(c) If $\left(M_{1}, \phi_{1}\right)$ and $\left(M_{2}, \phi_{2}\right)$ are two tensor products of E and F, then there is a bijective linear map u such that the following diagram is commutative.

Proof.

(a) Let \mathcal{H} be the vector space of all functions from $E \times F$ into \mathbb{K} which vanish outside a finite set (\mathcal{H} is often called the free space of $E \times F$). For any $(x, y) \in E \times F$, let us define the function $e_{(x, y)}: E \times F \rightarrow \mathbb{K}$ as follows:

$$
e_{(x, y)}(z, w):= \begin{cases}1 & \text { if }(z, w)=(x, y) \\ 0 & \text { otherwise }\end{cases}
$$

Then $\mathcal{B}_{\mathcal{H}}:=\left\{e_{(x, y)}:(x, y) \in E \times F\right\}$ forms a basis of \mathcal{H} and so $\forall h \in \mathcal{H}$, $\exists!\lambda_{x y} \in \mathbb{K}$ s.t. $h=\sum_{x \in E} \sum_{y \in F} \lambda_{x y} e_{(x, y)}$ with $\lambda_{x y}=0$ for all but finitely many x 's in E and y 's in Y. Let us consider now the following linear subspace of \mathcal{H} :
$N:=\operatorname{span}\left\{e^{e}\left(\sum_{i=1}^{n} a_{i} x_{i}, \sum_{j=1}^{m} b_{j} y_{j}\right)-\sum_{i=1}^{n} \sum_{j=1}^{m} a_{i} b_{j} e_{\left(x_{i}, y_{j}\right)}: n, m \in \mathbb{N}, a_{i}, b_{j} \in \mathbb{K},\left(x_{i}, y_{j}\right) \in E \times F\right\}$.
We then denote by M the quotient vector space \mathcal{H} / N, by π the quotient map from \mathcal{H} onto M and by

$$
\begin{aligned}
\phi: & E \times F
\end{aligned} \rightarrow M,
$$

It is easy to see that the map ϕ is bilinear. Let us just show the linearity in the first variable as the proof in the second variable is just symmetric. Fixed $y \in F$, for any $a, b \in \mathbb{K}$ and any $x_{1}, x_{2} \in E$, we get that:

$$
\begin{aligned}
\phi\left(a x_{1}+b x_{2}, y\right)-a \phi\left(x_{1}, y\right)-b \phi\left(x_{2}, y\right) & =\pi\left(e_{\left(a x_{1}+b x_{2}, y\right)}\right)-a \pi\left(e_{\left(x_{1}, y\right)}\right)-b \pi\left(e_{\left.x_{2}, y\right)}\right) \\
& =\pi\left(e_{\left(a x_{1}+b x_{2}, y\right)}-a e_{\left(x_{1}, y\right)}-b e_{\left(x_{2}, y\right)}\right) \\
& =0,
\end{aligned}
$$

where the last equality holds since $e_{\left(a x_{1}+b x_{2}, y\right)}-a e_{\left(x_{1}, y\right)}-b e_{\left(x_{2}, y\right)} \in N$.
We aim to show that (M, ϕ) is a tensor product of E and F. It is clear from the definition of ϕ that

$$
\operatorname{span}(\phi(E \times F))=\operatorname{span}\left(\pi\left(\mathcal{B}_{\mathcal{H}}\right)\right)=\pi(\mathcal{H})=M
$$

i.e. (TP1) holds. It remains to prove that E and F are ϕ-linearly disjoint. Let $r \in \mathbb{N},\left\{x_{1}, \ldots, x_{r}\right\} \subseteq E$ and $\left\{y_{1}, \ldots, y_{r}\right\} \subseteq F$ be such that $\sum_{i=1}^{r} \phi\left(x_{i}, y_{i}\right)=0$. Suppose that the y_{i} 's are linearly independent. For any $\varphi \in E^{*}$, let us define the linear mapping $A_{\varphi}: \mathcal{H} \rightarrow F$ by setting $A_{\varphi}\left(e_{(x, y)}\right):=\varphi(x) y$. Then it is easy to check that A_{φ} vanishes on N, so it induces a map $\tilde{A}_{\varphi}: M \rightarrow F$ s.t. $\tilde{A}_{\varphi}(\pi(f))=A(f), \forall f \in \mathcal{H}$. Hence, since $\sum_{i=1}^{r} \phi\left(x_{i}, y_{i}\right)=0$ can be rewritten as $\pi\left(\sum_{i=1}^{r} e_{\left(x_{i}, y_{i}\right)}\right)=0$, we get that
$0=\tilde{A}_{\varphi}\left(\pi\left(\sum_{i=1}^{r} e_{\left(x_{i}, y_{i}\right)}\right)\right)=A_{\varphi}\left(\sum_{i=1}^{r} e_{\left(x_{i}, y_{i}\right)}\right)=\sum_{i=1}^{r} A_{\varphi}\left(e_{\left(x_{i}, y_{i}\right)}\right)=\sum_{i=1}^{r} \varphi\left(x_{i}\right) y_{i}$.
This together with the linear independence of the y_{i} 's implies $\varphi\left(x_{i}\right)=0$ for all $i \in\{1, \ldots, r\}$. Since the latter holds for all $\varphi \in E^{*}$, we have that $x_{i}=0$ for all $i \in\{1, \ldots, r\}$. Exchanging the roles of the x_{i} 's and the y_{i} 's we get that (LD) holds, and so does (TP2).
(b) Let (M, ϕ) be a tensor product of E and F, G a vector space and b : $E \times F \rightarrow G$ a bilinear map. Consider $\left\{x_{\alpha}\right\}_{\alpha \in A}$ and $\left\{y_{\beta}\right\}_{\beta \in B}$ bases of E and F, respectively. We know that $\left\{\phi\left(x_{\alpha}, y_{\beta}\right): \alpha \in A, \beta \in B\right\}$ forms a basis of M, as $\operatorname{span}(\phi(E \times F))=M$ and, by Proposition 4.1.2, (LD') holds so the $\phi\left(x_{\alpha}, y_{\beta}\right)$'s for all $\alpha \in A$ and all $\beta \in B$ are linearly independent. The linear mapping \tilde{b} will therefore be the unique linear map of M into G such that

$$
\forall \alpha \in A, \forall \beta \in B, \tilde{b}\left(\phi\left(x_{\alpha}, y_{\beta}\right)\right)=b\left(x_{\alpha}, y_{\beta}\right) .
$$

Hence, the diagram in (b) commutes.
(c) Let $\left(M_{1}, \phi_{1}\right)$ and (M_{2}, ϕ_{2}) be two tensor products of E and F. Then using twice the universal property (b) we get that there exist unique linear maps $u: M_{1} \rightarrow M_{2}$ and $v: M_{2} \rightarrow M_{1}$ such that the following diagrams both commute:

Then combining $u \circ \phi_{1}=\phi_{2}$ with $v \circ \phi_{2}=\phi_{1}$, we get that u and v are one the inverse of the other. Hence, there is an algebraic isomorphism between M_{1} and M_{2}.

It is now natural to introduce the concept of tensor product of linear maps.
Proposition 4.1.5. Let E, F, E_{1}, F_{1} be four vector spaces over \mathbb{K}, and let $u: E \rightarrow E_{1}$ and $v: F \rightarrow F_{1}$ be linear mappings. There is a unique linear map of $E \otimes F$ into $E_{1} \otimes F_{1}$, called the tensor product of u and v and denoted by $u \otimes v$, such that

$$
(u \otimes v)(x \otimes y)=u(x) \otimes v(y), \quad \forall x \in E, \forall y \in F
$$

Proof.
Let us define the mapping

$$
b: \begin{array}{ll}
E \times F & \rightarrow E_{1} \otimes F_{1} \\
& (x, y)
\end{array} \mapsto b(x, y):=u(x) \otimes v(y),
$$

which is clearly bilinear because of the linearity of u and v and the bilinearity of the canonical map of the tensor product $E_{1} \otimes F_{1}$. Then by the universal property there is a unique linear map $\tilde{b}: E \otimes F \rightarrow E_{1} \otimes F_{1}$ s.t. the following diagram commutes:

i.e. $\tilde{b}(x \otimes y)=b(x, y), \forall(x, y) \in E \times F$. Hence, using the definition of b, we get that $\tilde{b} \equiv u \otimes v$.

Examples 4.1.6.

1. Let $n, m \in \mathbb{N}, E=\mathbb{K}^{n}$ and $F=\mathbb{K}^{m}$. Then $E \otimes F=\mathbb{K}^{n \times m}$ is a tensor product of E and F whose canonical bilinear map ϕ is given by:

$$
\begin{array}{llll}
\phi: & E \times F & \rightarrow \mathbb{K}^{n \times m} \\
& \left(\left(x_{i}\right)_{i=1}^{n},\left(y_{j}\right)_{j=1}^{m}\right) & \mapsto\left(x_{i} y_{j}\right)_{1 \leq i \leq n, 1 \leq j \leq m} .
\end{array}
$$

2. Let X and Y be two sets. For any functions $f: X \rightarrow \mathbb{K}$ and $g: Y \rightarrow \mathbb{K}$, we define:

$$
\begin{array}{lll}
f \otimes g: & X \times Y & \rightarrow \mathbb{K} \\
& (x, y) & \mapsto f(x) g(y) .
\end{array}
$$

Let E (resp. F) be the linear space of all functions from X (resp. Y) to \mathbb{K} endowed with the usual addition and multiplication by scalars. We
denote by M the linear subspace of the space of all functions from $X \times Y$ to \mathbb{K} spanned by the elements of the form $f \otimes g$ for all $f \in E$ and $g \in F$. Then M is actually a tensor product of E and F (see Exercise Sheet 7).

Given X and Y open subsets of \mathbb{R}^{n} and \mathbb{R}^{m} respectively, we can use the definitions in Example 2 above to construct the tensors $\mathcal{C}^{k}(X) \otimes \mathcal{C}^{l}(Y)$ for any $1 \leq k, l \leq \infty$. Then it is possible to show the following result (see e.g. [5, Theorem 39.2] for a proof).

Theorem 4.1.7. Let X and Y open subsets of \mathbb{R}^{n} and \mathbb{R}^{m} respectively. Then $\mathcal{C}_{c}^{\infty}(X) \otimes \mathcal{C}_{c}^{\infty}(Y)$ is sequentially dense in $\mathcal{C}_{c}^{\infty}(X \times Y)$ endowed with the \mathcal{C}^{∞}-topology.

4.2 Topologies on the tensor product of locally convex t.v.s.

Given two locally convex t.v.s. E and F, there various ways to construct a topology on the tensor product $E \otimes F$ which makes the vector space $E \otimes F$ in a t.v.s.. Indeed, starting from the topologies on E and F, one can define a topology on $E \otimes F$ either relying directly on the seminorms on E and F, or using an embedding of $E \otimes F$ in some space related to E and F over which a natural topology already exists. The first method leads to the so-called π-topology. The second method may lead instead to a variety of topologies, the most important of which is the so-called ε-topology that is based on the isomorphism between $E \otimes F$ and $B\left(E_{\sigma}^{\prime}, F_{\sigma}^{\prime}\right)$ (see Proposition ??).

4.2.1 π-topology

Let us define the first main topology on $E \otimes F$ which we will see can be directly characterized by mean of the seminorms generating the topologies on the starting locally convex t.v.s. E and F.

Definition 4.2.1 (π-topology).
Given two locally convex t.v.s. E and F, we define the π-topology (or projective topology) on $E \otimes F$ to be the finest locally convex topology on this vector space for which the canonical mapping $E \times F \rightarrow E \otimes F$ is continuous. The space $E \otimes F$ equipped with the π-topology will be denoted by $E \otimes_{\pi} F$.

A basis of neighbourhoods of the origin in $E \otimes_{\pi} F$ is given by the family:

$$
\mathcal{B}_{\pi}:=\left\{\operatorname{conv}_{b}\left(U_{\alpha} \otimes V_{\beta}\right): U_{\alpha} \in \mathcal{B}_{E}, V_{\beta} \in \mathcal{B}_{F}\right\},
$$

where \mathcal{B}_{E} (resp. \mathcal{B}_{F}) is a basis of neighbourhoods of the origin in E (resp. in $F), U_{\alpha} \otimes V_{\beta}:=\left\{x \otimes y \in E \otimes F: x \in U_{\alpha}, y \in V_{\beta}\right\}$ and $\operatorname{conv}_{b}\left(U_{\alpha} \otimes V_{\beta}\right)$ denotes the smallest convex balanced subset of $E \otimes F$ containing $U_{\alpha} \otimes V_{\beta}$. Indeed,
by Theorem 4.1.14 in TVS-I, the topology generated by \mathcal{B}_{π} is a locally convex topology $E \otimes F$ and it makes continuous the canonical map \otimes, since for any $U_{\alpha} \in \mathcal{B}_{E}$ and $V_{\beta} \in \mathcal{B}_{F}$ we have that $\otimes^{-1}\left(\operatorname{conv}_{b}\left(U_{\alpha} \otimes V_{\beta}\right)\right) \supseteq \otimes^{-1}\left(U_{\alpha} \otimes V_{\beta}\right)=$ $U_{\alpha} \times V_{\beta}$ which is a neighbourhood of the origin in $E \times F$. Hence, the topology generated by \mathcal{B}_{π} is coarser than the π-topology. Moreover, the π-topology is by definition locally convex and so it has a basis \mathcal{B} of convex balanced neighbourhoods of the origin in $E \otimes F$. Then, as the canonical mapping \otimes is continuous w.r.t. the π-topology, we have that for any $C \in \mathcal{B}$ there exist $U_{\alpha} \in \mathcal{B}_{E}$ and $V_{\beta} \in \mathcal{B}_{F}$ s.t. $U_{\alpha} \times V_{\beta} \subseteq \otimes^{-1}(C)$. Hence, $U_{\alpha} \otimes V_{\beta} \subseteq C$ and so $\operatorname{conv}_{b}\left(U_{\alpha} \otimes V_{\beta}\right) \subseteq \operatorname{conv}_{b}(C)=C$, which yields that the topology generated by \mathcal{B}_{π} is finer than the π-topology.

The π-topology on $E \otimes F$ can be described by means of the seminorms defining the locally convex topologies on E and F. Indeed, we have the following characterization of the π-topology.
Proposition 4.2.2. Let E and F be two locally convex t.v.s. and let \mathcal{P} (resp. Q) be a family of seminorms generating the topology on E (resp. on F). The π-topology on $E \otimes F$ is generated by the family of seminorms

$$
\{p \otimes q: p \in \mathcal{P}, q \in \mathcal{Q}\}
$$

where for any $p \in \mathcal{P}, q \in \mathcal{Q}, \theta \in E \otimes F$ we define:

$$
(p \otimes q)(\theta):=\inf \left\{\rho>0: \theta \in \operatorname{conv}_{b}\left(U_{p} \otimes V_{q}\right)\right\}
$$

with $U_{p}:=\{x \in E: p(x) \leq 1\}$ and $V_{q}:=\{y \in F: q(y) \leq 1\}$.
Proof. (Exercise Sheet 7)
The seminorm $p \otimes q$ on $E \otimes F$ defined in the previous proposition is called tensor product of the seminorms p and q (or projective cross seminorm) and it can be represented in a more practical way that shows even more directly its relation to the seminorms defining the topologies on E and F.
Theorem 4.2.3.
a) For any $\theta \in E \otimes F$, we have:

$$
(p \otimes q)(\theta):=\inf \left\{\sum_{k=1}^{r} p\left(x_{k}\right) q\left(y_{k}\right): \theta=\sum_{k=1}^{r} x_{k} \otimes y_{k},, x_{k} \in E, y_{k} \in F, r \in \mathbb{N}\right\} .
$$

b) For all $x \in E$ and $y \in F,(p \otimes q)(x \otimes y)=p(x) q(y)$.

Proof. (see Lect 14)

Proposition 4.2.4. Let E and F be two locally convex t.v.s.. $E \otimes_{\pi} F$ is Hausdorff if and only if E and F are both Hausdorff.

Proof. (Exercise Sheet 7)
Corollary 4.2.5. Let (E, p) and (F, q) be seminormed spaces. Then $p \otimes q$ is a norm on $E \otimes F$ if and only if p and q are both norms.

Proof.
Under our assumptions, the π-topology on $E \otimes F$ is generated by the single seminorm $p \otimes q$. Then, recalling that a seminormed space is normed iff it is Hausdorff and using Proposition 4.2.4, we get: $(E \otimes F, p \otimes q)$ is normed \Leftrightarrow $E \otimes_{\pi} F$ is Hausdorff $\Leftrightarrow E$ and F are both Hausdorff $\Leftrightarrow(E, p)$ and (F, q) are both normed.

Definition 4.2.6. Let (E, p) and (F, q) be normed spaces. The normed space $(E \otimes F, p \otimes q)$ is called the projective tensor product of E and F and $p \otimes q$ is said to be the corresponding projective tensor norm.

