4.1. Tensor product of vector spaces

(c) If (M1, ¢1) and (Ma, ¢2) are two tensor products of E and F', then there is
a bijective linear map u such that the following diagram is commutative.

ExF—"4 M,

<

My

Proof.

(a) Let H be the vector space of all functions from E x F' into K which vanish
outside a finite set (H is often called the free space of E x F'). For any
(z,y) € E x F, let us define the function e, ) : £ x F' — K as follows:

_J 1 if(z,w) = (z,y)
Clay) (2, W) = { 0 otherwise

Then By := {e(yy) : (7,y) € £ x F'} forms a basis of H and so Vh € H,
Iy €Kit h=3"_p ZyeF Azy€(z,y) With Az = 0 for all but finitely
many z’s in E and y’s in Y. Let us consider now the following linear
subspace of H:

n

N :=spanie, , " - Z aibje(z, y;)  nym € Nya;, by €K, (z5,y;) € EXF 5.
<'E1 airi,_zl bjyj>
= 5=

i=1 j=1

We then denote by M the quotient vector space H/N, by 7 the quotient
map from H onto M and by

¢p: ExXF — M
(z,y) = o(,y) =7 (e(ay)) -
It is easy to see that the map ¢ is bilinear. Let us just show the linearity

in the first variable as the proof in the second variable is just symmetric.
Fixed y € F, for any a,b € K and any z1,z9 € E, we get that:

¢(am1 + bfL‘g, y) - a(b(l‘l, y) - b(b(l‘g, y) = 7 (e(azlerzQ,y)) —an (e(zl,y)> —br (eﬂﬁz,y))
= 7 (e(aﬂil-‘rbﬂlzay) T AC(gy,y) T be(lmy))
= O’

where the last equality holds since €,z 4-bas,y) — @€(zy ) — 0€(zyy) € V.
We aim to show that (M, ¢) is a tensor product of £ and F'. It is clear
from the definition of ¢ that

span(¢(E x F)) = span(n(By)) = m(H) = M,

59



4.

TENSOR PRODUCTS OF T.V.S.

60

i.e. (TP1) holds. It remains to prove that F and F are ¢—linearly dis-
joint. Let » € N, {z1,...,z,} C FE and {y1,...,y.} € F be such that
>oi_1 ¢(zi,yi) = 0. Suppose that the y;’s are linearly independent. For
any ¢ € E*, let us define the linear mapping A, : H — I by setting
Ap(e(zy)) == gp(ic)y. Then it is easy to check that A, vanishes on N, so it
induces a map A, : M — F s.t. Ay (n(f)) = A(f), V f € H. Hence, since
>oi1 #(xi,yi) = 0 can be rewritten as 7 (D27, €(,4,)) = 0, we get that

0= ALP <7T <Z 6(11,%))) =4, (Z 6(Ii,yi)> = Z A¢(e(wi7yi)) = Z P(i)yi-
=1 =1

i=1 i=1

This together with the linear independence of the y;’s implies p(x;) = 0
for all ¢ € {1,...,r}. Since the latter holds for all ¢ € E*, we have that
x; =0 for all 7 € {1,...,r}. Exchanging the roles of the z;’s and the y;’s
we get that (LD) holds, and so does (TP2) .

Let (M, ) be a tensor product of E and F, G a vector space and b :
E x F — G a bilinear map. Consider {zs}aca and {ys}scp bases of E
and F, respectively. We know that {¢(z4,ys) : @ € A, € B} forms a
basis of M, as span(¢(E x F')) = M and, by Proposition 4.1.2, (LD’) holds
so the ¢(xq,yp)’s for all & € A and all 5 € B are linearly independent.
The linear mapping b will therefore be the unique linear map of M into
G such that

Vae A, VB e B, b(é¢(2a,ys)) = b(Ta,ys)-

Hence, the diagram in (b) commutes.

Let (M, ¢1) and (Ma, ¢2) be two tensor products of E and F. Then using
twice the universal property (b) we get that there exist unique linear maps
u: My — Ms and v : My — M such that the following diagrams both

commute:

b2 b1

ExF ——— M, ExF—— M;
e |
My M,

Then combining u o ¢1 = ¢9 with v o ps = ¢1, we get that u and v are
one the inverse of the other. Hence, there is an algebraic isomorphism
between M; and M. O
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It is now natural to introduce the concept of tensor product of linear maps.

Proposition 4.1.5. Let E, F, E, I} be four vector spaces over K, and let
u:FE — Fyandv: F — Fy be linear mappings. There is a unique linear map
of E® F into F1 ® Fy , called the tensor product of u and v and denoted by
u ® v, such that

(u@v)(z®y) =ulr)®v(y), VreE VyeF.

Proof.
Let us define the mapping

b: ExF — EiQF
(,y) = bz,y) :=u(x)®@v(y),
which is clearly bilinear because of the linearity of u and v and the bilinearity
of the canonical map of the tensor product £y ® Fj. Then by the universal

property there is a unique linear map b: E ® F — E; ® Fy s.t. the following
diagram commutes:

ExF—s B oR
o
b

E®QF
ie. bz ®y) = b(x,y), V(z,y) € E x F. Hence, using the definition of b, we
get that b =u ® v. O
Examples 4.1.6.

1. Letnm e N, E=K" and F = K™. Then E® F = K"™™ is a tensor
product of E and F whose canonical bilinear map ¢ is given by:
¢: ExXF — Knxm
<(xi)?:17(yj);'n:1> = (T 1<i<n1<j<m-

2. Let X andY be two sets. For any functions f: X - Kandg:Y — K,
we define:

f®g: XxY — K
(z,y) = f(x)gy).

Let E (resp. F') be the linear space of all functions from X (resp. Y')
to K endowed with the usual addition and multiplication by scalars. We
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denote by M the linear subspace of the space of all functions from X xY
to K spanned by the elements of the form f®g for all f € E and g € F.
Then M is actually a tensor product of E and F (see Exercise Sheet 7).

Given X and Y open subsets of R™ and R™ respectively, we can use the
definitions in Example 2 above to construct the tensors C*(X)®C!(Y) for any
1 < k,1 < oo. Then it is possible to show the following result (see e.g. [5,
Theorem 39.2] for a proof).

Theorem 4.1.7. Let X and Y open subsets of R™ and R™ respectively.
Then C°(X) @ C(Y) is sequentially dense in C°(X xY) endowed with the
C*—topology.

Topologies on the tensor product of locally convex t.v.s.

Given two locally convex t.v.s. E and F, there various ways to construct a
topology on the tensor product F ® F' which makes the vector space £ ® F
in a t.v.s.. Indeed, starting from the topologies on F and F', one can define a
topology on E ® F' either relying directly on the seminorms on E and F', or
using an embedding of F ® F' in some space related to E and F' over which
a natural topology already exists. The first method leads to the so-called
m—topology. The second method may lead instead to a variety of topologies,
the most important of which is the so-called e—topology that is based on the
isomorphism between £ ® F' and B(E., F.) (see Proposition ?7?).

m—topology

Let us define the first main topology on F ® F which we will see can be
directly characterized by mean of the seminorms generating the topologies on
the starting locally convex t.v.s. E and F'.

Definition 4.2.1 (7—topology).

Given two locally conver t.v.s. E and F, we define the m—topology (or pro-
jective topology) on E ® F' to be the finest locally convez topology on this
vector space for which the canonical mapping E X F'— E ® F is continuous.
The space E ® F' equipped with the m—topology will be denoted by E ®, F.

A basis of neighbourhoods of the origin in £ ®, F is given by the family:
By = {convy(Uy ® Vg) : Uy € Bg, Vg € Br},

where Bg (resp. Bp) is a basis of neighbourhoods of the origin in E (resp.
in F),Us @ V3 :={z @y €€ EQF : x €U,y € Vg} and convy(Uy ® V3) de-
notes the smallest convex balanced subset of E® F' containing U, ®Vj. Indeed,
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by Theorem 4.1.14 in TVS-I, the topology generated by B is a locally convex
topology F ® F' and it makes continuous the canonical map ®, since for any
Ua € Bg and Vj € Br we have that @ ! (convy(Uy ® V) 2 @ (U ® V) =
Ua x Vg which is a neighbourhood of the origin in £ x F'. Hence, the topology
generated by B is coarser than the m—topology. Moreover, the m—topology
is by definition locally convex and so it has a basis B of convex balanced
neighbourhoods of the origin in £ ® F. Then, as the canonical mapping ®
is continuous w.r.t. the m—topology, we have that for any C € B there exist
Uy € Bg and Vg € Br sit. Uy x Vg C ®~YC). Hence, U, ® Vg € C and so
convy(Uqy ® Vi) C convy(C) = C, which yields that the topology generated by
By is finer than the m—topology.

The m—topology on F ® F' can be described by means of the seminorms
defining the locally convex topologies on E and F'. Indeed, we have the fol-
lowing characterization of the m—topology.

Proposition 4.2.2. Let E and F be two locally convex t.v.s. and let P
(resp. Q) be a family of seminorms generating the topology on E (resp.on F).
The m—topology on E ® F is generated by the family of seminorms

{p®q:peP,qeQ},
where for any p € P,q € Q,0 € E® F we define:
(p®q)(0) :=inf{p > 0: 0 € pconvy(Up, @ V;)}
with Uy :=={x € E:p(x) <1} and Vy:={y € F :q(y) <1}.
Proof. (Exercise Sheet 7) O
The seminorm p® g on £ ® F defined in the previous proposition is called
tensor product of the seminorms p and q (or projective cross seminorm) and

it can be represented in a more practical way that shows even more directly
its relation to the seminorms defining the topologies on £ and F.

Theorem 4.2.3.
a) Forany 0 € E® F, we have:

(p®q)(0) := inf {ZP(%)Q(%) 0= 2, @y, ax € E,yp € Fyr € N} -
k=1 k=1

b) Forallx € E andy € F, (p®q)(x®@y) = p(x)q(y).
Proof. (see Lect 14) O
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Proposition 4.2.4. Let E and F be two locally convex t.v.s.. E ®; F 1s
Hausdorff if and only if E and F are both Hausdorff.

Proof. (Exercise Sheet 7) O

Corollary 4.2.5. Let (E,p) and (F,q) be seminormed spaces. Then p ® q is
a norm on E® F if and only if p and q are both norms.

Proof.

Under our assumptions, the m—topology on E' ® F' is generated by the single
seminorm p ® q. Then, recalling that a seminormed space is normed iff it is
Hausdorff and using Proposition 4.2.4, we get: (E ® F,p ® q) is normed <
E ®, F is Hausdorff & E and F' are both Hausdorff < (E,p) and (F,q) are
both normed. O

Definition 4.2.6. Let (E,p) and (F,q) be normed spaces. The normed space
(E® F,p®q) is called the projective tensor product of E and F and p ® q is
said to be the corresponding projective tensor norm.
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