
Chapter 1

Special classes of topological vector spaces

In these notes we consider vector spaces over the field K of real or complex
numbers given the usual euclidean topology defined by means of the modulus.

1.1 Metrizable topological vector spaces

Definition 1.1.1. A t.v.s. X is said to be metrizable if there exists a metric
d which defines the topology of X.

We recall that a metric d on a set X is a mapping d : X ⇥X ! R+ with
the following properties:

1. d(x, y) = 0 if and only if x = y (identity of indiscernibles);
2. d(x, y) = d(y, x) for all x, y 2 X (symmetry);
3. d(x, z)  d(x, y) + d(y, z) for all x, y, z 2 X (triangular inequality).

To say that the topology of a t.v.s. X is defined by a metric d means that
for any x 2 X the sets of all open (or equivalently closed) balls:

B

r

(x) := {y 2 X : d(x, y) < r}, 8r > 0

forms a basis of neighbourhoods of x w.r.t. to the original topology on X.
There exists a completely general characterization of metrizable t.v.s..

Theorem 1.1.2. A t.v.s. X is metrizable if and only if X is Hausdor↵ and
has a countable basis of neighbourhoods of the origin.

One direction is quite straightforward. Indeed, suppose that X is a metriz-
able t.v.s. and that d is a metric defining the topology ofX, then the collection
of all B 1

n
(o) with n 2 N is a countable basis of neighbourhoods of the origin

o in X. Moreover, the intersection of all these balls is just the singleton {o},
which proves that the t.v.s. X is also Hausdor↵ (see Corollary 2.2.4 in TVS-I).
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The other direction requires more work and we are not going to prove it
in full generality but only for locally convex (l.c.) t.v.s., since this class of
t.v.s. is anyway the most commonly used in applications. Before doing it, let
us make another general observation:

Proposition 1.1.3. In any metrizable t.v.s. X, there exists a translation
invariant metric which defines the topology of X.

Recall that a metric d on X is said to be translation invariant if

d(x+ z, y + z) = d(x, y), 8x, y, z 2 X.

It is important to highlight that the converse of Proposition 1.1.3 does
not hold in general. Indeed, the topology ⌧

d

defined on a vector space X by
a translation invariant metric d is a translation invariant topology and also
the addition is always continuous w.r.t. ⌧

d

. However, the multiplication by
scalars might be not continuous w.r.t. ⌧

d

and so (X, ⌧

d

) is not necessarily a
t.v.s.. For example, the discrete metric on any non-trivial vector space X is
translation invariant but the discrete topology on X is not compatible with
the multiplication by scalars (see Interactive Sheet 1).

Proof. (of Theorem 1.1.2 and Proposition 1.1.3 for l.c. t.v.s.)
Let X be a l.c. t.v.s.. Suppose that X is Hausdor↵ and has a countable
basis {U

n

, n 2 N} of neighbourhoods of the origin. Since X is a l.c. t.v.s.,
we can assume that such a countable basis of neighbourhoods of the ori-
gin consists of barrels, i.e. closed, convex, absorbing and balanced sets (see
Proposition 4.1.13 in TVS-I) and that satisfies the following property (see
Theorem 4.1.14 in TVS-I):

8j 2 N, 8⇢ > 0, 9 n 2 N : U
n

⇢ ⇢U

j

.

We may then take
V

n

= U1 \ · · · \ U

n

, 8n 2 N

as a basis of neighbourhoods of the origin in X. Each V

n

is a still barrel,
V

n+1 ✓ V

n

for any n 2 N and:

8j 2 N, 8⇢ > 0, 9 n 2 N : V
n

⇢ ⇢V

j

. (1.1)

By Lemma 4.2.7 in TVS-I we know that for any n 2 N we have V

n

✓ U

pVn
,

where p

Vn := {� > 0 : x 2 �V

n

} is the Minkowski functional associated to
V

n

and U

pVn
:= {x 2 X : p

Vn(x)  1}. Also, if x 2 U

pVn
then there exists a

sequence (�
j

)
j2N such that �

j

> 0 and x 2 �

j

V

n

for each j 2 N, and �

j

! 1
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as j ! 1. This implies that x

�j
! x as j ! 1 and so x 2 V

n

since V

n

is

closed. Hence, we have just showed that for any n 2 N there is a seminorm p

n

(i.e. p

n

:= p

Vn) on X such that V

n

= {x 2 X : p
n

(x)  1}. Then clearly we
have that (p

n

)
n2N is a countable family of seminorms generating the topology

of X and such that p
n

 p

n+1 for all n 2 N.
Let us now fix a sequence of real positive numbers {a

j

}
j2N such thatP1

j=1 aj < 1 and define the mapping d on X ⇥X as follows:

d(x, y) :=
1X

j=1

a

j

p

j

(x� y)

1 + p

j

(x� y)
, 8, x, y 2 X.

We want to show that this is a metric which defines the topology of X.
Let us immediately observe that the positive homogeneity of the seminorms

p

j

gives that d is a symmetric function. Also, since X is a Hausdor↵ t.v.s.,
we get that {o} ✓ \1

n=1Ker(p
n

) ✓ \1
n=1Vn

= {o}, i.e. \1
n=1Ker(p

n

) = {o}.
This provides that d(x, y) = 0 if and only if x = y . We must therefore check
the triangular inequality for d. This will follow by applying, for any fixed
j 2 N and x, y, z 2 X, Lemma 1.1.4 below to a := p

j

(x � y), b := p

j

(y � z)
and c := p

j

(x � z). In fact, since each p

j

is a seminorm on X, we have
that the above defined a, b, c are all non-negative real numbers such that:
c = p

j

(x� z) = p

j

(x� y + y � z)  p

j

(x� y) + p

j

(y � z) = a+ b. Hence, the
assumption of Lemma 1.1.4 are fulfilled for such a choice of a, b and c and we
get that for each j 2 N:

p

j

(x� z)

1 + p

j

(x� z)
 p

j

(x� y)

1 + p

j

(x� y)
+

p

j

(y � z)

1 + p

j

(y � z)
, 8x, y, z 2 X.

Since the a

j

’s are all positive, this implies that d(x, z)  d(x, y) + d(y, z),
8x, y, z 2 X. We have then proved that d is indeed a metric and from its
definition it is clear that it is also translation invariant.

To complete the proof, we need to show that the topology defined by
this metric d coincides with the topology initially given on X. By Hausdor↵
criterion (see Theorem 1.1.17 in TVS-I), we therefore need to prove that for
any x 2 X both the following hold:

1. 8r > 0, 9n 2 N : x+ V

n

✓ B

r

(x)
2. 8n 2 N, 9r > 0 : B

r

(x) ✓ x+ V

n

Because of the translation invariance of both topologies, we can consider just
the case x = o.

Let us fix r > 0. As
P1

j=1 aj < 1, we can find j(r) 2 N such that

1X

j=j(r)+1

a

j

<

r

2
. (1.2)
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Using that p

n

 p

n+1 for all n 2 N and denoting by A the sum of the series
of the a

j

’s, we get:

j(r)X

j=1

a

j

p

j

(x)

1 + p

j

(x)
 p

j(r)(x)

j(r)X

j=1

a

j

 p

j(r)(x)
1X

j=1

a

j

= Ap

j(r)(x). (1.3)

Combining (1.2) and (1.3), we get that if x 2 r

2AVj(r), i.e. if p
j(r)(x)  r

2A ,
then:

d(x, o) =

j(r)X

j=1

a

j

p

j

(x)

1 + p

j

(x)
+

1X

j=j(r)+1

a

j

p

j

(x)

1 + p

j

(x)
< Ap

j(r)(x) +
r

2
 r.

This proves that r

2AVj(r) ✓ B

r

(o). By (1.1), there always exists n 2 N s.t.
V

n

✓ r

2AVj(r) and so 1 holds. To prove 2, let us fix j 2 N. Then clearly

a

j

p

j

(x)

1 + p

j

(x)
 d(x, o), 8x 2 X.

As the a

j

’s are all positive, the latter implies that:

p

j

(x)  a

�1
j

(1 + p

j

(x))d(x, o), 8x 2 X.

Therefore, if x 2 B

aj
2
(o) then d(x, o)  aj

2 and so p

j

(x)  (1+pj(x))
2 , which

gives p
j

(x)  1. Hence, Baj
2
(o) ✓ V

j

which proves 2.

Let us show now the small lemma used in the proof above:

Lemma 1.1.4. Let a, b, c 2 R+ such that c  a+ b then c

1+c

 a

1+a

+ b

1+b

.

Proof. W.l.o.g. we can assume c > 0 and a + b > 0. (Indeed, if c = 0 or
a + b = 0 then there is nothing to prove.)Then c  a + b is equivalent to
1

a+b

 1
c

. This implies that
�
1 + 1

c

��1 
⇣
1 + 1

a+b

⌘�1
which is equivalent to:

c

1 + c

 a+ b

1 + a+ b

=
a

1 + a+ b

+
b

1 + a+ b

 a

1 + a

+
b

1 + b

.

We have therefore the following characterization of l.c. metrizable t.v.s.:

Proposition 1.1.5. A locally convex t.v.s. (X, ⌧) is metrizable if and only if
⌧ can be generated by a countable separating family of seminorms.
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