Carathéodory Numbers and Shape Reconstruction

The Multi-Dimensional Truncated Moment Problem

Philipp J. di Dio

TU Berlin

IWOTA2019, Lisbon, 26th July 2019

Based on joint work with Mario Kummer and Konrad Schmüdgen

Introduction

- ullet ${\cal A}$ finite dimensional space of measurable functions on measurable space ${\cal X}$
 - ullet Example: $\mathcal{A}=\mathbb{R}[x_1,\ldots,x_n]_{\leq d}$ with $\mathcal{X}=\mathbb{R}^n$
- ullet $L:\mathcal{A}
 ightarrow \mathbb{R}$ linear functional
 - L moment functional iff $L(a) = \int_{\mathcal{X}} a(x) \ \mathrm{d}\mu(x)$ for all $a \in \mathcal{A}$
 - ullet μ representing measure
 - Example: $l_x(a) := a(x)$ point evaluation at $x \in \mathcal{X}$
 - Example: $L = \sum_{i=1}^k c_i \cdot l_{x_i}$ with $c_i > 0$

Richter's Theorem

Theorem (Richter 1957¹)

Let $\mathcal A$ be a finite dimensional space of measurable functions on a measurable space $\mathcal X$. Then every moment functional $L:\mathcal A\to\mathbb R$ has a k-atomic representing measure:

$$L = \sum_{i=1}^{k} c_i \cdot l_{x_i} \qquad (c_i > 0)$$

with l_{x_i} point evaluation at $x_i \in \mathcal{X}$ and $k \leq \dim \mathcal{A}$.

Previous/parallel works: Wald,² Rosenbloom,³ Tchakaloff,⁴ and Rogosinski⁵

¹H. Richter: *Parameterfreie Abschätzung und Realisierung von Erwartungswerten*, Bl. Dtsch. Ges. Versmath. **3** (1957), 147–161

²A. Wald: Limits of distribution function determined by absolute moment and inequalities satisfied by absolute moments, Trans. Amer. Math. Soc. **46** (1939), 280–306

³P. C. Rosenbloom: *Quelque classes de problème extrémaux. II*, Bull. Soc. Math. France **80** (1952), 183–215

⁴M. V. Tchakaloff: Formules de cubatures méchaniques a coefficients non négatifs, Bull. Sci. Math. **81** (1957), 123–134

⁵W. W. Rogosinski: *Moments of non-negative mass*, Proc. Roy. Soc. Lond. A **245** (1958)

Setting Records Straight

Richter's Theorem was known before 2006

- H. Richter: Parameterfreie Abschätzung und Realisierung von Erwartungswerten,
 Bl. Dtsch. Ges. Versmath. 3 (1957),
 147–161
- J. H. B. Kemperman: The General Moment Problem, a Geometric Approach, Ann. Math. Stat. 39 (1968), 93–122
- J. H. B. Kemperman: Moment problems with convexity conditions I, Optimizing Methods in Statistics (J. S. Rustagi, ed.), Acad. Press, 1971, pp. 115–178
- J. H. B. Kemperman: Geometry of the moment problem, Proc. Sym. Appl. Math. 37 (1987), 16–53

Theorem 1 Let f_1,\ldots,f_N be given real-valued Borel measurable functions on a measurable space Ω (such as g_1,\ldots,g_n and h on X). Let μ be a probability measure on Ω such that each f_i is integrable with respect to μ . Then there exists a probability measure μ' of finite support on Ω (i.e., having nonzero mass only at a finite number of points) satisfying

$$\int\limits_{\Omega} f_i(t) \, \mu(dt) = \int\limits_{\Omega} f_i(t) \, \mu'(dt),$$
 all $i = 1, \dots, N$.

One can even achieve that the support of μ' has at most N+1 points. So from now on we can talk only about finitely supported probability measures.

 C. F. Floudas, P. M. Pardalos (eds.): Encyclopedia of optimization, vol. 1, Kluwer Academic Publishers, Dordrecht, 2001, pp. 198–199. J. H. B. Kemperman: *The General Moment Problem, a Geometric Approach*, Ann. Math. Stat. **39** (1968), 93–122:

THE GENERAL MOMENT PROBLEM, A GEOMETRIC APPROACH1

By J. H. B. KEMPERMAN

University of Rochester

0. Summary. Let g_1, \dots, g_n and h be given real-valued Borel measurable functions on a fixed measurable space $T = (T, \alpha)$. We shall be interested in methods for determining the best upper and lower bound on the integral

$$\mu(h) = \int_T h(t)\mu(dt),$$

given that μ is a probability measure on T with known moments $\mu(g_j)=y_j$, $j=1,\,\cdots,\,n$.

...[more introduction] ...

It was found independently by Richter [12], p. 151, and Rogosinsky [14], p. 4, see also Mulholland and Rogers [10]. The proof proceeds by a straightforward induction with respect to N.

THEOREM 1. Let f_1, \dots, f_N be given real-valued Borel measurable functions on a measurable space Ω , (such as g_1, \dots, g_n and h on T). Let μ be a probability measure on Ω such that each f_i is integrable with respect to μ . Then there exists a probability measure μ' of finite support on Ω satisfying

$$\mu'(f_j) = \mu(f_j)$$
 for all $j = 1, \dots, N$.

One can even attain that the support of μ' has at most N+1 points.

More on the early history of Richter's Theorem

PdD + K. Schmüdgen: *The truncated moment problem: The moment cone*, arXiv1809.00584

Set of Atoms = Core Variety

- Core Variety introduced by L. Fialkow⁶
- Set of Atoms introduced by K. Schmüdgen^{7,8}
 - Set of Atoms = Core Variety:
 - $L:\mathcal{A} \to \mathbb{R}$ moment functional \Rightarrow core variety = set of atoms $(\neq \emptyset)$
 - intense studies of set of atoms already presented in Marsaille (Oct. 2015) and Oberwolfach (March 2017) by K. Schmüdgen in talks
- G. Blekherman + L. Fialkow: for Hausdorff (topological) space

Set of Atoms = Core Variety

- PdD + K. Schmüdgen: 10 Equivalence for measurable spaces
 - from geometric perspective by Karlin, Shapley (1953) and Kemperman (1968)
- ⁶L. Fialkow: *The core variety of a multisequence in the truncated moment problem*, J. Math. Anal. Appl. **456** (2017) 946–969
- ⁷PdD, K. Schmüdgen: *The truncated moment problem: Atoms, determinacy, and core variety,* J. Funct. Anal. **274** (2018), 3124–3148
 - ⁸K. Schmüdgen: *The Moment Problem*, Springer, 2018
- $^9 {\sf GB} + {\sf LF}$: The core variety and representing measures in the truncated moment problem, arXiv1804.0427
- ¹⁰PdD, K. Schmüdgen: *The multidimensional truncated moment problem: The moment cone*, arXiv1809.00584. Prop. 29 + Thm. 30

$Karlin/Shapley's^{11} + Kemperman^{12}$ Geometric Approach

 11 S. Karlin and L. S. Shapley, *Geometry of moment spaces*, Mem. Amer. Math. Soc. 12 (1953)

¹²J. H. B. Kemperman: *The General Moment Problem, a Geometric Approach*, Ann. Math. Stat. **39** (1968), 93–122

History Lesson is over! Back to New Stuff

Carathéodory Number: Definition and Bounds

Richter '57: Every moment functional $L:\mathcal{A}\to\mathbb{R}$ is of the form $\sum_{i=1}^k c_i\cdot l_{x_i}$

ullet Carathéodory number $\mathcal{C}_{\mathcal{A}}(L)$ of L= minimal k

Richter '57: $k \leq \dim A$

ullet Carathéodory number $\mathcal{C}_{\mathcal{A}} = \max_{L} \ \mathcal{C}_{\mathcal{A}}(L)$

Bounds:

- ullet Richter '57: $1 \leq \mathcal{C}_{\mathcal{A}}(L) \leq \mathcal{C}_{\mathcal{A}} \leq m$
- Thm:¹³ $\mathcal{A} = \mathbb{R}[x_1, \dots, x_n]_{\leq d}$, $\mathcal{X} = \mathbb{R}^n$, then $\left\lceil \frac{1}{n+1} \binom{n+d}{n} \right\rceil \leq \mathcal{C}_{\mathcal{A}}$.
- Thm:¹⁴ \mathcal{X} and \mathcal{A} "nice", then $\mathcal{C}_{\mathcal{A}} \leq \dim \mathcal{A} 1$.
- Thm:¹³ If \mathcal{X} countable, then $\mathcal{C}_A = \dim \mathcal{A}$.
- Thm:¹³ If $a \geq 0$ with $\mathcal{Z}(a)$ finite, then $\operatorname{dim} \operatorname{span}\{l_x \mid x \in \mathcal{Z}(a)\} \leq \mathcal{C}_{\mathcal{A}}$.

¹⁴PdD: The multidimensional truncated moment problem: Gaussian and log-normal mixtures, their Carathéodory numbers, and set of atoms, Proc. Amer. Math. Soc. **147** (2019) 3021–3038

¹³PdD, K. Schmüdgen: The multidimensional truncated moment problem: Carathéodory numbers, J. Math. Anal. Appl. 461 (2018) 1606–1638.

Theorem (PdD + K. Schmüdgen¹³)

If $a \geq 0$ with finite zero set $\mathcal{Z}(a)$, then $\operatorname{dim}\operatorname{span}\{l_x\,|\,x\in\mathcal{Z}(a)\} \leq \mathcal{C}_{\mathcal{A}}$.

Proof: span $\{l_x \mid x \in \mathcal{Z}(a)\}$ = Polyhedral Cone.

PdD + K. Schmüdgen:¹³ special polynomials on \mathbb{R}^2 resp. \mathbb{P}^2 :

- \bullet Motzkin polynomial: $\deg=4,\,\#\mathcal{Z}=6$ all lin. independent, i.e. $\mathcal{C}\geq 6$
- ullet Robinson polynomial: 15 $\deg=6$, $\#\mathcal{Z}=10$ all lin. independent, i.e. $\mathcal{C}\geq 10$
- Harris polynomial: 16 $\deg=10$, $\#\mathcal{Z}=30$ all lin. independent, i.e. $\mathcal{C}\geq30$

 $^{^{15}}$ simplified proof of result by Curto + Fialkow; $\mathcal{C}=11$ by Kunert (Diss. 2014 Konstanz)

 $^{^{16}}$ Kuhlmann \Rightarrow Reznick + Schmüdgen \Rightarrow PdD

Theorem (PdD + K. Schmüdgen¹³)

If $a \geq 0$ with finite zero set $\mathcal{Z}(a)$, then $\operatorname{dim}\operatorname{span}\{l_x\,|\,x\in\mathcal{Z}(a)\} \leq \mathcal{C}_{\mathcal{A}}$.

ullet C. Riener + M. Schweighofer: 17 grid $G=\{1,\ldots,d\}^2=\mathcal{Z}(p_1^2+p_2^2)$ with

$$p_i(x_1, x_2) = (x_i - 1) \cdots (x_i - d)$$

Result: $\{l_x \mid x \in G\}$ lin. ind. on $\mathbb{R}[x_1, x_2]_{\leq 2d} \Rightarrow \mathcal{C}_A \geq d^2$.

- PdD + K. Schmüdgen: 18 extension to higher dimensions (calculations)
- PdD + M. Kummer:¹⁹ coordinate ring $\mathbb{R}[G] \cong \mathbb{R}[x_1, \dots, x_n]/(p_1, \dots, p_n)$, homogenization $R_n = \mathbb{R}[x_0, \dots, x_n]/(p_1^*, \dots, p_n^*)$ and its Hilbert function

$$HF_{R_n}(k) = \sum_{i=0}^{n} (-1)^i \cdot \binom{n}{i} \cdot HF_{\mathbb{P}^n}(k-id)$$

¹⁷ Optimization approaches to quadrature: New characterizations of Gaussian quadrature on the line and quadrature with few nodes on plane algebraic curves, on the plane and in higher dimensions, J. Complexity **45** (2018), 22–54

¹⁸The multidimensional truncated Moment Problem: The Moment Cone, arXiv:1804.00584

¹⁹The multidimensional truncated moment problem: Carathéodory numbers from Hilbert Functions. arXiv1903.00598

Carathéodory Numbers from Hilbert Functions

Theorem (PdD + M. Kummer²⁰)

 $\mathcal{X}\subseteq\mathbb{R}^n$ with non-empty interior. For $\mathcal{A}=\mathbb{R}[x_1,\ldots,x_n]_{\leq 2d}$ on \mathcal{X} we have

$$C_{\mathcal{A}} \geq \binom{n+2d}{n} - n \cdot \binom{n+d}{n} + \binom{n}{2},$$

and for $\mathcal{A} = \mathbb{R}[x_1, \dots, x_n]_{\leq 2d+1}$ on \mathcal{X} we have

$$\mathcal{C}_{\mathcal{A}} \geq \binom{n+2d+1}{n} - n \cdot \binom{n+d+1}{n} + 3 \cdot \binom{n+1}{3}.$$

$$\liminf_{d\to\infty}\frac{\mathcal{C}_{\mathsf{A}_{n,d}}}{|\mathsf{A}_{n,d}|}\quad\geq\quad 1-\frac{n}{2^n}\qquad\qquad \text{and}\qquad\qquad \lim_{n\to\infty}\frac{\mathcal{C}_{\mathsf{A}_{n,d}}}{|\mathsf{A}_{n,d}|}\quad=\quad 1$$

For every $\varepsilon > 0$ and $d \in \mathbb{N}$ there exist $n \in \mathbb{N}$: $C_{n,d} \geq (1 - \varepsilon) \cdot \binom{n+d}{n}$.

²⁰PdD, M. Kummer: The multidimensional truncated moment problem: Carathéodory Numbers from Hilbert Functions, arXiv1903.00598

Impact on Flat Extension

Theorem (PdD + M. Kummer)

- For every moment functional $L: \mathbb{R}[x_1,\ldots,x_n]_{\leq 2d} \to \mathbb{R}$ there is a $D \leq 2d$ and an extension to a moment functional $L_0: \mathbb{R}[x_1,\ldots,x_n]_{\leq 2D} \to \mathbb{R}$ that admits a flat extension $L_\infty: \mathbb{R}[x_1,\ldots,x_n] \to \mathbb{R}$.
- **9** For every $d \in \mathbb{N}$ there is an $N \in \mathbb{N}$ such that for every $n \geq N$ there is a moment functional L on $\mathbb{R}[x_1, \ldots, x_n]_{\leq 2d}$ such that D = 2d in (1) is required.

Examples: Worst case attained for $L: \mathbb{R}[x_1,\ldots,x_n]_{\leq 2d} \to \mathbb{R}$ with

$$(n,2d) = (9,4), (7,6), (6,8), (6,10), (n',12) \quad (n' \ge 6)$$

Below 6 variables we found no worst case.

Gaussian Mixtures in (algebraic) Statistics

- Thm:²¹ A moment functional is a linear combination of Gaussian (or log-normal or more general) measures iff it is in the interior of the moment cone (set of all moment functionals).
- Thm: 22 If $a \geq 0$ and $\mathcal{Z}(a)$ finite and $k = \dim \lim \{l_x \, | \, x \in \mathcal{Z}(a)\}$, then there is a moment functional $L: \mathcal{A} \to \mathbb{R}$ which is a conic combination of k general measures (Gaussian, log-normal, . . .) but not less.

Corollary (PdD²²)

For every $d\in\mathbb{N}$ and $\varepsilon>0$ there is a $n\in\mathbb{N}$ and a moment functional

$$L: \mathbb{R}[x_1, \dots, x_n]_{\leq 2d} \to \mathbb{R}$$

such that L is a conic combination of $(1-\varepsilon)\cdot \binom{n+2d}{n}$ Gaussians but not less.

²¹PdD: The multidimensional truncated moment problem: Gaussian and log-normal mixtures, their Carathéodory numbers, and set of atoms, Proc. Amer. Math. Soc. **147** (2019) 3021–3038

²²PdD: The multidimensional truncated Moment Problem: Shape and Gaussian Mixture Reconstruction from Derivatives of Moments, arXiv:1907.00790

Take Away for Carathéodory numbers

As $n \to \infty$ with $\varepsilon > 0$, for $L : \mathbb{R}[x_1, \dots, x_n]_{\leq d} \to \mathbb{R}$ we need

$$(1 - \varepsilon) \cdot \binom{n+d}{n} \le \mathcal{C}_{\mathcal{A}}$$

point evaluations, or Gaussian distributions, log-normal distribution, ...!

Motivation - Polytope Reconstruction

- ullet $P\subset \mathbb{R}^n$ polytope with vertices v_1,\ldots,v_k
- directional moments $(r \in \mathbb{R}^n)$:

$$s_i(r) := \int_P \langle x, r \rangle^i \, d\lambda^n(x) \stackrel{\mathsf{Fubini}}{=} \int_{\mathbb{R}} y^i \cdot \Theta_{P,r}(y) \, d\lambda(y)$$

- ullet $\Theta_{P,r}(y)$: n-1-dim. area function of $P\cap \{x\in \mathbb{R}^n: \langle x,r\rangle =y\}$
- Idea (n = 2):
 - ullet $\Theta_{P,r}$ is piece-wise linear, kinks exactly at $\xi_i = \langle v_i, r \rangle$
 - $\Theta'_{P,r}$ is piece-wise constant, leaps exactly at $\xi_i = \langle v_i, r \rangle$
 - \bullet $\Theta''_{P,r}$ is k-atomic measure (distribution), Dirac deltas exactly at $\xi_i = \langle v_i, r \rangle$
- Solution: Derivatives of moments!²³
- special attention: Gaussian mixtures (linear combinations of Gaussian distributions)

²³PdD: The multidimensional truncated moment problem: Shape and Gaussian mixture reconstruction from derivatives of moments. arXiv1907.00790

Derivatives of Moments and Measures

$$\partial^{\alpha} \mathcal{A} \subseteq \mathcal{A}, \ \alpha \in \mathbb{N}_0^n.$$

• Derivative of (moment) functional:

$$\partial^{\alpha} L := (-1)^{|\alpha|} \cdot L \circ \partial^{\alpha}$$

- Example: $\mathcal{A} = \mathbb{R}[x]$. $s_i = L(x^i) \quad \Rightarrow \quad \partial s_i = -L(i \cdot x^{i-1}) = -i \cdot s_{i-1}$
 - $s = (s_0, s_1, s_2, s_3, s_4, \dots)$
 - $\partial s = (0, -s_0, -2s_1, -3s_2, -4s_3, \dots)$
 - $\partial^2 s = (0, 0, 2s_0, 6s_1, 12s_2, \dots)$
 - . . .
- ullet Derivative of measure: μ measure. Distributional derivative of μ by

$$\partial^{\alpha} \mu := (-1)^{|\alpha|} \cdot \mu(\partial^{\alpha} f)$$

with $\mu(f) = \int f d\mu$ if $\partial^{\alpha} \mu$ is a measure again.

Theorem (PdD)

 μ measure of L and $\partial^{\alpha}\mu$ is measure again, then $\partial^{\alpha}\mu$ is measure of $\partial^{\alpha}L$.

Brion-Lawrence-Khovanskii-Pukhlikov-Barvinok Formulas

BBaKLP formulas:

Let P be a polytope in \mathbb{R}^n with vertices v_1, \ldots, v_k $(k \ge n+1)$, then

$$0 = \sum_{i=1}^{k} \langle v_i, r \rangle^j \tilde{D}_{v_i}(r) \qquad (j = 0, \dots, n-1)$$

$$\int_{P} \langle x, r \rangle^{j} d\lambda^{n}(x) =: s_{j}(r) = \frac{j!(-1)^{n}}{(j+n)!} \sum_{i=1}^{k} \langle v_{i}, r \rangle^{j+n} \tilde{D}_{v_{i}}(r), \quad (j \geq n)$$

where $\tilde{D}_{v_i}(r)$ is a rational function on $r \in \mathbb{R}^n$, i.e., r can be chosen in general position such that $\tilde{D}_{v_i}(\,\cdot\,)$ has no zero or pole at r.

Lemma

$$\partial^n \Theta_{P,r} = \sum_{i=1}^k \tilde{D}_{v_i}(r) \cdot \delta_{\langle r, v_i \rangle}$$

Reconstruction of Polytopes

Corollary (Main Theorem²⁴)

Let

$$s_j(r) := \int_P \langle x, r \rangle^j \, d\lambda^n(x),$$

 $j=0,\ldots,k$, $k\geq n+1$, be the directional moments of a polytope P with vertices v_1,\ldots,v_k , and $r\in\mathbb{R}^n$ in general position. Then $\partial^n s$ is represented by the signed k-atomic measure

$$\partial^n \Theta_{P,r} = \sum_{i=1}^k \tilde{D}_{v_i}(r) \cdot \delta_{\langle r, v_i \rangle}.$$

Proof: $s = (s_0, \dots, s_k)$ represented by $\Theta_{P,r} \Rightarrow \partial^n s$ represented by $\partial^n \Theta_{P,r}$.

Advantage:

- $\partial^n L$ and $\int \dots d\mu$ linear (in L resp. μ)
- Corollary extends to linear combinations of polytopes (one line proof)

²⁴N. Gravin, J. Lasserre, D. V. Pasechnik, and S. Robins, *The inverse moment problem for convex polytopes*, Discrete Comput. Geom. **48** (2012), 596–621.

Reconstruction of Measures on Semi-algebraic Sets²⁵

- ullet $G\subset\mathbb{R}^n$ semi-algebraic, $\partial G\subseteq\mathcal{Z}(g)$ for some $g\in\mathbb{R}[x_1,\ldots,x_n]$
- $p(x) = \sum_{\alpha} c_{\alpha} x^{\alpha} \in \mathbb{R}[x_1, \dots, x_n]$
- $f(x) = \exp(p(x)) \cdot \chi_G$
- $\partial_1 f(x) = \partial_1 p(x) \cdot \exp(p(x)) \cdot \chi_G + \exp(p(x)) \cdot \partial_i \chi_G$
- $\partial_i \chi_G$: distribution with $\operatorname{supp} \partial_i \chi_G \subseteq \partial G \subseteq \mathcal{Z}(g)$, i.e.

$$g(x) \cdot \partial_i p(x) \cdot \exp(p(x)) \cdot \chi_G = \sum_{\alpha} \alpha_i \cdot c_\alpha \cdot x^{\alpha - e_i} \cdot g(x) \cdot f(x)$$
 (*)

• $g(M) \cdot \partial_i L$ is represented by (*):

$$g(M) \cdot \partial_i L = \sum_{\alpha} \alpha_i \cdot c_{\alpha} \cdot g(M) L$$

²⁵F. Bréhard, M. Joldes, and J.-B. Lasserre, *On a moment problem with holonomic functions*, 2019, https://hal.archives-ouvertes.fr/hal-02006645.

Theorem (F. Bréhard, M. Joldes, and J.-B. Lasserre)

Let $G \subseteq \mathbb{R}$ be a semi-algebraic set, let $g \in \mathbb{R}[x_1, \ldots, x_n]$ with $\gamma := \deg g$ and $\partial G \subseteq \mathcal{Z}(g)$, $p \in \mathbb{R}[x_1, \ldots, x_n]$ with $d := \deg p$, and s_α the moments of $\exp(p) \cdot \chi_G$,

$$s_{\alpha} := \int_{G} x^{\alpha} \cdot \exp(p(x)) d\lambda^{n}(x),$$

for all $\alpha \in \mathbb{N}_0^n$ with $|\alpha| \le k$ for some $k \ge 2d + 2\gamma - 2$. The following are equivalent:

- $\textbf{ For each } i=1,\dots,n \text{ let } \alpha^{(1)},\alpha^{(2)},\dots,\alpha^{(m)} \text{ with } m=\binom{n+d-1}{n} \text{ denote an enumeration of } \alpha=(\alpha_1,\dots,\alpha_n)\in\mathbb{N}_0^n \text{ with } |\alpha|\leq d \text{ and } \alpha_i\geq 1. \text{ The kernel of }$

$$(g(M)\partial_{x_i}s, g(M)M_{\alpha^{(1)}-e_i}s, \ldots, g(M)M_{\alpha^{(m)}-e_i}s)_{k-d}$$
 (1)

is spanned by $(1, -\alpha_i^{(1)} \cdot c_{\alpha^{(1)}}, \dots, -\alpha_i^{(m)} \cdot c_{\alpha^{(m)}})$ for every $i = 1, \dots, n$. c_0 is determined by normalization. If $g \geq 0$ on G then $k \geq 2d + \gamma - 2$ is sufficient.

Gaussian Reconstruction: One Gaussian on \mathbb{R}^n

$$g(x)=c\cdot\exp(-rac{1}{2}a(x-b)^2)$$
, i.e., $g'(x)=(-ax+b)\cdot g(x)$ and
$$\partial L=-aM_xL+bL \qquad \Leftrightarrow \qquad 0=\partial L-bL+aM_xL$$

Theorem (PdD)

Let $n \in \mathbb{N}$, $A = (a_1, \dots, a_n) = (a_{i,j})_{i,j=1}^n \in \mathbb{R}^{n \times n}$ be a symmetric and positive definite matrix, $b \in \mathbb{R}^n$, $c \in \mathbb{R}$, $c \neq 0$, and $k \in \mathbb{N}$ with $k \geq 2$. Set

$$g(x) := c \cdot \exp\left(-\frac{1}{2}(x-b)^T A(x-b)\right).$$

For a multi-indexed real sequence $s=(s_{\alpha})_{\alpha\in\mathbb{N}_{0}^{n}:|\alpha|\leq k}$ the following are equivalent:

- **2** $For <math>i = 1, \ldots, n \text{ we have }$

$$\ker(\partial_i s, s, M_{e_1} s, \dots M_{e_n} s)_{k-1} = (1, -\langle b, a_i \rangle, a_{i,1}, \dots, a_{i,n}) \cdot \mathbb{R}.$$

Gaussian Reconstruction: Gaussian Mixtures on ${\mathbb R}$

same variance:

$$F(x) = \sum_{i=1}^{k} c_i \cdot \exp(-\frac{a}{2}(x - b_i)^2)$$
 (a > 0)

• define $\Delta_a f(x) := \frac{1}{a} (\partial + ax) f(x)$ resp. $\Delta_a L := \frac{1}{a} (\partial + aM_1) L$:

$$(\Delta_a)^n F(x) = \sum_{i=1}^{\kappa} c_i \cdot \frac{b_i^n}{i} \cdot \exp(-\frac{a}{2}(x - b_i)^2)$$

• recover b_1, \ldots, b_n from

$$\ker(s, \Delta_a s, \Delta_a^2 s, \dots, \Delta_a^k s)_{d-k} = (v_k, v_{k-1}, \dots, v_1, 1) \cdot \mathbb{R}.$$

and
$$\mathcal{Z}(p) = \{b_1, \dots, b_k\}$$
 for

$$p(x) = x^k + v_1 x^{k-1} + v_2 x^{k-2} + \dots + v_k.$$

Take Away for Derivatives of Moments

Thanks

...to...

- Konrad Schmüdgen and Mario Kummer for...
 - guidance
 - patience
 - salary
- F. Bréhard, M. Joldes, and J.-B. Lasserre for additional papers
- Organizers of IWOTA 2019

Special Thanks to Salma Kuhlmann and Maria Infusino for arranging special session at

IWOTA, Lisbon, July 22-26, 2019!

Thanks for listening!