $1 / 2$

$$
\Delta_{n} \leq \inf \left\{f(0): f \in S\left(\mathbb{R}^{n}\right), \hat{f}(0)=1, \hat{f} \geq 0, f(x) \leq 0 \text { for }\|x\| \geq 1\right\}
$$

Proof of the inequality when we restrict to Lattice packings:
Suppose Λ is the center set of a sphere packing and f is feasible for the above optimization problem. We may assume f to be radial.

Cohn-Elkies bound

$\Delta_{n}=$ optimal center density of a sphere packing in \mathbb{R}^{n}
by spheres of radius $1 / 2$

$$
\Delta_{n} \leq \inf \left\{f(0): f \in S\left(\mathbb{R}^{n}\right), \hat{f}(0)=1, \hat{f} \geq 0, f(x) \leq 0 \text { for }\|x\| \geq 1\right\}
$$

Proof of the inequality when we restrict to Lattice packings:
Suppose Λ is the center set of a sphere packing and f is feasible for the above optimization problem. We may assume f to be radial. Consider $C=\sum_{x \in \Lambda} f(x)$.

Cohn-Elkies bound

$\Delta_{n}=$ optimal center density of a sphere packing in \mathbb{R}^{n}
by spheres of radius $1 / 2$

$$
\Delta_{n} \leq \inf \left\{f(0): f \in S\left(\mathbb{R}^{n}\right), \hat{f}(0)=1, \hat{f} \geq 0, f(x) \leq 0 \text { for }\|x\| \geq 1\right\}
$$

Proof of the inequality when we restrict to Lattice packings:
Suppose Λ is the center set of a sphere packing and f is feasible for the above optimization problem. We may assume f to be radial. Consider $C=\sum_{x \in \Lambda} f(x)$. We have $C \leq f(0)$.

Cohn-Elkies bound

$\Delta_{n}=$ optimal center density of a sphere packing in \mathbb{R}^{n}
by spheres of radius $1 / 2$

$$
\Delta_{n} \leq \inf \left\{f(0): f \in S\left(\mathbb{R}^{n}\right), \hat{f}(0)=1, \hat{f} \geq 0, f(x) \leq 0 \text { for }\|x\| \geq 1\right\}
$$

Proof of the inequality when we restrict to Lattice packings:
Suppose Λ is the center set of a sphere packing and f is feasible for the above optimization problem. We may assume f to be radial. Consider $C=\sum_{x \in \Lambda} f(x)$. We have $C \leq f(0)$. By Poisson summation we have

$$
C=\frac{1}{\operatorname{det}(\Lambda)} \sum_{x \in \Lambda^{*}} \hat{f}(x) \geq \frac{1}{\operatorname{det}(\Lambda)} .
$$

Cohn-Elkies bound

$\Delta_{n}=$ optimal center density of a sphere packing in \mathbb{R}^{n}
by spheres of radius $1 / 2$

$$
\Delta_{n} \leq \inf \left\{f(0): f \in S\left(\mathbb{R}^{n}\right), \hat{f}(0)=1, \hat{f} \geq 0, f(x) \leq 0 \text { for }\|x\| \geq 1\right\}
$$

Proof of the inequality when we restrict to Lattice packings:
Suppose Λ is the center set of a sphere packing and f is feasible for the above optimization problem. We may assume f to be radial. Consider $C=\sum_{x \in \Lambda} f(x)$. We have $C \leq f(0)$. By Poisson summation we have

$$
C=\frac{1}{\operatorname{det}(\Lambda)} \sum_{x \in \Lambda^{*}} \hat{f}(x) \geq \frac{1}{\operatorname{det}(\Lambda)} .
$$

Cohn-Elkies bound

$\Delta_{n}=$ optimal center density of a sphere packing in \mathbb{R}^{n}
by spheres of radius $1 / 2$

$$
\Delta_{n} \leq \inf \left\{f(0): f \in S\left(\mathbb{R}^{n}\right), \hat{f}(0)=1, \hat{f} \geq 0, f(x) \leq 0 \text { for }\|x\| \geq 1\right\}
$$

Proof of the inequality when we restrict to Lattice packings:
Suppose Λ is the center set of a sphere packing and f is feasible for the above optimization problem. We may assume f to be radial. Consider $C=\sum_{x \in \Lambda} f(x)$. We have $C \leq f(0)$. By Poisson summation we have

$$
C=\frac{1}{\operatorname{det}(\Lambda)} \sum_{x \in \Lambda^{*}} \hat{f}(x) \geq \frac{1}{\operatorname{det}(\Lambda)} .
$$

- Note 1: For $n=8,24$ this bound is sharp (by Viazovska et al.)

Cohn-Elkies bound

$\Delta_{n}=$ optimal center density of a sphere packing in \mathbb{R}^{n}
by spheres of radius $1 / 2$

$$
\Delta_{n} \leq \inf \left\{f(0): f \in S\left(\mathbb{R}^{n}\right), \hat{f}(0)=1, \hat{f} \geq 0, f(x) \leq 0 \text { for }\|x\| \geq 1\right\}
$$

Proof of the inequality when we restrict to Lattice packings:
Suppose Λ is the center set of a sphere packing and f is feasible for the above optimization problem. We may assume f to be radial. Consider $C=\sum_{x \in \Lambda} f(x)$. We have $C \leq f(0)$. By Poisson summation we have

$$
C=\frac{1}{\operatorname{det}(\Lambda)} \sum_{x \in \Lambda^{*}} \hat{f}(x) \geq \frac{1}{\operatorname{det}(\Lambda)} .
$$

- Note 1: For $n=8,24$ this bound is sharp (by Viazovska et al.)
- Note 2: The above C really is the following double sum:

$$
C=\lim _{r \rightarrow \infty} \frac{1}{\operatorname{vol}\left(B_{r}\right)} \sum_{x, y \in \Lambda \cap B_{r}} f(x-y)
$$

LP bound for N^{*}

Lemma: Under RH we have

$$
N^{*}(T) \leq(c+o(1)) N(T),
$$

with

$$
c=\inf \{\mathcal{Z}(f): f \in S(\mathbb{R}), \hat{f}(0)=1, \hat{f} \geq 0, f(x) \leq 0 \text { for }|x| \geq 1\}
$$

where

$$
\mathcal{Z}(f)=f(0)+2 \int_{0}^{1} f(x) x d x
$$

LP bound for N^{*}

Proof: Consider the double sum

$$
C=\sum_{0<\gamma, \gamma^{\prime} \leq T} w\left(\gamma-\gamma^{\prime}\right) \hat{f}\left(\frac{\log (T)}{2 \pi}\left(\gamma-\gamma^{\prime}\right)\right), \quad w(u)=\frac{4}{4+u^{2}}
$$

LP bound for N^{*}

Proof: Consider the double sum

$$
C=\sum_{0<\gamma, \gamma^{\prime} \leq T} w\left(\gamma-\gamma^{\prime}\right) \hat{f}\left(\frac{\log (T)}{2 \pi}\left(\gamma-\gamma^{\prime}\right)\right), \quad w(u)=\frac{4}{4+u^{2}}
$$

Then, $C \geq N^{*}(T)$.

LP bound for N^{*}

Proof: Consider the double sum

$$
C=\sum_{0<\gamma, \gamma^{\prime} \leq T} w\left(\gamma-\gamma^{\prime}\right) \hat{f}\left(\frac{\log (T)}{2 \pi}\left(\gamma-\gamma^{\prime}\right)\right), \quad w(u)=\frac{4}{4+u^{2}}
$$

Then, $C \geq N^{*}(T)$. By Fourier inversion we have

$$
C=N(T) \int_{-\infty}^{\infty} f(x) F(x, Y) d x
$$

with Montgomery's function

$$
F(x, T)=\frac{1}{N(T)} \sum_{0<\gamma, \gamma^{\prime} \leq T} T^{i x\left(\gamma-\gamma^{\prime}\right)} w\left(\gamma-\gamma^{\prime}\right)
$$

LP bound for N^{*}

Proof: Consider the double sum

$$
C=\sum_{0<\gamma, \gamma^{\prime} \leq T} w\left(\gamma-\gamma^{\prime}\right) \hat{f}\left(\frac{\log (T)}{2 \pi}\left(\gamma-\gamma^{\prime}\right)\right), \quad w(u)=\frac{4}{4+u^{2}}
$$

Then, $C \geq N^{*}(T)$. By Fourier inversion we have

$$
C=N(T) \int_{-\infty}^{\infty} f(x) F(x, Y) d x
$$

with Montgomery's function

$$
F(x, T)=\frac{1}{N(T)} \sum_{0<\gamma, \gamma^{\prime} \leq T} T^{i x\left(\gamma-\gamma^{\prime}\right)} w\left(\gamma-\gamma^{\prime}\right)
$$

(Here we use the identity $T^{i x\left(\gamma-\gamma^{\prime}\right)}=e^{2 \pi i \frac{\log (T)}{2 \pi}\left(\gamma-\gamma^{\prime}\right)}$.)

LP bound for N^{*}

Proof: Consider the double sum

$$
C=\sum_{0<\gamma, \gamma^{\prime} \leq T} w\left(\gamma-\gamma^{\prime}\right) \hat{f}\left(\frac{\log (T)}{2 \pi}\left(\gamma-\gamma^{\prime}\right)\right), \quad w(u)=\frac{4}{4+u^{2}}
$$

Then, $C \geq N^{*}(T)$. By Fourier inversion we have

$$
C=N(T) \int_{-\infty}^{\infty} f(x) F(x, Y) d x
$$

with Montgomery's function

$$
F(x, T)=\frac{1}{N(T)} \sum_{0<\gamma, \gamma^{\prime} \leq T} T^{i x\left(\gamma-\gamma^{\prime}\right)} w\left(\gamma-\gamma^{\prime}\right)
$$

(Here we use the identity $T^{i x\left(\gamma-\gamma^{\prime}\right)}=e^{2 \pi i \frac{\log (T)}{2 \pi}\left(\gamma-\gamma^{\prime}\right)}$.)
We know that $F(x, T) \geq 0$, so

$$
C \leq N(T) \int_{-1}^{1} f(x) F(x, Y) d x
$$

LP bound for N^{*}

Under RH we have the information [Goldston-Montgomery 1987]:

$$
F(x, T)=\left(T^{-2|x|} \log (T)+|x|\right)(1+o(1)) \quad \text { uniformly for } \quad|x| \leq 1
$$

LP bound for N^{*}

Under RH we have the information [Goldston-Montgomery 1987]:

$$
F(x, T)=\left(T^{-2|x|} \log (T)+|x|\right)(1+o(1)) \quad \text { uniformly for } \quad|x| \leq 1
$$

For large $T, T^{-2|x|} \log (T)$ becomes the Dirac delta at 0 , so

$$
\begin{aligned}
C & \leq N(T) \int_{-1}^{1} f(x) F(x, Y) d x \\
& \leq N(T)\left(f(0)+2 \int_{0}^{1} f(x) x d x+o(1)\right) \quad \square
\end{aligned}
$$

Optimization

- Cohn and Elkies restrict to radial Schwartz functions of the form

$$
f(x)=p(\|x\|) e^{-\pi\|x\|^{2}} \quad \text { with } \quad p(u)=\sum_{k=0}^{d} p_{k} u^{2 k}
$$

Optimization

- Cohn and Elkies restrict to radial Schwartz functions of the form

$$
f(x)=p(\|x\|) e^{-\pi\|x\|^{2}} \quad \text { with } \quad p(u)=\sum_{k=0}^{d} p_{k} u^{2 k}
$$

- The Fourier transform can be computed in terms of Legendre polys:

$$
\hat{f}(x)=\sum_{k=0}^{d} p_{k} \frac{\pi^{k}}{k!} L_{k}^{n / 2-1}\left(\pi\|x\|^{2}\right) e^{-\pi\|x\|^{2}}
$$

Optimization

- Cohn and Elkies restrict to radial Schwartz functions of the form

$$
f(x)=p(\|x\|) e^{-\pi\|x\|^{2}} \quad \text { with } \quad p(u)=\sum_{k=0}^{d} p_{k} u^{2 k}
$$

- The Fourier transform can be computed in terms of Legendre polys:

$$
\hat{f}(x)=\sum_{k=0}^{d} p_{k} \frac{\pi^{k}}{k!} L_{k}^{n / 2-1}\left(\pi\|x\|^{2}\right) e^{-\pi\|x\|^{2}}
$$

- One approach is to specify f and \hat{f} by their real roots and optimize the root locations, which works extremely well for sphere packing in 8 and 24 dimensions [e.g., Cohn-Miller 2016]

Optimization

- Cohn and Elkies restrict to radial Schwartz functions of the form

$$
f(x)=p(\|x\|) e^{-\pi\|x\|^{2}} \quad \text { with } \quad p(u)=\sum_{k=0}^{d} p_{k} u^{2 k}
$$

- The Fourier transform can be computed in terms of Legendre polys:

$$
\hat{f}(x)=\sum_{k=0}^{d} p_{k} \frac{\pi^{k}}{k!} L_{k}^{n / 2-1}\left(\pi\|x\|^{2}\right) e^{-\pi\|x\|^{2}}
$$

- One approach is to specify f and \hat{f} by their real roots and optimize the root locations, which works extremely well for sphere packing in 8 and 24 dimensions [e.g., Cohn-Miller 2016]
- Instead we use semidefinite programming to optimize over f as was also done for binary sphere packing [Vallentin-Oliveira-dL 2014]

Optimization

If $f(x)$ is of the form $p(\|x\|) e^{-\pi\|x\|^{2}}$, then

$$
\hat{f} \geq 0 \quad \Leftrightarrow \quad q(u):=\sum_{k=0}^{d} p_{k} \frac{\pi^{k}}{k!} L_{k}^{n / 2-1}(\pi u) \geq 0 \text { for } u \geq 0
$$

Optimization

If $f(x)$ is of the form $p(\|x\|) e^{-\pi\|x\|^{2}}$, then

$$
\begin{aligned}
\hat{f} \geq 0 & \Leftrightarrow q(u):=\sum_{k=0}^{d} p_{k} \frac{\pi^{k}}{k!} L_{k}^{n / 2-1}(\pi u) \geq 0 \text { for } u \geq 0 \\
& \Leftrightarrow \quad q(u)=s_{1}(u)+u s_{2}(u), \text { where } s_{1}, s_{2} \text { are SOS polys }
\end{aligned}
$$

Optimization

If $f(x)$ is of the form $p(\|x\|) e^{-\pi\|x\|^{2}}$, then

$$
\begin{aligned}
\hat{f} \geq 0 & \Leftrightarrow \quad q(u):=\sum_{k=0}^{d} p_{k} \frac{\pi^{k}}{k!} L_{k}^{n / 2-1}(\pi u) \geq 0 \text { for } u \geq 0 \\
& \Leftrightarrow \quad q(u)=s_{1}(u)+u s_{2}(u), \text { where } s_{1}, s_{2} \text { are SOS polys } \\
& \Leftrightarrow \quad q(u)=v(u)^{\top} X_{1} v(u)+u v(u)^{\top} X_{2} v(u), X_{1}, X_{2} \succeq 0
\end{aligned}
$$

with $v(u)$ a vector whose i th entry is a polynomial of degree i

Optimization

If $f(x)$ is of the form $p(\|x\|) e^{-\pi\|x\|^{2}}$, then

$$
\begin{aligned}
\hat{f} \geq 0 & \Leftrightarrow \quad q(u):=\sum_{k=0}^{d} p_{k} \frac{\pi^{k}}{k!} L_{k}^{n / 2-1}(\pi u) \geq 0 \text { for } u \geq 0 \\
& \Leftrightarrow \quad q(u)=s_{1}(u)+u s_{2}(u), \text { where } s_{1}, s_{2} \text { are SOS polys } \\
& \Leftrightarrow \quad q(u)=v(u)^{\top} X_{1} v(u)+u v(u)^{\top} X_{2} v(u), X_{1}, X_{2} \succeq 0
\end{aligned}
$$

with $v(u)$ a vector whose i th entry is a polynomial of degree i

This can be used to reformulate the optimization problem as a semidefinite program

Optimization

If $f(x)$ is of the form $p(\|x\|) e^{-\pi\|x\|^{2}}$, then

$$
\begin{aligned}
\hat{f} \geq 0 & \Leftrightarrow \quad q(u):=\sum_{k=0}^{d} p_{k} \frac{\pi^{k}}{k!} L_{k}^{n / 2-1}(\pi u) \geq 0 \text { for } u \geq 0 \\
& \Leftrightarrow \quad q(u)=s_{1}(u)+u s_{2}(u), \text { where } s_{1}, s_{2} \text { are SOS polys } \\
& \Leftrightarrow \quad q(u)=v(u)^{\top} X_{1} v(u)+u v(u)^{\top} X_{2} v(u), X_{1}, X_{2} \succeq 0,
\end{aligned}
$$

with $v(u)$ a vector whose i th entry is a polynomial of degree i

This can be used to reformulate the optimization problem as a semidefinite program

We use the following identity to model the objective:

$$
\int x^{m} e^{-\pi x^{2}} d x=-\frac{1}{2 \pi^{m / 2+1 / 2}} \Gamma\left(\frac{m+1}{2}, \pi x^{2}\right)
$$

and use Arb to verify the results using ball arithmetic

Pair correlation

Montgomery's pair correlation conjecture:

$$
N(x, T):=\sum_{\substack{0<\gamma, \gamma^{\prime} \leq T \\ 0<\gamma^{\prime}-\gamma \leq \frac{2 \pi x}{\log T}}} 1 \sim N(T) \int_{0}^{x}\left(1-\frac{\sin (\pi y)^{2}}{(\pi y)^{2}}\right) d y
$$

Pair correlation

Montgomery's pair correlation conjecture:

$$
N(x, T):=\sum_{\substack{0<\gamma, \gamma^{\prime} \leq T \\ 0<\gamma^{\prime}-\gamma \leq \frac{2 \pi x}{\log T}}} 1 \sim N(T) \int_{0}^{x}\left(1-\frac{\sin (\pi y)^{2}}{(\pi y)^{2}}\right) d y
$$

Second goal
Find small $c>0$ for which we can prove $N(T)=O(N(c, T))$ assuming RH or GRH and $N(T) \sim N^{*}(T)$

Pair correlation

Lemma: Suppose RH holds and $N(t) \sim N^{*}(T)$. Suppose $\varepsilon>0$ and $f \in S(\mathbb{R})$ with $\hat{f}(0)=0, \hat{f} \geq 0$, and

$$
r(f):=\inf \{\lambda: f(x) \leq 0 \text { for }|x|>\lambda\}<\infty
$$

Then, $N(T)=O(N(\mathcal{P}(f)+\varepsilon, T))$, where

$$
\mathcal{P}(f)=\inf \left\{\lambda>0: p_{f}(\lambda)>0\right\}
$$

and

$$
p_{f}(\lambda)=-1+\frac{\lambda}{r(f)}+\frac{2 r(f)}{\lambda} \int_{0}^{\frac{\lambda}{r(f)}} \hat{f}(x) x d x
$$

Pair correlation

Lemma: Suppose RH holds and $N(t) \sim N^{*}(T)$. Suppose $\varepsilon>0$ and $f \in S(\mathbb{R})$ with $\hat{f}(0)=0, \hat{f} \geq 0$, and

$$
r(f):=\inf \{\lambda: f(x) \leq 0 \text { for }|x|>\lambda\}<\infty
$$

Then, $N(T)=O(N(\mathcal{P}(f)+\varepsilon, T))$, where

$$
\mathcal{P}(f)=\inf \left\{\lambda>0: p_{f}(\lambda)>0\right\},
$$

and

$$
p_{f}(\lambda)=-1+\frac{\lambda}{r(f)}+\frac{2 r(f)}{\lambda} \int_{0}^{\frac{\lambda}{r(f)}} \hat{f}(x) x d x
$$

The optimization approach is similar to the approach mentioned earlier, with the addition of Brent's method and binary search to find the optimal sign changes

Pair correlation

Assuming RH (or GRH) and $N(T) \sim N^{*}(T)$ we have

$$
N(T)=O(N(c, T))
$$

	RH	GRH
Montgomery	0.68	
Goldston, Gonek, Özlük, Snyder	0.6072	0.5781
Carneiro, Chandee, Littmann, Milinovich	0.6068	
New	0.6039	0.5769

Thank you!

