Carathéodory Numbers and Shape Reconstruction

 The Multi-Dimensional Truncated Moment ProblemPhilipp J. di Dio

TU Berlin

IWOTA2019, Lisbon, 26th July 2019

Based on joint work with Mario Kummer and Konrad Schmüdgen

Introduction

- \mathcal{A} - finite dimensional space of measurable functions on measurable space \mathcal{X}
- Example: $\mathcal{A}=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]_{\leq d}$ with $\mathcal{X}=\mathbb{R}^{n}$
- $L: \mathcal{A} \rightarrow \mathbb{R}$ - linear functional
- L moment functional iff $L(a)=\int_{\mathcal{X}} a(x) \mathrm{d} \mu(x)$ for all $a \in \mathcal{A}$
- μ - representing measure
- Example: $l_{x}(a):=a(x)$ point evaluation at $x \in \mathcal{X}$
- Example: $L=\sum_{i=1}^{k} c_{i} \cdot l_{x_{i}}$ with $c_{i}>0$

Richter's Theorem

Theorem (Richter 1957^{1})

Let \mathcal{A} be a finite dimensional space of measurable functions on a measurable space \mathcal{X}. Then every moment functional $L: \mathcal{A} \rightarrow \mathbb{R}$ has a k-atomic representing measure:

$$
L=\sum_{i=1}^{k} c_{i} \cdot l_{x_{i}} \quad\left(c_{i}>0\right)
$$

with $l_{x_{i}}$ point evaluation at $x_{i} \in \mathcal{X}$ and $k \leq \operatorname{dim} \mathcal{A}$.
Previous/parallel works: Wald, ${ }^{2}$ Rosenbloom, ${ }^{3}$ Tchakaloff, ${ }^{4}$ and Rogosinski ${ }^{5}$

[^0]
Setting Records Straight

Richter's Theorem was known before 2006

- H. Richter: Parameterfreie Abschätzung und Realisierung von Erwartungswerten, BI. Dtsch. Ges. Versmath. 3 (1957), 147-161
- J. H. B. Kemperman: The General Moment Problem, a Geometric Approach, Ann. Math. Stat. 39 (1968), 93-122
- J. H. B. Kemperman: Moment problems with convexity conditions I, Optimizing Methods in Statistics (J. S. Rustagi, ed.), Acad. Press, 1971, pp. 115-178
- J. H. B. Kemperman: Geometry of the moment problem, Proc. Sym. Appl.
Math. 37 (1987), 16-53

Theorem 1 Let f_{1}, \ldots, f_{N} be given real-valued Borel measurable functions on a measurable space Ω (such as g_{1}, \ldots, g_{n} and h on X). Let μ be a probability measure on Ω such that each f_{i} is integrable with respect to μ. Then there exists a probability measure μ^{\prime} of finite support on Ω (i.e., having nonzero mass only at a finite number of points) satisfying

$$
\int_{\Omega} f_{i}(t) \mu(d t)=\int_{\Omega} f_{i}(t) \mu^{\prime}(d t),
$$

all $i=1, \ldots, N$.
One can even achieve that the support of μ^{\prime} has at most $N+1$ points. So from now on we can talk only about finitely supported probability measures.

- C. F. Floudas, P. M. Pardalos (eds.): Encyclopedia of optimization, vol. 1, Kluwer Academic Publishers, Dordrecht, 2001, pp. 198-199.
J. H. B. Kemperman: The General Moment Problem, a Geometric Approach, Ann. Math. Stat. 39 (1968), 93-122:

THE GENERAL MOMENT PROBLEM, A GEOMETRIC APPROACH ${ }^{1}$

By J. H. B. Kemperman
University of Rochester

0. Summary. Let g_{1}, \cdots, g_{n} and h be given real-valued Borel measurable functions on a fixed measurable space $T=(T, \mathbb{Q})$. We shall be interested in methods for determining the best upper and lower bound on the integral

$$
\mu(h)=\int_{T} h(t) \mu(d t),
$$

given that μ is a probability measure on T with known moments $\mu\left(g_{j}\right)=y_{j}$, $j=1, \cdots, n$.
... [more introduction] ...
It was found independently by Richter [12], p. 151, and Rogosinsky [14], p. 4, see also Mulholland and Rogers [10]. The proof proceeds by a straightforward induction with respect to N.

Theorem 1. Let f_{1}, \cdots, f_{N} be given real-valued Borel measurable functions on a measurable space Ω, (such as g_{1}, \cdots, g_{n} and h on T). Let μ be a probability measure on Ω such that each f_{i} is integrable with respect to μ. Then there exists a probability measure μ^{\prime} of finite support on Ω satisfying

$$
\mu^{\prime}\left(f_{j}\right)=\mu\left(f_{j}\right) \text { for all } j=1, \cdots, N .
$$

One can even attain that the support of μ^{\prime} has at most $N+1$ points.

More on the early history of Richter's Theorem

PdD + K. Schmüdgen: The truncated moment problem:
The moment cone, arXiv1809.00584

Set of Atoms = Core Variety

- Core Variety introduced by L. Fialkow ${ }^{6}$
- Set of Atoms introduced by K. Schmüdgen ${ }^{7,8}$
- Set of Atoms = Core Variety:

$$
L: \mathcal{A} \rightarrow \mathbb{R} \text { moment functional } \Rightarrow \text { core variety }=\text { set of atoms }(\neq \emptyset)
$$

- intense studies of set of atoms already presented in Marsaille (Oct. 2015) and Oberwolfach (March 2017) by K. Schmüdgen in talks
- G. Blekherman + L. Fialkow: ${ }^{9}$ for Hausdorff (topological) space Set of Atoms = Core Variety
- PdD + K. Schmüdgen: ${ }^{10}$ Equivalence for measurable spaces
- from geometric perspective by Karlin, Shapley (1953) and Kemperman (1968)

[^1]
Karlin/Shapley's ${ }^{11}+$ Kemperman ${ }^{12}$ Geometric Approach

[^2] Stat. 39 (1968), 93-122

History Lesson is over!

Back to New Stuff

Carathéodory Number: Definition and Bounds

Richter '57: Every moment functional $L: \mathcal{A} \rightarrow \mathbb{R}$ is of the form $\sum_{i=1}^{k} c_{i} \cdot l_{x_{i}}$

- Carathéodory number $\mathcal{C}_{\mathcal{A}}(L)$ of $L=$ minimal k

Richter '57: $k \leq \operatorname{dim} \mathcal{A}$

- Carathéodory number $\mathcal{C}_{\mathcal{A}}=\max _{L} \mathcal{C}_{\mathcal{A}}(L)$

Bounds:

- Richter '57: $1 \leq \mathcal{C}_{\mathcal{A}}(L) \leq \mathcal{C}_{\mathcal{A}} \leq m$
- Thm: ${ }^{13} \mathcal{A}=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]_{\leq d}, \mathcal{X}=\mathbb{R}^{n}$, then $~\left\lceil\frac{1}{n+1}\binom{n+d}{n}\right\rceil \leq \mathcal{C}_{\mathcal{A}}$.
- Thm: ${ }^{14} \mathcal{X}$ and \mathcal{A} "nice", then $\mathcal{C}_{\mathcal{A}} \leq \operatorname{dim} \mathcal{A}-1$.
- Thm: ${ }^{13}$ If \mathcal{X} countable, then $\mathcal{C}_{\mathrm{A}}=\operatorname{dim} \mathcal{A}$.
- Thm: ${ }^{13}$ If $a \geq 0$ with $\mathcal{Z}(a)$ finite, then $\operatorname{dim} \operatorname{span}\left\{l_{x} \mid x \in \mathcal{Z}(a)\right\} \leq \mathcal{C}_{\mathcal{A}}$.

[^3]
Theorem (PdD +K . Schmüdgen ${ }^{13}$)

If $a \geq 0$ with finite zero set $\mathcal{Z}(a)$, then $\operatorname{dim} \operatorname{span}\left\{l_{x} \mid x \in \mathcal{Z}(a)\right\} \leq \mathcal{C}_{\mathcal{A}}$.
Proof: $\operatorname{span}\left\{l_{x} \mid x \in \mathcal{Z}(a)\right\}=$ Polyhedral Cone.
$\mathrm{PdD}+\mathrm{K}$. Schmüdgen: ${ }^{13}$ special polynomials on \mathbb{R}^{2} resp. \mathbb{P}^{2} :

- Motzkin polynomial: $\operatorname{deg}=4, \# \mathcal{Z}=6$ all lin. independent, i.e. $\mathcal{C} \geq 6$
- Robinson polynomial: ${ }^{15} \operatorname{deg}=6, \# \mathcal{Z}=10$ all lin. independent, i.e. $\mathcal{C} \geq 10$
- Harris polynomial: ${ }^{16} \operatorname{deg}=10, \# \mathcal{Z}=30$ all lin. independent, i.e. $\mathcal{C} \geq 30$

[^4]
Theorem (PdD + K. Schmüdgen ${ }^{13}$)

If $a \geq 0$ with finite zero set $\mathcal{Z}(a)$, then $\operatorname{dim} \operatorname{span}\left\{l_{x} \mid x \in \mathcal{Z}(a)\right\} \leq \mathcal{C}_{\mathcal{A}}$.

- C. Riener + M. Schweighofer: ${ }^{17}$ grid $G=\{1, \ldots, d\}^{2}=\mathcal{Z}\left(p_{1}^{2}+p_{2}^{2}\right)$ with

$$
p_{i}\left(x_{1}, x_{2}\right)=\left(x_{i}-1\right) \cdots\left(x_{i}-d\right)
$$

Result: $\left\{l_{x} \mid x \in G\right\}$ lin. ind. on $\mathbb{R}\left[x_{1}, x_{2}\right]_{\leq 2 d} \quad \Rightarrow \quad \mathcal{C}_{\mathrm{A}} \geq d^{2}$.

- PdD + K. Schmüdgen: ${ }^{18}$ extension to higher dimensions (calculations)
- $\mathrm{PdD}+\mathrm{M}$. Kummer: ${ }^{19}$ coordinate ring $\mathbb{R}[G] \cong \mathbb{R}\left[x_{1}, \ldots, x_{n}\right] /\left(p_{1}, \ldots, p_{n}\right)$, homogenization $R_{n}=\mathbb{R}\left[x_{0}, \ldots, x_{n}\right] /\left(p_{1}^{*}, \ldots, p_{n}^{*}\right)$ and its Hilbert function

$$
H F_{R_{n}}(k)=\sum_{i=0}^{n}(-1)^{i} \cdot\binom{n}{i} \cdot H F_{\mathbb{P}^{n}}(k-i d)
$$

[^5]
Carathéodory Numbers from Hilbert Functions

Theorem (PdD + M. Kummer ${ }^{20}$)
$\mathcal{X} \subseteq \mathbb{R}^{n}$ with non-empty interior. For $\mathcal{A}=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]_{\leq 2 d}$ on \mathcal{X} we have

$$
\mathcal{C}_{\mathcal{A}} \geq\binom{ n+2 d}{n}-n \cdot\binom{n+d}{n}+\binom{n}{2}
$$

and for $\mathcal{A}=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]_{\leq 2 d+1}$ on \mathcal{X} we have

$$
\mathcal{C}_{\mathcal{A}} \geq\binom{ n+2 d+1}{n}-n \cdot\binom{n+d+1}{n}+3 \cdot\binom{n+1}{3} .
$$

$\liminf _{d \rightarrow \infty} \frac{\mathcal{C}_{\mathrm{A}_{n, d}}}{\left|\mathrm{~A}_{n, d}\right|} \geq 1-\frac{n}{2^{n}} \quad$ and $\quad \lim _{n \rightarrow \infty} \frac{\mathcal{C}_{\mathrm{A}_{n, d}}}{\left|\mathrm{~A}_{n, d}\right|}=1$

For every $\varepsilon>0$ and $d \in \mathbb{N}$ there exist $n \in \mathbb{N}$: $\mathcal{C}_{n, d} \geq(1-\varepsilon) \cdot\binom{n+d}{n}$.

[^6]
Impact on Flat Extension

Theorem (PdD + M. Kummer)

(1) For every moment functional $L: \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]_{\leq 2 d} \rightarrow \mathbb{R}$ there is a $D \leq 2 d$ and an extension to a moment functional $L_{0}: \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]_{\leq 2 D} \rightarrow \mathbb{R}$ that admits a flat extension $L_{\infty}: \mathbb{R}\left[x_{1}, \ldots, x_{n}\right] \rightarrow \mathbb{R}$.
(2) For every $d \in \mathbb{N}$ there is an $N \in \mathbb{N}$ such that for every $n \geq N$ there is a moment functional L on $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]_{\leq 2 d}$ such that $D=2 d$ in (1) is required.

Examples: Worst case attained for $L: \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]_{\leq 2 d} \rightarrow \mathbb{R}$ with

$$
(n, 2 d)=(9,4),(7,6),(6,8),(6,10),\left(n^{\prime}, 12\right) \quad\left(n^{\prime} \geq 6\right)
$$

Below 6 variables we found no worst case.

Gaussian Mixtures in (algebraic) Statistics

- Thm: ${ }^{21}$ A moment functional is a linear combination of Gaussian (or log-normal or more general) measures iff it is in the interior of the moment cone (set of all moment functionals).
- Thm: ${ }^{22}$ If $a \geq 0$ and $\mathcal{Z}(a)$ finite and $k=\operatorname{dim} \operatorname{lin}\left\{l_{x} \mid x \in \mathcal{Z}(a)\right\}$, then there is a moment functional $L: \mathcal{A} \rightarrow \mathbb{R}$ which is a conic combination of k general measures (Gaussian, log-normal, ...) but not less.

Corollary (PdD ${ }^{22}$)

For every $d \in \mathbb{N}$ and $\varepsilon>0$ there is a $n \in \mathbb{N}$ and a moment functional

$$
L: \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]_{\leq 2 d} \rightarrow \mathbb{R}
$$

such that L is a conic combination of $(1-\varepsilon) \cdot\binom{n+2 d}{n}$ Gaussians but not less.

[^7]
Take Away for Carathéodory numbers

As $n \rightarrow \infty$ with $\varepsilon>0$, for $L: \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]_{\leq d} \rightarrow \mathbb{R}$ we need

$$
(1-\varepsilon) \cdot\binom{n+d}{n} \leq C \mathcal{A}
$$

point evaluations, or Gaussian distributions, log-normal distribution, . . . !

Motivation - Polytope Reconstruction

- $P \subset \mathbb{R}^{n}$ polytope with vertices v_{1}, \ldots, v_{k}
- directional moments $\left(r \in \mathbb{R}^{n}\right)$:

$$
s_{i}(r):=\int_{P}\langle x, r\rangle^{i} \mathrm{~d} \lambda^{n}(x) \stackrel{\text { Fubini }}{=} \int_{\mathbb{R}} y^{i} \cdot \Theta_{P, r}(y) \mathrm{d} \lambda(y)
$$

- $\Theta_{P, r}(y): n$ - 1-dim. area function of $P \cap\left\{x \in \mathbb{R}^{n}:\langle x, r\rangle=y\right\}$
- Idea ($n=2$):
- $\Theta_{P, r}$ is piece-wise linear, kinks exactly at $\xi_{i}=\left\langle v_{i}, r\right\rangle$
- $\Theta_{P, r}^{\prime}$ is piece-wise constant, leaps exactly at $\xi_{i}=\left\langle v_{i}, r\right\rangle$
- $\Theta_{P, r}^{\prime \prime}$ is k-atomic measure (distribution), Dirac deltas exactly at $\xi_{i}=\left\langle v_{i}, r\right\rangle$
- Solution: Derivatives of moments! ${ }^{23}$
- special attention: Gaussian mixtures (linear combinations of Gaussian distributions)

[^8]
Derivatives of Moments and Measures

$\partial^{\alpha} \mathcal{A} \subseteq \mathcal{A}, \alpha \in \mathbb{N}_{0}^{n}$.

- Derivative of (moment) functional:

$$
\partial^{\alpha} L:=(-1)^{|\alpha|} \cdot L \circ \partial^{\alpha}
$$

- Example: $\mathcal{A}=\mathbb{R}[x] . s_{i}=L\left(x^{i}\right) \quad \Rightarrow \quad \partial s_{i}=-L\left(i \cdot x^{i-1}\right)=-i \cdot s_{i-1}$
- $s=\left(s_{0}, s_{1}, s_{2}, s_{3}, s_{4}, \ldots\right)$
- $\partial s=\left(0,-s_{0},-2 s_{1},-3 s_{2},-4 s_{3}, \ldots\right)$
- $\partial^{2} s=\left(0,0,2 s_{0}, 6 s_{1}, 12 s_{2}, \ldots\right)$
- ...
- Derivative of measure: μ measure. Distributional derivative of μ by

$$
\partial^{\alpha} \mu:=(-1)^{|\alpha|} \cdot \mu\left(\partial^{\alpha} f\right)
$$

with $\mu(f)=\int f \mathrm{~d} \mu$ if $\partial^{\alpha} \mu$ is a measure again.

Theorem (PdD)

μ measure of L and $\partial^{\alpha} \mu$ is measure again, then $\partial^{\alpha} \mu$ is measure of $\partial^{\alpha} L$.

Brion-Lawrence-Khovanskii-Pukhlikov-Barvinok Formulas

 BBaKLP formulas:Let P be a polytope in \mathbb{R}^{n} with vertices $v_{1}, \ldots, v_{k}(k \geq n+1)$, then

$$
\begin{aligned}
0 & =\sum_{i=1}^{k}\left\langle v_{i}, r\right\rangle^{j} \tilde{D}_{v_{i}}(r) \quad(j=0, \ldots, n-1) \\
\int_{P}\langle x, r\rangle^{j} \mathrm{~d} \lambda^{n}(x) & =: \quad s_{j}(r)=\frac{j!(-1)^{n}}{(j+n)!} \sum_{i=1}^{k}\left\langle v_{i}, r\right\rangle^{j+n} \tilde{D}_{v_{i}}(r), \quad(j \geq n)
\end{aligned}
$$

where $\tilde{D}_{v_{i}}(r)$ is a rational function on $r \in \mathbb{R}^{n}$, i.e., r can be chosen in general position such that $\tilde{D}_{v_{i}}(\cdot)$ has no zero or pole at r.

Lemma

$$
\partial^{n} \Theta_{P, r}=\sum_{i=1}^{k} \tilde{D}_{v_{i}}(r) \cdot \delta_{\left\langle r, v_{i}\right\rangle}
$$

Reconstruction of Polytopes

Corollary (Main Theorem ${ }^{24}$)

Let

$$
s_{j}(r):=\int_{P}\langle x, r\rangle^{j} \mathrm{~d} \lambda^{n}(x)
$$

$j=0, \ldots, k, k \geq n+1$, be the directional moments of a polytope P with vertices v_{1}, \ldots, v_{k}, and $r \in \mathbb{R}^{n}$ in general position. Then $\partial^{n} s$ is represented by the signed k-atomic measure

$$
\partial^{n} \Theta_{P, r}=\sum_{i=1}^{k} \tilde{D}_{v_{i}}(r) \cdot \delta_{\left\langle r, v_{i}\right\rangle} .
$$

Proof: $s=\left(s_{0}, \ldots, s_{k}\right)$ represented by $\Theta_{P, r} \Rightarrow \partial^{n} s$ represented by $\partial^{n} \Theta_{P, r}$. Advantage:

- $\partial^{n} L$ and $\int \ldots \mathrm{d} \mu$ linear (in L resp. μ)
- Corollary extends to linear combinations of polytopes (one line proof)

[^9]
Reconstruction of Measures on Semi-algebraic Sets ${ }^{25}$

- $G \subset \mathbb{R}^{n}$ semi-algebraic, $\partial G \subseteq \mathcal{Z}(g)$ for some $g \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$
- $p(x)=\sum_{\alpha} c_{\alpha} x^{\alpha} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$
- $f(x)=\exp (p(x)) \cdot \chi_{G}$
- $\partial_{1} f(x)=\partial_{1} p(x) \cdot \exp (p(x)) \cdot \chi_{G}+\exp (p(x)) \cdot \partial_{i} \chi_{G}$
- $\partial_{i} \chi_{G}$: distribution with $\operatorname{supp} \partial_{i} \chi_{G} \subseteq \partial G \subseteq \mathcal{Z}(g)$, i.e.

$$
\begin{equation*}
g(x) \cdot \partial_{i} p(x) \cdot \exp (p(x)) \cdot \chi_{G}=\sum_{\alpha} \alpha_{i} \cdot c_{\alpha} \cdot x^{\alpha-e_{i}} \cdot g(x) \cdot f(x) \tag{*}
\end{equation*}
$$

- $g(M) \cdot \partial_{i} L$ is represented by $(*)$:

$$
g(M) \cdot \partial_{i} L=\sum_{\alpha} \alpha_{i} \cdot c_{\alpha} \cdot g(M) L
$$

[^10]Theorem (F. Bréhard, M. Joldes, and J.-B. Lasserre)
Let $G \subseteq \mathbb{R}$ be a semi-algebraic set, let $g \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ with $\gamma:=\operatorname{deg} g$ and $\partial G \subseteq \mathcal{Z}(g), p \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ with $d:=\operatorname{deg} p$, and s_{α} the moments of $\exp (p) \cdot \chi_{G}$,

$$
s_{\alpha}:=\int_{G} x^{\alpha} \cdot \exp (p(x)) \mathrm{d} \lambda^{n}(x),
$$

for all $\alpha \in \mathbb{N}_{0}^{n}$ with $|\alpha| \leq k$ for some $k \geq 2 d+2 \gamma-2$. The following are equivalent:
(1) $p=\sum_{\alpha \in \mathbb{N}_{0}:|\alpha| \leq d} c_{\alpha} \cdot x^{\alpha}$.
(2) For each $i=1, \ldots, n$ let $\alpha^{(1)}, \alpha^{(2)}, \ldots, \alpha^{(m)}$ with $m=\binom{n+d-1}{n}$ denote an enumeration of $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}_{0}^{n}$ with $|\alpha| \leq d$ and $\alpha_{i} \geq 1$. The kernel of

$$
\begin{equation*}
\left(g(M) \partial_{x_{i}} s, g(M) M_{\alpha^{(1)}-e_{i}} s, \ldots, g(M) M_{\alpha^{(m)}-e_{i}} s\right)_{k-d} \tag{1}
\end{equation*}
$$

is spanned by $\left(1,-\alpha_{i}^{(1)} \cdot c_{\alpha^{(1)}}, \ldots,-\alpha_{i}^{(m)} \cdot c_{\alpha^{(m)}}\right)$ for every $i=1, \ldots, n$. c_{0} is determined by normalization. If $g \geq 0$ on G then $k \geq 2 d+\gamma-2$ is sufficient.

Gaussian Reconstruction: One Gaussian on \mathbb{R}^{n}

$g(x)=c \cdot \exp \left(-\frac{1}{2} a(x-b)^{2}\right)$, i.e., $g^{\prime}(x)=(-a x+b) \cdot g(x)$ and

$$
\partial L=-a M_{x} L+b L \quad \Leftrightarrow \quad 0=\partial L-b L+a M_{x} L
$$

Theorem (PdD)

Let $n \in \mathbb{N}, A=\left(a_{1}, \ldots, a_{n}\right)=\left(a_{i, j}\right)_{i, j=1}^{n} \in \mathbb{R}^{n \times n}$ be a symmetric and positive definite matrix, $b \in \mathbb{R}^{n}, c \in \mathbb{R}, c \neq 0$, and $k \in \mathbb{N}$ with $k \geq 2$. Set

$$
g(x):=c \cdot \exp \left(-\frac{1}{2}(x-b)^{T} A(x-b)\right)
$$

For a multi-indexed real sequence $s=\left(s_{\alpha}\right)_{\alpha \in \mathbb{N}_{0}^{n}:|\alpha| \leq k}$ the following are equivalent:
(1) $s_{\alpha}=\int x^{\alpha} \cdot g(x) \mathrm{d} \lambda^{n}(x)$ for all $\alpha \in \mathbb{N}_{0}^{n}$ with $|\alpha| \leq k$.
(2) For $i=1, \ldots, n$ we have

$$
\operatorname{ker}\left(\partial_{i} s, s, M_{e_{1}} s, \ldots M_{e_{n}} s\right)_{k-1}=\left(1,-\left\langle b, a_{i}\right\rangle, a_{i, 1}, \ldots, a_{i, n}\right) \cdot \mathbb{R}
$$

Gaussian Reconstruction: Gaussian Mixtures on \mathbb{R}

- same variance:

$$
\begin{equation*}
F(x)=\sum_{i=1}^{k} c_{i} \cdot \exp \left(-\frac{a}{2}\left(x-b_{i}\right)^{2}\right) \tag{a>0}
\end{equation*}
$$

- define $\Delta_{a} f(x):=\frac{1}{a}(\partial+a x) f(x)$ resp. $\Delta_{a} L:=\frac{1}{a}\left(\partial+a M_{1}\right) L$:

$$
\left(\Delta_{a}\right)^{n} F(x)=\sum_{i=1}^{k} c_{i} \cdot b_{i}^{n} \cdot \exp \left(-\frac{a}{2}\left(x-b_{i}\right)^{2}\right)
$$

- recover b_{1}, \ldots, b_{n} from

$$
\begin{aligned}
& \qquad \operatorname{ker}\left(s, \Delta_{a} s, \Delta_{a}^{2} s, \ldots, \Delta_{a}^{k} s\right)_{d-k}=\left(v_{k}, v_{k-1}, \ldots, v_{1}, 1\right) \cdot \mathbb{R} . \\
& \text { and } \mathcal{Z}(p)=\left\{b_{1}, \ldots, b_{k}\right\} \text { for } \\
& \qquad p(x)=x^{k}+v_{1} x^{k-1}+v_{2} x^{k-2}+\cdots+v_{k}
\end{aligned}
$$

Take Away for Derivatives of Moments

Thanks

. . .to. . .

- Konrad Schmüdgen and Mario Kummer for. . .
- guidance
- patience
- salary
- F. Bréhard, M. Joldes, and J.-B. Lasserre for additional papers
- Organizers of IWOTA 2019

Special Thanks to Salma Kuhlmann and Maria Infusino for arranging special session at

IWOTA, Lisbon, July 22-26, 2019!

Thanks for listening!

[^0]: ${ }^{1}$ H. Richter: Parameterfreie Abschätzung und Realisierung von Erwartungswerten, BI. Dtsch. Ges. Versmath. 3 (1957), 147-161
 ${ }^{2}$ A. Wald: Limits of distribution function determined by absolute moment and inequalities satisfied by absolute moments, Trans. Amer. Math. Soc. 46 (1939), 280-306
 ${ }^{3}$ P. C. Rosenbloom: Quelque classes de problème extrémaux. II, Bull. Soc. Math. France 80 (1952), 183-215
 ${ }^{4}$ M. V. Tchakaloff: Formules de cubatures méchaniques a coefficients non négatifs, Bull. Sci. Math. 81 (1957), 123-134
 ${ }^{5}$ W. W. Rogosinski: Moments of non-negative mass, Proc. Roy. Soc. Lond. A 245 (1958)

[^1]: ${ }^{6} \mathrm{~L}$. Fialkow: The core variety of a multisequence in the truncated moment problem, J. Math. Anal. Appl. 456 (2017) 946-969
 ${ }^{7}$ PdD, K. Schmüdgen: The truncated moment problem: Atoms, determinacy, and core variety, J. Funct. Anal. 274 (2018), 3124-3148
 ${ }^{8}$ K. Schmüdgen: The Moment Problem, Springer, 2018
 ${ }^{9} \mathrm{~GB}+\mathrm{LF}$: The core variety and representing measures in the truncated moment problem, arXiv1804.0427
 ${ }^{10} \mathrm{PdD}, \mathrm{K}$. Schmüdgen: The multidimensional truncated moment problem: The moment cone, arXiv1809.00584, Prop. 29 + Thm. 30

[^2]: ${ }^{11}$ S. Karlin and L. S. Shapley, Geometry of moment spaces, Mem. Amer. Math. Soc. 12 (1953)
 ${ }^{12}$ J. H. B. Kemperman: The General Moment Problem, a Geometric Approach, Ann. Math.

[^3]: ${ }^{13} \mathrm{PdD}, \mathrm{K}$. Schmüdgen: The multidimensional truncated moment problem: Carathéodory numbers, J. Math. Anal. Appl. 461 (2018) 1606-1638.
 ${ }^{14} \mathrm{PdD}$: The multidimensional truncated moment problem: Gaussian and log-normal mixtures, their Carathéodory numbers, and set of atoms, Proc. Amer. Math. Soc. 147 (2019) 3021-3038

[^4]: ${ }^{15}$ simplified proof of result by Curto + Fialkow; $\mathcal{C}=11$ by Kunert (Diss. 2014 Konstanz)
 ${ }^{16}$ Kuhlmann \Rightarrow Reznick + Schmüdgen $\Rightarrow P d D$

[^5]: ${ }^{17}$ Optimization approaches to quadrature: New characterizations of Gaussian quadrature on the line and quadrature with few nodes on plane algebraic curves, on the plane and in higher dimensions, J. Complexity 45 (2018), 22-54
 ${ }^{18}$ The multidimensional truncated Moment Problem: The Moment Cone, arXiv:1804.00584
 ${ }^{19}$ The multidimensional truncated moment problem: Carathéodory numbers from Hilbert Functions, arXiv1903.00598

[^6]: ${ }^{20} \mathrm{PdD}, \mathrm{M}$. Kummer: The multidimensional truncated moment problem: Carathéodory Numbers from Hilbert Functions, arXiv1903.00598

[^7]: ${ }^{21} \mathrm{PdD}$: The multidimensional truncated moment problem: Gaussian and log-normal mixtures, their Carathéodory numbers, and set of atoms, Proc. Amer. Math. Soc. 147 (2019) 3021-3038
 ${ }^{22}$ PdD: The multidimensional truncated Moment Problem: Shape and Gaussian Mixture Reconstruction from Derivatives of Moments, arXiv:1907.00790

[^8]: ${ }^{23} \mathrm{PdD}$: The multidimensional truncated moment problem: Shape and Gaussian mixture reconstruction from derivatives of moments, arXiv1907.00790

[^9]: ${ }^{24}$ N. Gravin, J. Lasserre, D. V. Pasechnik, and S. Robins, The inverse moment problem for convex polytopes, Discrete Comput. Geom. 48 (2012), 596-621.

[^10]: ${ }^{25}$ F. Bréhard, M. Joldes, and J.-B. Lasserre, On a moment problem with holonomic functions, 2019, https://hal.archives-ouvertes.fr/hal-02006645.

