
4.1. Tensor product of vector spaces

(c) If (M
1

,�
1

) and (M
2

,�
2

) are two tensor products of E and F , then there is
a bijective linear map u such that the following diagram is commutative.

E ⇥ F M
2

M
1

�1

�2

u

Proof.

(a) Let H be the vector space of all functions from E⇥F into K which vanish
outside a finite set (H is often called the free space of E ⇥ F ). For any
(x, y) 2 E ⇥ F , let us define the function e

(x,y)

: E ⇥ F ! K as follows:

e
(x,y)

(z, w) :=

⇢

1 if (z, w) = (x, y)
0 otherwise

.

Then BH := {e
(x,y)

: (x, y) 2 E ⇥ F} forms a basis of H and so 8h 2 H,
9! �

xy

2 K s.t. h =
P

x2E
P

y2F �
xy

e
(x,y)

with �
xy

= 0 for all but finitely
many x’s in E and y’s in Y . Let us consider now the following linear
subspace of H:

N := span

8
<

:e

 
nP

i=1
a

i

x

i

,

mP

j=1
b

j

y

j

! �
nX

i=1

mX

j=1

a

i

b

j

e(x
i

,y

j

) : n,m 2 N, a
i

, b

j

2 K, (x
i

, y

j

) 2 E ⇥ F

9
=

; .

We then denote by M the quotient vector space H/N , by ⇡ the quotient
map from H onto M and by

� : E ⇥ F ! M
(x, y) ! �(x, y) := ⇡

�

e
(x,y)

�

.

It is easy to see that the map � is bilinear. Let us just show the linearity
in the first variable as the proof in the second variable is just symmetric.
Fixed y 2 F , for any a, b 2 K and any x

1

, x
2

2 E, we get that:

�(ax1 + bx2, y)� a�(x1, y)� b�(x2, y) = ⇡
�

e(ax1+bx2,y)

�� a⇡
�

e(x1,y)

�� b⇡
�

e
x2,y)

�

= ⇡
�

e(ax1+bx2,y) � ae(x1,y) � be(x2,y)

�

= 0,

where the last equality holds since e
(ax1+bx2,y)

� ae
(x1,y)

� be
(x2,y)

2 N .
We aim to show that (M,�) is a tensor product of E and F . It is clear

from the definition of � that

span(�(E ⇥ F )) = span(⇡(BH)) = ⇡(H) = M,
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4. Tensor products of t.v.s.

i.e. (TP1) holds. It remains to prove that E and F are ��linearly dis-
joint. Let r 2 N, {x

1

, . . . , x
r

} ✓ E and {y
1

, . . . , y
r

} ✓ F be such that
P

r

i=1

�(x
i

, y
i

) = 0. Suppose that the y
i

’s are linearly independent. For
any ' 2 E⇤, let us define the linear mapping A

'

: H ! F by setting
A

'

(e
(x,y)

) := '(x)y. Then it is easy to check that A
'

vanishes on N , so it

induces a map Ã
'

: M ! F s.t. Ã
'

(⇡(f)) = A(f), 8 f 2 H. Hence, since
P

r

i=1

�(x
i

, y
i

) = 0 can be rewritten as ⇡
�

P

r

i=1

e
(x

i

,y

i

)

�

= 0, we get that

0 = Ã
'

 

⇡

 

r

X

i=1

e(x
i

,y

i

)

!!

= A
'

 

r

X

i=1

e(x
i

,y

i

)

!

=
r

X

i=1

A
'

(e(x
i

,y

i

)) =
r

X

i=1

'(x
i

)y
i

.

This together with the linear independence of the y
i

’s implies '(x
i

) = 0
for all i 2 {1, . . . , r}. Since the latter holds for all ' 2 E⇤, we have that
x
i

= 0 for all i 2 {1, . . . , r}. Exchanging the roles of the x
i

’s and the y
i

’s
we get that (LD) holds, and so does (TP2) .

(b) Let (M,�) be a tensor product of E and F , G a vector space and b :
E ⇥ F ! G a bilinear map. Consider {x

↵

}
↵2A and {y

�

}
�2B bases of E

and F , respectively. We know that {�(x
↵

, y
�

) : ↵ 2 A,� 2 B} forms a
basis of M , as span(�(E⇥F )) = M and, by Proposition 4.1.2, (LD’) holds
so the �(x

↵

, y
�

)’s for all ↵ 2 A and all � 2 B are linearly independent.
The linear mapping b̃ will therefore be the unique linear map of M into
G such that

8↵ 2 A, 8� 2 B, b̃(�(x
↵

, y
�

)) = b(x
↵

, y
�

).

Hence, the diagram in (b) commutes.
(c) Let (M

1

,�
1

) and (M
2

,�
2

) be two tensor products of E and F . Then using
twice the universal property (b) we get that there exist unique linear maps
u : M

1

! M
2

and v : M
2

! M
1

such that the following diagrams both
commute:

E ⇥ F M
2

M
1

�1

�2

u

E ⇥ F M
1

M
2

�2

�1

v

Then combining u � �
1

= �
2

with v � �
2

= �
1

, we get that u and v are
one the inverse of the other. Hence, there is an algebraic isomorphism
between M

1

and M
2

.
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4.1. Tensor product of vector spaces

It is now natural to introduce the concept of tensor product of linear maps.

Proposition 4.1.5. Let E,F,E
1

, F
1

be four vector spaces over K, and let
u : E ! E

1

and v : F ! F
1

be linear mappings. There is a unique linear map
of E ⌦ F into E

1

⌦ F
1

, called the tensor product of u and v and denoted by
u⌦ v, such that

(u⌦ v)(x⌦ y) = u(x)⌦ v(y), 8x 2 E, 8 y 2 F.

Proof.
Let us define the mapping

b : E ⇥ F ! E
1

⌦ F
1

(x, y) 7! b(x, y) := u(x)⌦ v(y),

which is clearly bilinear because of the linearity of u and v and the bilinearity
of the canonical map of the tensor product E

1

⌦ F
1

. Then by the universal
property there is a unique linear map b̃ : E ⌦ F ! E

1

⌦ F
1

s.t. the following
diagram commutes:

E ⇥ F E
1

⌦ F
1

E ⌦ F

⌦

b

˜

b

i.e. b̃(x ⌦ y) = b(x, y), 8 (x, y) 2 E ⇥ F. Hence, using the definition of b, we
get that b̃ ⌘ u⌦ v.

Examples 4.1.6.

1. Let n,m 2 N, E = Kn and F = Km. Then E ⌦ F = Kn⇥m is a tensor
product of E and F whose canonical bilinear map � is given by:

� : E ⇥ F ! Kn⇥m

⇣

(x
i

)n
i=1

, (y
j

)m
j=1

⌘

7! (x
i

y
j

)
1in,1jm

.

2. Let X and Y be two sets. For any functions f : X ! K and g : Y ! K,
we define:

f ⌦ g : X ⇥ Y ! K
(x, y) 7! f(x)g(y).

Let E (resp. F ) be the linear space of all functions from X (resp. Y )
to K endowed with the usual addition and multiplication by scalars. We
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4. Tensor products of t.v.s.

denote by M the linear subspace of the space of all functions from X⇥Y
to K spanned by the elements of the form f ⌦g for all f 2 E and g 2 F .
Then M is actually a tensor product of E and F (see Exercise Sheet 7).

Given X and Y open subsets of Rn and Rm respectively, we can use the
definitions in Example 2 above to construct the tensors Ck(X)⌦Cl(Y ) for any
1  k, l  1. Then it is possible to show the following result (see e.g. [5,
Theorem 39.2] for a proof).

Theorem 4.1.7. Let X and Y open subsets of Rn and Rm respectively.
Then C1

c

(X)⌦ C1
c

(Y ) is sequentially dense in C1
c

(X ⇥ Y ) endowed with the
C1�topology.

4.2 Topologies on the tensor product of locally convex t.v.s.

Given two locally convex t.v.s. E and F , there various ways to construct a
topology on the tensor product E ⌦ F which makes the vector space E ⌦ F
in a t.v.s.. Indeed, starting from the topologies on E and F , one can define a
topology on E ⌦ F either relying directly on the seminorms on E and F , or
using an embedding of E ⌦ F in some space related to E and F over which
a natural topology already exists. The first method leads to the so-called
⇡�topology. The second method may lead instead to a variety of topologies,
the most important of which is the so-called "�topology that is based on the
isomorphism between E ⌦ F and B(E0

�

, F 0
�

) (see Proposition ??).

4.2.1 ⇡�topology

Let us define the first main topology on E ⌦ F which we will see can be
directly characterized by mean of the seminorms generating the topologies on
the starting locally convex t.v.s. E and F .

Definition 4.2.1 (⇡�topology).
Given two locally convex t.v.s. E and F , we define the ⇡�topology (or pro-
jective topology) on E ⌦ F to be the finest locally convex topology on this
vector space for which the canonical mapping E ⇥ F ! E ⌦ F is continuous.
The space E ⌦ F equipped with the ⇡�topology will be denoted by E ⌦

⇡

F .

A basis of neighbourhoods of the origin in E ⌦
⇡

F is given by the family:

B
⇡

:= {conv
b

(U
↵

⌦ V
�

) : U
↵

2 B
E

, V
�

2 B
F

} ,

where B
E

(resp. B
F

) is a basis of neighbourhoods of the origin in E (resp.
in F ), U

↵

⌦ V
�

:= {x⌦ y 2 E ⌦ F : x 2 U
↵

, y 2 V
�

} and conv
b

(U
↵

⌦ V
�

) de-
notes the smallest convex balanced subset of E⌦F containing U

↵

⌦V
�

. Indeed,
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4.2. Topologies on the tensor product of locally convex t.v.s.

by Theorem 4.1.14 in TVS-I, the topology generated by B
⇡

is a locally convex
topology E ⌦ F and it makes continuous the canonical map ⌦, since for any
U
↵

2 B
E

and V
�

2 B
F

we have that ⌦�1(conv
b

(U
↵

⌦ V
�

)) ◆ ⌦�1(U
↵

⌦ V
�

) =
U
↵

⇥V
�

which is a neighbourhood of the origin in E⇥F . Hence, the topology
generated by B

⇡

is coarser than the ⇡�topology. Moreover, the ⇡�topology
is by definition locally convex and so it has a basis B of convex balanced
neighbourhoods of the origin in E ⌦ F . Then, as the canonical mapping ⌦
is continuous w.r.t. the ⇡�topology, we have that for any C 2 B there exist
U
↵

2 B
E

and V
�

2 B
F

s.t. U
↵

⇥ V
�

✓ ⌦�1(C). Hence, U
↵

⌦ V
�

✓ C and so
conv

b

(U
↵

⌦V
�

) ✓ conv
b

(C) = C, which yields that the topology generated by
B
⇡

is finer than the ⇡�topology.

The ⇡�topology on E ⌦ F can be described by means of the seminorms
defining the locally convex topologies on E and F . Indeed, we have the fol-
lowing characterization of the ⇡�topology.

Proposition 4.2.2. Let E and F be two locally convex t.v.s. and let P
(resp.Q) be a family of seminorms generating the topology on E (resp.on F ).
The ⇡�topology on E ⌦ F is generated by the family of seminorms

{p⌦ q : p 2 P, q 2 Q},
where for any p 2 P, q 2 Q, ✓ 2 E ⌦ F we define:

(p⌦ q)(✓) := inf{⇢ > 0 : ✓ 2 ⇢conv
b

(U
p

⌦ V
q

)}
with U

p

:= {x 2 E : p(x)  1} and V
q

:= {y 2 F : q(y)  1}.
Proof. (Exercise Sheet 7)

The seminorm p⌦ q on E⌦F defined in the previous proposition is called
tensor product of the seminorms p and q (or projective cross seminorm) and
it can be represented in a more practical way that shows even more directly
its relation to the seminorms defining the topologies on E and F .

Theorem 4.2.3.

a) For any ✓ 2 E ⌦ F , we have:

(p⌦q)(✓) := inf

(

r

X

k=1

p(x
k

)q(y
k

) : ✓ =
r

X

k=1

x
k

⌦ y
k

, , x
k

2 E, y
k

2 F, r 2 N
)

.

b) For all x 2 E and y 2 F , (p⌦ q)(x⌦ y) = p(x)q(y).

Proof. (see Lect 14)
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4. Tensor products of t.v.s.

Proposition 4.2.4. Let E and F be two locally convex t.v.s.. E ⌦
⇡

F is
Hausdor↵ if and only if E and F are both Hausdor↵.

Proof. (Exercise Sheet 7)

Corollary 4.2.5. Let (E, p) and (F, q) be seminormed spaces. Then p⌦ q is
a norm on E ⌦ F if and only if p and q are both norms.

Proof.
Under our assumptions, the ⇡�topology on E ⌦ F is generated by the single
seminorm p ⌦ q. Then, recalling that a seminormed space is normed i↵ it is
Hausdor↵ and using Proposition 4.2.4, we get: (E ⌦ F, p ⌦ q) is normed ,
E ⌦

⇡

F is Hausdor↵ , E and F are both Hausdor↵ , (E, p) and (F, q) are
both normed.

Definition 4.2.6. Let (E, p) and (F, q) be normed spaces. The normed space
(E ⌦F, p⌦ q) is called the projective tensor product of E and F and p⌦ q is
said to be the corresponding projective tensor norm.
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