(c) If (M_1, ϕ_1) and (M_2, ϕ_2) are two tensor products of E and F, then there is a bijective linear map u such that the following diagram is commutative.

Proof.

(a) Let \mathcal{H} be the vector space of all functions from $E \times F$ into \mathbb{K} which vanish outside a finite set (\mathcal{H} is often called the free space of $E \times F$). For any $(x, y) \in E \times F$, let us define the function $e_{(x,y)} : E \times F \to \mathbb{K}$ as follows:

$$e_{(x,y)}(z,w) := \begin{cases} 1 & \text{if } (z,w) = (x,y) \\ 0 & \text{otherwise} \end{cases}$$

Then $\mathcal{B}_{\mathcal{H}} := \{e_{(x,y)} : (x,y) \in E \times F\}$ forms a basis of \mathcal{H} and so $\forall h \in \mathcal{H}$, $\exists! \lambda_{xy} \in \mathbb{K}$ s.t. $h = \sum_{x \in E} \sum_{y \in F} \lambda_{xy} e_{(x,y)}$ with $\lambda_{xy} = 0$ for all but finitely many x's in E and y's in Y. Let us consider now the following linear subspace of \mathcal{H} :

$$N := span\left\{e_{\left(\sum_{i=1}^{n} a_{i}x_{i}, \sum_{j=1}^{m} b_{j}y_{j}\right)} - \sum_{i=1}^{n} \sum_{j=1}^{m} a_{i}b_{j}e_{(x_{i},y_{j})} : n, m \in \mathbb{N}, a_{i}, b_{j} \in \mathbb{K}, (x_{i}, y_{j}) \in E \times F\right\}.$$

We then denote by M the quotient vector space \mathcal{H}/N , by π the quotient map from \mathcal{H} onto M and by

$$\begin{array}{rccc} \phi: & E \times F & \to & M \\ & (x,y) & \to & \phi(x,y) := \pi \left(e_{(x,y)} \right). \end{array}$$

It is easy to see that the map ϕ is bilinear. Let us just show the linearity in the first variable as the proof in the second variable is just symmetric. Fixed $y \in F$, for any $a, b \in \mathbb{K}$ and any $x_1, x_2 \in E$, we get that:

$$\begin{aligned} \phi(ax_1 + bx_2, y) - a\phi(x_1, y) - b\phi(x_2, y) &= \pi \left(e_{(ax_1 + bx_2, y)} \right) - a\pi \left(e_{(x_1, y)} \right) - b\pi \left(e_{x_2, y} \right) \\ &= \pi \left(e_{(ax_1 + bx_2, y)} - ae_{(x_1, y)} - be_{(x_2, y)} \right) \\ &= 0, \end{aligned}$$

where the last equality holds since $e_{(ax_1+bx_2,y)} - ae_{(x_1,y)} - be_{(x_2,y)} \in N$.

We aim to show that (M, ϕ) is a tensor product of E and F. It is clear from the definition of ϕ that

$$span(\phi(E \times F)) = span(\pi(\mathcal{B}_{\mathcal{H}})) = \pi(\mathcal{H}) = M,$$

59

i.e. (TP1) holds. It remains to prove that E and F are ϕ -linearly disjoint. Let $r \in \mathbb{N}$, $\{x_1, \ldots, x_r\} \subseteq E$ and $\{y_1, \ldots, y_r\} \subseteq F$ be such that $\sum_{i=1}^r \phi(x_i, y_i) = 0$. Suppose that the y_i 's are linearly independent. For any $\varphi \in E^*$, let us define the linear mapping $A_{\varphi} : \mathcal{H} \to F$ by setting $A_{\varphi}(e_{(x,y)}) := \varphi(x)y$. Then it is easy to check that A_{φ} vanishes on N, so it induces a map $\tilde{A}_{\varphi} : M \to F$ s.t. $\tilde{A}_{\varphi}(\pi(f)) = A(f), \forall f \in \mathcal{H}$. Hence, since $\sum_{i=1}^r \phi(x_i, y_i) = 0$ can be rewritten as $\pi \left(\sum_{i=1}^r e_{(x_i, y_i)}\right) = 0$, we get that

$$0 = \tilde{A}_{\varphi}\left(\pi\left(\sum_{i=1}^{r} e_{(x_i, y_i)}\right)\right) = A_{\varphi}\left(\sum_{i=1}^{r} e_{(x_i, y_i)}\right) = \sum_{i=1}^{r} A_{\varphi}(e_{(x_i, y_i)}) = \sum_{i=1}^{r} \varphi(x_i)y_i.$$

This together with the linear independence of the y_i 's implies $\varphi(x_i) = 0$ for all $i \in \{1, \ldots, r\}$. Since the latter holds for all $\varphi \in E^*$, we have that $x_i = 0$ for all $i \in \{1, \ldots, r\}$. Exchanging the roles of the x_i 's and the y_i 's we get that (LD) holds, and so does (TP2).

(b) Let (M, ϕ) be a tensor product of E and F, G a vector space and b: $E \times F \to G$ a bilinear map. Consider $\{x_{\alpha}\}_{\alpha \in A}$ and $\{y_{\beta}\}_{\beta \in B}$ bases of Eand F, respectively. We know that $\{\phi(x_{\alpha}, y_{\beta}) : \alpha \in A, \beta \in B\}$ forms a basis of M, as $span(\phi(E \times F)) = M$ and, by Proposition 4.1.2, (LD') holds so the $\phi(x_{\alpha}, y_{\beta})$'s for all $\alpha \in A$ and all $\beta \in B$ are linearly independent. The linear mapping \tilde{b} will therefore be the unique linear map of M into G such that

$$\forall \alpha \in A, \forall \beta \in B, b(\phi(x_{\alpha}, y_{\beta})) = b(x_{\alpha}, y_{\beta}).$$

Hence, the diagram in (b) commutes.

(c) Let (M_1, ϕ_1) and (M_2, ϕ_2) be two tensor products of E and F. Then using twice the universal property (b) we get that there exist unique linear maps $u: M_1 \to M_2$ and $v: M_2 \to M_1$ such that the following diagrams both commute:

Then combining $u \circ \phi_1 = \phi_2$ with $v \circ \phi_2 = \phi_1$, we get that u and v are one the inverse of the other. Hence, there is an algebraic isomorphism between M_1 and M_2 .

It is now natural to introduce the concept of tensor product of linear maps.

Proposition 4.1.5. Let E, F, E_1, F_1 be four vector spaces over \mathbb{K} , and let $u: E \to E_1$ and $v: F \to F_1$ be linear mappings. There is a unique linear map of $E \otimes F$ into $E_1 \otimes F_1$, called the tensor product of u and v and denoted by $u \otimes v$, such that

$$(u \otimes v)(x \otimes y) = u(x) \otimes v(y), \quad \forall x \in E, \forall y \in F.$$

Proof.

Let us define the mapping

$$b: E \times F \rightarrow E_1 \otimes F_1$$

(x,y) $\mapsto b(x,y) := u(x) \otimes v(y),$

which is clearly bilinear because of the linearity of u and v and the bilinearity of the canonical map of the tensor product $E_1 \otimes F_1$. Then by the universal property there is a unique linear map $\tilde{b}: E \otimes F \to E_1 \otimes F_1$ s.t. the following diagram commutes:

i.e. $\tilde{b}(x \otimes y) = b(x, y), \forall (x, y) \in E \times F$. Hence, using the definition of b, we get that $\tilde{b} \equiv u \otimes v$.

Examples 4.1.6.

1. Let $n, m \in \mathbb{N}$, $E = \mathbb{K}^n$ and $F = \mathbb{K}^m$. Then $E \otimes F = \mathbb{K}^{n \times m}$ is a tensor product of E and F whose canonical bilinear map ϕ is given by:

$$\phi: E \times F \longrightarrow \mathbb{K}^{n \times m} \\ \left((x_i)_{i=1}^n, (y_j)_{j=1}^m \right) \mapsto (x_i y_j)_{1 \le i \le n, 1 \le j \le m}.$$

2. Let X and Y be two sets. For any functions $f: X \to \mathbb{K}$ and $g: Y \to \mathbb{K}$, we define:

$$\begin{array}{rcccc} f \otimes g : & X \times Y & \to & \mathbb{K} \\ & & (x,y) & \mapsto & f(x)g(y) \end{array}$$

Let E (resp. F) be the linear space of all functions from X (resp. Y) to \mathbb{K} endowed with the usual addition and multiplication by scalars. We

denote by M the linear subspace of the space of all functions from $X \times Y$ to \mathbb{K} spanned by the elements of the form $f \otimes g$ for all $f \in E$ and $g \in F$. Then M is actually a tensor product of E and F (see Exercise Sheet 7).

Given X and Y open subsets of \mathbb{R}^n and \mathbb{R}^m respectively, we can use the definitions in Example 2 above to construct the tensors $\mathcal{C}^k(X) \otimes \mathcal{C}^l(Y)$ for any $1 \leq k, l \leq \infty$. Then it is possible to show the following result (see e.g. [5, Theorem 39.2] for a proof).

Theorem 4.1.7. Let X and Y open subsets of \mathbb{R}^n and \mathbb{R}^m respectively. Then $\mathcal{C}^{\infty}_c(X) \otimes \mathcal{C}^{\infty}_c(Y)$ is sequentially dense in $\mathcal{C}^{\infty}_c(X \times Y)$ endowed with the \mathcal{C}^{∞} -topology.

4.2 Topologies on the tensor product of locally convex t.v.s.

Given two locally convex t.v.s. E and F, there various ways to construct a topology on the tensor product $E \otimes F$ which makes the vector space $E \otimes F$ in a t.v.s.. Indeed, starting from the topologies on E and F, one can define a topology on $E \otimes F$ either relying directly on the seminorms on E and F, or using an embedding of $E \otimes F$ in some space related to E and F over which a natural topology already exists. The first method leads to the so-called π -topology. The second method may lead instead to a variety of topologies, the most important of which is the so-called ε -topology that is based on the isomorphism between $E \otimes F$ and $B(E'_{\sigma}, F'_{\sigma})$ (see Proposition ??).

4.2.1 π -topology

Let us define the first main topology on $E \otimes F$ which we will see can be directly characterized by mean of the seminorms generating the topologies on the starting locally convex t.v.s. E and F.

Definition 4.2.1 (π -topology).

Given two locally convex t.v.s. E and F, we define the π -topology (or projective topology) on $E \otimes F$ to be the finest locally convex topology on this vector space for which the canonical mapping $E \times F \to E \otimes F$ is continuous. The space $E \otimes F$ equipped with the π -topology will be denoted by $E \otimes_{\pi} F$.

A basis of neighbourhoods of the origin in $E \otimes_{\pi} F$ is given by the family:

$$\mathcal{B}_{\pi} := \{ conv_b(U_{\alpha} \otimes V_{\beta}) : U_{\alpha} \in \mathcal{B}_E, V_{\beta} \in \mathcal{B}_F \},\$$

where \mathcal{B}_E (resp. \mathcal{B}_F) is a basis of neighbourhoods of the origin in E (resp. in F), $U_{\alpha} \otimes V_{\beta} := \{x \otimes y \in E \otimes F : x \in U_{\alpha}, y \in V_{\beta}\}$ and $conv_b(U_{\alpha} \otimes V_{\beta})$ denotes the smallest convex balanced subset of $E \otimes F$ containing $U_{\alpha} \otimes V_{\beta}$. Indeed, by Theorem 4.1.14 in TVS-I, the topology generated by \mathcal{B}_{π} is a locally convex topology $E \otimes F$ and it makes continuous the canonical map \otimes , since for any $U_{\alpha} \in \mathcal{B}_E$ and $V_{\beta} \in \mathcal{B}_F$ we have that $\otimes^{-1}(conv_b(U_{\alpha} \otimes V_{\beta})) \supseteq \otimes^{-1}(U_{\alpha} \otimes V_{\beta}) =$ $U_{\alpha} \times V_{\beta}$ which is a neighbourhood of the origin in $E \times F$. Hence, the topology generated by \mathcal{B}_{π} is coarser than the π -topology. Moreover, the π -topology is by definition locally convex and so it has a basis \mathcal{B} of convex balanced neighbourhoods of the origin in $E \otimes F$. Then, as the canonical mapping \otimes is continuous w.r.t. the π -topology, we have that for any $C \in \mathcal{B}$ there exist $U_{\alpha} \in \mathcal{B}_E$ and $V_{\beta} \in \mathcal{B}_F$ s.t. $U_{\alpha} \times V_{\beta} \subseteq \otimes^{-1}(C)$. Hence, $U_{\alpha} \otimes V_{\beta} \subseteq C$ and so $conv_b(U_{\alpha} \otimes V_{\beta}) \subseteq conv_b(C) = C$, which yields that the topology generated by \mathcal{B}_{π} is finer than the π -topology.

The π -topology on $E \otimes F$ can be described by means of the seminorms defining the locally convex topologies on E and F. Indeed, we have the following characterization of the π -topology.

Proposition 4.2.2. Let E and F be two locally convex t.v.s. and let \mathcal{P} (resp. \mathcal{Q}) be a family of seminorms generating the topology on E (resp. on F). The π -topology on $E \otimes F$ is generated by the family of seminorms

$$\{p\otimes q:\,p\in\mathcal{P},q\in\mathcal{Q}\},$$

where for any $p \in \mathcal{P}, q \in \mathcal{Q}, \theta \in E \otimes F$ we define:

$$(p \otimes q)(\theta) := \inf\{\rho > 0 : \theta \in \rho conv_b(U_p \otimes V_q)\}$$

with $U_p := \{x \in E : p(x) \le 1\}$ and $V_q := \{y \in F : q(y) \le 1\}.$

Proof. (Exercise Sheet 7)

The seminorm $p \otimes q$ on $E \otimes F$ defined in the previous proposition is called tensor product of the seminorms p and q (or projective cross seminorm) and it can be represented in a more practical way that shows even more directly its relation to the seminorms defining the topologies on E and F.

Theorem 4.2.3.

a) For any $\theta \in E \otimes F$, we have:

$$(p \otimes q)(\theta) := \inf \left\{ \sum_{k=1}^r p(x_k)q(y_k) : \theta = \sum_{k=1}^r x_k \otimes y_k, \, , x_k \in E, y_k \in F, r \in \mathbb{N} \right\}.$$

b) For all $x \in E$ and $y \in F$, $(p \otimes q)(x \otimes y) = p(x)q(y)$.

Proof. (see Lect 14)

63

Proposition 4.2.4. Let E and F be two locally convex t.v.s.. $E \otimes_{\pi} F$ is Hausdorff if and only if E and F are both Hausdorff.

Proof. (Exercise Sheet 7)

Corollary 4.2.5. Let (E, p) and (F, q) be seminormed spaces. Then $p \otimes q$ is a norm on $E \otimes F$ if and only if p and q are both norms.

Proof.

Under our assumptions, the π -topology on $E \otimes F$ is generated by the single seminorm $p \otimes q$. Then, recalling that a seminormed space is normed iff it is Hausdorff and using Proposition 4.2.4, we get: $(E \otimes F, p \otimes q)$ is normed \Leftrightarrow $E \otimes_{\pi} F$ is Hausdorff $\Leftrightarrow E$ and F are both Hausdorff $\Leftrightarrow (E, p)$ and (F, q) are both normed.

Definition 4.2.6. Let (E, p) and (F, q) be normed spaces. The normed space $(E \otimes F, p \otimes q)$ is called the projective tensor product of E and F and $p \otimes q$ is said to be the corresponding projective tensor norm.