
3.3. The polar of a neighbourhood in a locally convex t.v.s.

Then for all x0 2 E0 we have:

|L(x0 � p(x0))|
(3.7)

 C sup
x2F

|hx0 � p(x0), xi| (3.9)= 0

which give that L(x0) = L(p(x0))
(3.8)

= hx0, x
L

i = v
x

L

(x0). Hence, we have
proved that for every L 2 (E0

�

)0 there exists x
L

2 E s.t. '(x
L

) ⌘ v
x

L

⌘ L,
i.e. ' : E ! (E0

�

)0 is surjective. Then we are done because the injectivity of
' : E ! (E0

�

)0 follows by applying Corollary 3.2.9 to this special case.

Remark 3.2.12. The previous result suggests that it is indeed more conve-
nient to restrict our attention to locally convex Hausdor↵ t.v.s. when dealing
with weak duals. Moreover, as showed in Proposition 3.2.8, considering locally
convex Hausdor↵ t.v.s has the advantage of avoiding the pathological situation
in which the topological dual of a non-trivial t.v.s. is reduced to the only zero
functional (for an example of a t.v.s. on which there are no continuous linear
functional than the trivial one, see Exercise Sheet 6).

3.3 The polar of a neighbourhood in a locally convex t.v.s.

Let us come back now to the study of the weak topology and prove one of
the milestones of the t.v.s. theory: the Banach-Alaoglu-Bourbaki theorem. To
prove this important result we need to look for a moment at the algebraic
dual E⇤ of a t.v.s. E. In analogy to what we did in the previous section, we
can define the weak topology on the algebraic dual E⇤ (which we will denote
by �(E⇤, E)) as the coarsest topology such that for any x 2 E the linear
functional w

x

is continuous, where

w
x

: E⇤ ! K
x⇤ 7! hx⇤, xi := x⇤(x).

(3.10)

(Note that w
x

� E0 = v
x

). Equivalently, the weak topology on the algebraic
dual E⇤ is the locally convex topology on E⇤ generated by the family {q

F

:
F ✓ E, |F | < 1} of seminorms q

F

(x⇤) := sup
x2F |hx⇤, xi| on E⇤. It is then

easy to see that �(E0, E) = �(E⇤, E) � E0.
An interesting property of the weak topology on the algebraic dual of a

t.v.s. is the following one:

Proposition 3.3.1. If E is a t.v.s. over K, then its algebraic dual E⇤ endowed
with the weak topology �(E⇤, E) is topologically isomorphic to the product of
dim(E) copies of the field K endowed with the product topology.
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3. Topologies on the dual space of a t.v.s.

Proof.
Let {e

i

}
i2I be an algebraic basis of E, i.e. 8x 2 E, 9 {x

i

}
i2I 2 Kdim(E) s.t.

x =
P

i2I xiei. For any linear functions L : E ! K and any x 2 E we then
have L(x) =

P

i2I xiL(ei). Hence, L is completely determined by the sequence

{L(e
i

)}
i2I2Kdim(E). Conversely, every element u :={u

i

}
i2I 2Kdim(E) uniquely

defines the linear functional L
u

on E via L
u

(e
i

) := u
i

for all i 2 I. This
completes the proof that E⇤ is algebraically isomorphic to Kdim(E). Moreover,
the collection {W

"

(e
i1 , . . . , eir) : " > 0, r 2 N, i

1

, . . . , i
r

2 I}, where

W
"

(e
i1 , . . . , eir) := {x⇤ 2 E⇤ : |hx⇤, e

i

j

i|  ", for j = 1, . . . , r},

is a basis of neighbourhoods of the origin in (E⇤,�(E⇤, E)). Via the isomor-
phism described above, we have that for any " > 0, r 2 N, and i

1

, . . . , i
r

2 I:

W
"

(e
i1 , . . . , eir) ⇡

n

{u
i

}
i2I 2 Kdim(E) : |u

i

j

|  ", for j = 1, . . . , r
o

=
r

Y

j=1

B̄
"

(0)⇥
Y

I\{i1,...,ir}

K

and so W
"

(e
i1 , . . . , eir) is a neighbourhood of the product topology ⌧

prod

on
Kdim(E) (recall that we always consider the euclidean topology on K). There-
fore, (E⇤,�(E⇤, E)) is topological isomorphic to

�

Kdim(E), ⌧
prod

�

.

Let us now focus our attention on the polar of a neighbourhood U of the
origin in a non-trivial locally convex Hausdor↵ t.v.s. E. We are considering
here only non-trivial locally convex Hausdor↵ t.v.s. in order to be sure to
have non-trivial continuous linear functionals (see Remark 3.2.12) and so to
make a meaningful analysis on the topological dual.

First of all let us observe that:

{x⇤ 2 E⇤ : sup
x2U

|hx⇤, xi|  1} ⌘ U� := {x0 2 E0 : sup
x2U

|hx0, xi|  1}. (3.11)

Indeed, since E0 ✓ E⇤, we clearly have U� ✓ {x⇤ 2 E⇤ : sup
x2U |hx⇤, xi|  1}.

Moreover, any linear functional x⇤ 2 E⇤ s.t. sup
x2U |hx⇤, xi|  1 is continuous

on E and it is therefore an element of E0.
It is then quite straightforward to show that:

Proposition 3.3.2. The polar of a neighbourhood U of the origin in E is
closed w.r.t. �(E⇤, E).
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3.3. The polar of a neighbourhood in a locally convex t.v.s.

Proof. By (3.11) and (3.10), it is clear that U� =
T

x2U w�1

x

([�1, 1]). On
the other hand, by definition of �(E⇤, E) we have that w

x

is continuous on
(E⇤,�(E⇤, E)) for all x 2 E and so each w�1

x

([�1, 1]) is closed in (E⇤,�(E⇤, E)).
Hence, U� is closed in (E⇤,�(E⇤, E)) as the intersection of closed subsets of
(E⇤,�(E⇤, E)).

We are ready now to prove the famous Banach-Alaoglu-Bourbaki Theorem

Theorem 3.3.3 (Banach-Alaoglu-Bourbaki Theorem).
The polar of a neighbourhood U of the origin in a locally convex Hausdor↵
t.v.s. E 6= {o} is compact in E0

�

.

Proof.
Since U is a neighbourhood of the origin in E, U is absorbing in E, i.e.
8x 2 E, 9M

x

> 0 s.t.M
x

x 2 U . Hence, for all x 2 E and all x0 2 U� we have
|hx0,M

x

xi|  1, which is equivalent to:

8x 2 E, 8x0 2 U�, |hx0, xi|  1

M
x

. (3.12)

Moreover, for any x 2 E, the subset

D
x

:=

⇢

↵ 2 K : |↵|  1

M
x

�

is compact in K w.r.t. to the euclidean topology.
Consider an algebraic basis B of E, then by Tychno↵’s theorem2 the subset

P :=
Q

x2B D
x

is compact in
�

Kdim(E), ⌧
prod

�

.
Using the isomorphism introduced in Proposition 3.3.1 and (3.11), we get

that

U� ⇡ {(hx⇤, xi)
x2B : x⇤ 2 U�}

and so by (3.12) we have that U� ⇢ P . Since Corollary 3.3.2 and Proposi-
tion 3.3.1 ensure that U� is closed in

�

Kdim(E), ⌧
prod

�

, we get that U� is a closed

subset of P . Hence, by Proposition 2.1.4–1, U� is compact
�

Kdim(E), ⌧
prod

�

and so in (E⇤,�(E⇤, E)). As U� = E0 \ U� we easily see that U� is compact
in (E0,�(E0, E)).

2
Tychno↵ ’s theorem: The product of an arbitrary family of compact spaces endowed

with the product topology is also compact.
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3. Topologies on the dual space of a t.v.s.

We briefly introduce now a nice consequence of Banach-Alaoglu-Bourbaki
theorem. Let us start by introducing a norm on the topological dual space E0

of a seminormed space (E, ⇢):

⇢0(x0) := sup
x2E:⇢(x)1

|hx0, xi|.

⇢0 is usually called the operator norm on E0.

Corollary 3.3.4. Let (E, ⇢) be a non-trivial normed space. The closed unit
ball in E0 w.r.t. the operator norm ⇢0 is compact in E0

�

.

Proof. First of all, let us note that a normed space it is indeed a locally convex
Hausdor↵ t.v.s.. Then, by applying Banach-Alaoglu-Borubaki theorem to
the closed unit ball B̄

1

(o) in (E, ⇢), we get that
�

B̄
1

(o)
��

is compact in E0
�

.

The conclusion then easily follow by the observation that
�

B̄
1

(o)
��

actually
coincides with the closed unit ball in (E0, ⇢0):

�

B̄
1

(o)
��

= {x0 2 E0 : sup
x2 ¯

B1(o)

|hx0, xi|  1}

= {x0 2 E0 : sup
x2E0

,⇢(x)1

|hx0, xi|  1}

= {x0 2 E0 : ⇢0(x0)  1}.
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Chapter 4

Tensor products of t.v.s.

4.1 Tensor product of vector spaces

As usual, we consider only vector spaces over the field K of real numbers or
of complex numbers.

Definition 4.1.1.

Let E,F,M be three vector spaces over K and � : E ⇥ F ! M be a bilinear
map. E and F are said to be �-linearly disjoint if:
(LD) For any r 2 N, any {x

1

, . . . , x
r

} finite subset of E and any {y
1

, . . . , y
r

}
finite subset of F s.t.

P

r

i=1

�(x
i

, y
j

) = 0, we have that both the following
conditions hold:

• if x
1

, . . . , x
r

are linearly independent in E, then y
1

= · · · = y
r

= 0
• if y

1

, . . . , y
r

are linearly independent in F , then x
1

= · · · = x
r

= 0

Recall that, given three vector spaces over K, a map � : E ⇥ F ! M is
said to be bilinear if:

8x
0

2 E, �
x0 : F ! M is linear

y ! �(x
0

, y)

and
8 y

0

2 F, �
y0 : E ! M is linear.

x ! �(x, y
0

)

Let us give a useful characterization of ��linear disjointness.

Proposition 4.1.2. Let E,F,M be three vector spaces, and � : E ⇥ F ! M
be a bilinear map. Then E and F are ��linearly disjoint if and only if:
(LD’) For any r, s 2 N, x

1

, . . . , x
r

linearly independent in E and y
1

, . . . , y
s

linearly independent in F , the set {�(x
i

, y
j

) : i = 1, . . . , r, j = 1, . . . , s}
consists of linearly independent vectors in M .
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4. Tensor products of t.v.s.

Proof.
()) Let x

1

, . . . , x
r

be linearly independent in E and y
1

, . . . , y
s

be linearly
independent in F . Suppose that

P

r

i=1

P

s

j=1

�
ij

�(x
i

, y
j

) = 0 for some �
ij

2 K.
Then, using the bilinearity of � and setting z

i

:=
P

s

j=1

�
ij

y
j

, we easily get
P

r

i=1

�(x
i

, z
i

) = 0. As the x
i

’s are linearly independent in E, we derive from
(LD) that all z

i

’s have to be zero. This means that for each i 2 {1, . . . , r} we
have

P

s

j=1

�
ij

y
j

= 0, which implies by the linearly independence of the y
j

’s
that �

ij

= 0 for all i 2 {1, . . . , r} and all j 2 {1, . . . , s}.
(() Let r 2 N, {x

1

, . . . , x
r

} ✓ E and {y
1

, . . . , y
r

} ✓ F be such that
P

r

i=1

�(x
i

, y
i

) = 0. Suppose that the x
i

s are linearly independent and let
{z

1

, . . . , z
s

} be a basis of span{y
1

, . . . , y
r

}. Then for each i 2 {1, . . . , r} there
exist �

ij

2 K s.t. y
i

=
P

s

j=1

�
ij

z
j

and so by the bilinearity of � we get:

0 =
r

X

i=1

�(x
i

, y
j

) =
r

X

i=1

s

X

j=1

�
ij

�(x
i

, z
j

). (4.1)

By applying (LD’) to the x
i

’s and z0
j

s, we get that all �(x
i

, z
j

)’s are linearly
independent. Therefore, (4.1) gives that �

ij

= 0 for all i 2 {1, . . . , r} and all
j 2 {1, . . . , s} and so y

i

= 0 for all i 2 {1, . . . , r}. Exchanging the roles of the
x
i

’s and the y
i

’s we get that (LD) holds.

Definition 4.1.3. A tensor product of two vector spaces E and F over K is
a pair (M,�) consisting of a vector space M over K and of a bilinear map
� : E ⇥ F ! M (canonical map) s.t. the following conditions are satisfied:
(TP1) The image of E ⇥ F spans the whole space M .
(TP2) E and F are ��linearly disjoint.

We now show that the tensor product of any two vector spaces always
exists, satisfies the “universal property” and it is unique up to isomorphisms.
For this reason, the tensor product of E and F is usually denoted by E ⌦ F
and the canonical map by (x, y) 7! x⌦ y.

Theorem 4.1.4. Let E, F be two vector spaces over K.
(a) There exists a tensor product of E and F .
(b) Let (M,�) be a tensor product of E and F . Let G be any vector space over

K, and b any bilinear mapping of E ⇥ F into G. There exists a unique
linear map b̃ : M ! G such that the following diagram is commutative.

E ⇥ F G

M

�

b

˜

b
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4.1. Tensor product of vector spaces

(c) If (M
1

,�
1

) and (M
2

,�
2

) are two tensor products of E and F , then there is
a bijective linear map u such that the following diagram is commutative.

E ⇥ F M
2

M
1

�1

�2

u
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