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by Theorem 4.1.14 in TVS-I, the topology generated by B⇡ is a locally convex
topology E ⌦ F and it makes continuous the canonical map ⌦, since for any
U↵ 2 BE and V� 2 BF we have that ⌦�1(convb(U↵ ⌦ V�)) ◆ ⌦�1(U↵ ⌦ V�) =
U↵⇥V� which is a neighbourhood of the origin in E⇥F . Hence, the topology
generated by B⇡ is coarser than the ⇡�topology. Moreover, the ⇡�topology
is by definition locally convex and so it has a basis B of convex balanced
neighbourhoods of the origin in E ⌦ F . Then, as the canonical mapping ⌦
is continuous w.r.t. the ⇡�topology, we have that for any C 2 B there exist
U↵ 2 BE and V� 2 BF s.t. U↵ ⇥ V� ✓ ⌦�1(C). Hence, U↵ ⌦ V� ✓ C and so
convb(U↵⌦V�) ✓ convb(C) = C, which yields that the topology generated by
B⇡ is finer than the ⇡�topology.

The ⇡�topology on E ⌦ F can be described by means of the seminorms
defining the locally convex topologies on E and F . Indeed, we have the fol-
lowing characterization of the ⇡�topology.

Proposition 4.2.2. Let E and F be two locally convex t.v.s. and let P
(resp.Q) be a family of seminorms generating the topology on E (resp.on F ).
The ⇡�topology on E ⌦ F is generated by the family of seminorms

{p⌦ q : p 2 P, q 2 Q},
where for any p 2 P, q 2 Q, ✓ 2 E ⌦ F we define:

(p⌦ q)(✓) := inf{⇢ > 0 : ✓ 2 ⇢ convb(Up ⌦ Vq)}
with Up := {x 2 E : p(x)  1} and Vq := {y 2 F : q(y)  1}.
Proof. (Exercise Sheet 7)

The seminorm p⌦ q on E⌦F defined in the previous proposition is called
tensor product of the seminorms p and q (or projective cross seminorm) and
it can be represented in a more practical way that shows even more directly
its relation to the seminorms defining the topologies on E and F .

Theorem 4.2.3.

Let E and F be two locally convex t.v.s. and let P (resp. Q) be a family of
seminorms generating the topology on E (resp. on F ). Then for any p 2 P
and any q 2 Q we have that the following hold.
a) For all ✓ 2 E ⌦ F ,

(p⌦q)(✓) = inf

(

r
X

k=1

p(xk)q(yk) : ✓ =
r
X

k=1

xk ⌦ yk, , xk 2 E, yk 2 F, r 2 N
)

.

b) For all x 2 E and y 2 F , (p⌦ q)(x⌦ y) = p(x)q(y).
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4. Tensor products of t.v.s.

Proof.
a) As above, we set Up := {x 2 E : p(x)  1}, Vq := {y 2 F : q(y)  1} and
Wpq := convb(Up ⌦ Vq). Let ✓ 2 E ⌦ F and ⇢ > 0 such that ✓ 2 ⇢Wpq.

Let us preliminarily observe that the condition “✓ 2 ⇢Wpq for some ⇢ > 0”
is equivalent to:

✓ =
N
P

k=1

tkxk ⌦ yk with N 2 N, tk 2 K, xk 2 E and yk 2 F s.t.

N
P

k=1

|tk|  ⇢, p(xk)  1, q(yk)  1, 8k 2 {1, . . . , N}.
(4.2)

If we set ⇠k := tkxk and ⌘k := yk, then we can rewrite the condition (4.2) as

✓ =
N
X

k=1

⇠k ⌦ ⌘k with
N
X

k=1

p(⇠k)q(⌘k)  ⇢.

Then inf
n

PN
k=1

p(⇠k)q(⌘k) : ✓ =
PN

k=1

⇠k ⌦ ⌘k, , ⇠k 2 E, ⌘k 2 F,N 2 N
o

 ⇢.

Since this is true for any ⇢ > 0 s.t. ✓ 2 ⇢Wpq, we get:

inf

(

r
X

i=1

p(xi)q(yi) : ✓ =
r
X

i=1

xi ⌦ yi, xi 2 E, yi 2 F, r 2 N
)

 (p⌦ q)(✓).

Conversely, let us consider an arbitrary representation of ✓, i.e.

✓ =
N
X

k=1

⇠k ⌦ ⌘k with ⇠k 2 E, ⌘k 2 F, N 2 N.

Let ⇢ > 0 s.t.
PN

k=1

p(⇠k)q(⌘k)  ⇢ and " > 0. Define

• I
1

:= {k 2 {1, . . . , N} : p(⇠k)q(⌘k) 6= 0}
• I

2

:= {k 2 {1, . . . , N} : p(⇠k) 6= 0 and q(⌘k) = 0}
• I

3

:= {k 2 {1, . . . , N} : p(⇠k) = 0 and q(⌘k) 6= 0}
• I

4

:= {k 2 {1, . . . , N} : p(⇠k) = 0 and q(⌘k) = 0}
and set

• 8k 2 I
1

, xk := ⇠
k

p(⇠
k

)

, yk := ⌘
k

q(⌘
k

)

, tk := p(⇠k)q(⌘k)

• 8k 2 I
2

, xk := ⇠
k

p(⇠
k

)

, yk := N
" p(⇠k)⌘k, tk := "

N

• 8k 2 I
3

, xk := N
" q(⌘k)⇠k, yk := ⌘

k

q(⌘
k

)

, tk := "
N

• 8k 2 I
4

, xk := N
" ⇠k, yk := ⌘k, tk := "

N
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4.2. Topologies on the tensor product of locally convex t.v.s.

Then 8k 2 {1, . . . , N} we have that p(xk)  1 and q(yk)  1. Also we get:

N
X

k=1

tkxk ⌦ yk =
X

k2I1
p(⇠k)q(⌘k)

⇠k
p(⇠k)

⌦ ⌘k
q(⌘k)

+
X

k2I2

"

N

⇠k
p(⇠k)

⌦ N

"
p(⇠k)⌘k

+
X

k2I3

"

N

N

"
q(⌘k)⇠k ⌦ ⌘k

q(⌘k)
+
X

k2I4

"

N

N

"
⇠k ⌦ ⌘k

=
N
X

k=1

⇠k ⌦ ⌘k = ✓

and

N
X

k=1

|tk| =
X

k2I1
p(⇠k)q(⌘k) +

X

k2(I2[I3[I4)

"

N

=
X

k2I1
p(⇠k)q(⌘k) + |I

2

[ I
3

[ I
4

| "
N


N
X

k=1

p(⇠k)q(⌘k) + "  ⇢+ ".

Hence, by (4.2) we get that ✓ 2 (⇢ + ")Wpq. As this holds for any " > 0, we
have ✓ 2 ⇢Wpq. Therefore, we obtain that (p ⌦ q)(✓)  ⇢ and in particular

(p⌦ q)(✓)  PN
k=1

p(⇠k)q(⌘k). This yields that

(p⌦ q)(✓)  inf

(

N
X

k=1

p(⇠k)q(⌘k) : ✓ =
N
X

k=1

⇠k ⌦ ⌘k, , ⇠k 2 E, ⌘k 2 F,N 2 N
)

.

b) Let x 2 E and y 2 F . By using a), we immediately get that

(p⌦ q)(x⌦ y)  p(x)q(y).

Conversely, consider M := span{x} and define L : M ! K as L(�x) := �p(x)
for all � 2 K. Then clearly L is a linear functional on M and for any m 2 M ,
i.e. m = �x for some � 2 K, we have |L(m)| = |�|p(x) = p(�x) = p(m).
Therefore, Hahn-Banach theorem can be applied and provides that:

9x0 2 E0 s.t. hx0, xi = p(x) and |hx0, x
1

i|  p(x
1

), 8x
1

2 E. (4.3)

Repeating this reasoning for y we get that:

9 y0 2 F 0 s.t. hy0, yi = q(y) and |hy0, y
1

i|  q(y
1

), 8 y
1

2 F. (4.4)
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4. Tensor products of t.v.s.

Let us consider now any representation of x⌦y, namely x⌦y =
PN

k=1

xk⌦yk
with xk 2 E, yk 2 F and N 2 N. Then, combining Proposition 4.1.5 and the
second part of both (4.3) and (4.4), we obtain:

�

�hx0 ⌦ y0, x⌦ yi�� 
N
X

k=1

|hx0 ⌦ y0, xk ⌦ yki|

Prop 4.1.5
=

N
X

k=1

|hx0, xki| · |hy0, yki|

(4.3) and (4.4)


N
X

k=1

p(xk)q(xk).

Since this is true for any representation of x⌦ y, we deduce by a) that:

�

�hx0 ⌦ y0, x⌦ yi��  (p⌦ q)(x⌦ y).

The latter together with the first part of (4.3) and (4.4) gives:

p(x)q(y) = |p(x)|·|q(y)| = |hx0, xi|·|hy0, yi| = �

�hx0 ⌦ y0, x⌦ yi��  (p⌦q)(x⌦y).

Proposition 4.2.4. Let E and F be two locally convex t.v.s.. E ⌦⇡ F is
Hausdor↵ if and only if E and F are both Hausdor↵.

Proof. (Exercise Sheet 7)

Corollary 4.2.5. Let (E, p) and (F, q) be seminormed spaces. Then p⌦ q is
a norm on E ⌦ F if and only if p and q are both norms.

Proof.
Under our assumptions, the ⇡�topology on E ⌦ F is generated by the single
seminorm p ⌦ q. Then, recalling that a seminormed space is normed i↵ it is
Hausdor↵ and using Proposition 4.2.4, we get: (E ⌦ F, p ⌦ q) is normed ,
E ⌦⇡ F is Hausdor↵ , E and F are both Hausdor↵ , (E, p) and (F, q) are
both normed.

Definition 4.2.6. Let (E, p) and (F, q) be normed spaces. The normed space
(E ⌦F, p⌦ q) is called the projective tensor product of E and F and p⌦ q is
said to be the corresponding projective tensor norm.

In analogy with the algebraic case (see Theorem 4.1.4-b), we also have a
universal property for the space E ⌦⇡ F .66



4.2. Topologies on the tensor product of locally convex t.v.s.

Proposition 4.2.7.

Let E,F be locally convex spaces. The ⇡�topology on E ⌦⇡ F is the unique
locally convex topology on E ⌦ F such that the following property holds:
(UP) For every locally convex space G, the algebraic isomorphism between

the space of bilinear mappings from E ⇥ F into G and the space of all
linear mappings from E ⌦F into G (given by Theorem 4.1.4-b) induces
an algebraic isomorphism between B(E,F ;G) and L(E ⌦ F ;G), where
B(E,F ;G) denotes the space of all continuous bilinear mappings from
E⇥F into G and L(E⌦F ;G) the space of all continuous linear mappings
from E ⌦ F into G.

Proof. We first show that the ⇡�topology fulfills (UP). Let (G,!) be a locally
convex space and b 2 B(E,F ;G), then Theorem 4.1.4-b) ensures that there
exists a unique b̃ : E ⌦ F ! G linear s.t. b̃ � � = b, where � : E ⇥ F ! E ⌦ F
is the canonical mapping. Let U basic neighbourhood of the origin in G,
so w.l.o.g. we can assume U convex and balanced. Then the continuity of b
implies that there exist V basic neighbourhood of the origin in E and W basic
neighbourhood of the origin in E s.t. b̃(�(V ⇥W )) = b(V ⇥W ) ✓ U . Hence,
�(V ⇥ W ) ✓ b̃�1(U) and so convb(�(V ⇥ W )) ✓ convb(b̃�1(U)) = b̃�1(U),
which shows the continuity of b̃ : E ⌦⇡ F ! (G,!) as convb(�(V ⇥W )) 2 B⇡.

Let ⌧ be a locally convex topology on E ⌦ F such that the property (UP)
holds. Then (UP) holds in particular for G = (E ⌦ F, ⌧). Therefore, since in
the algebraic isomorphism given by Theorem 4.1.4-b) in this case the canonical
mapping � : E⇥F ! E⌦F corresponds to the identity id : E⌦F ! E⌦F ,
we get that � : E ⇥ F ! E ⌦⌧ F has to be continuous.

E ⇥ F E ⌦⌧ F

E ⌦⌧ F

�

�

id

This implies that ⌧ is coarser than the ⇡�topology. On the other hand, (UP)
also holds for G = (E ⌦ F,⇡). Hence,

E ⇥ F E ⌦⇡ F

E ⌦⌧ F

�

�

id

since by definition of ⇡�topology � : E ⇥ F ! E ⌦⇡ F is continuous, the
id : E ⌦⌧ F ! E ⌦⇡ F has to be also continuous. This means that the
⇡�topology is coarser than ⌧ , which completes the proof. 67



4. Tensor products of t.v.s.

Corollary 4.2.8. (E ⌦⇡ F )0 ⇠= B(E,F ), where B(E,F ) := B(E,F ;K).

Proof. By taking G = K in Proposition 4.2.7, we get the conclusion.

4.2.2 "�topology

The definition of "�topology strongly relies strongly relies on the algebraic
isomorphism between E ⌦ F and the space B(E0

�, F
0
�) of continuous bilinear

forms on the product E0
� ⇥ F 0

� of the weak duals of E and F (see Section 3.2
for the definition of weak topology). More precisely, the following hold.

Proposition 4.2.9. Let E and F be non-trivial locally convex t.v.s. over K
with non-trivial topological duals. The space B(E0

�, F
0
�) is a tensor product of

E and F .

Proof.
Let us consider the bilinear mapping:

� : E ⇥ F ! B(E0
�, F

0
�)

(x, y) 7! �(x, y) : E0
� ⇥ F 0

� ! K
(x0, y0) 7! hx0, xihy0, yi.

(4.5)

We first show that E and F are �-linearly disjoint. Let r, s 2 N, x
1

, . . . , xr
be linearly independent in E and y

1

, . . . , ys be linearly independent in F . In
their correspondence, select1 x0

1

, . . . , x0r 2 E0 and y0
1

, . . . , y0s 2 F 0 such that

hx0m, xji = �mj , 8m, j 2 {1, . . . , r} and hy0n, yki = �nk 8n, k 2 {1, . . . , s}.
Then we have that:

�(xj , yk)(x
0
m, y0n) = hx0m, xjihy0n, yki =

⇢

1 if m = j and n = k
0 otherwise.

(4.6)

This implies that the set {�(xj , yk) : j = 1, . . . , r, k = 1, . . . , s} consists of
linearly independent elements. Indeed, if there exists �jk 2 K s.t.

r
X

j=1

s
X

k=1

�jk�(xj , yk) = 0

then for all m 2 {1, . . . , r} and all n 2 {1, . . . , r} we have that:

r
X

j=1

s
X

k=1

�jk�(xj , yk)(x
0
m, y0n) = 0

1This can be done using Lemma 3.2.10 together with the assumption that E0 and F

0 are
not trivial.68



4.2. Topologies on the tensor product of locally convex t.v.s.

and so by using (4.6) that all �mn = 0.
We have therefore showed that (LD’) holds and so, by Proposition 4.1.2,

E and F are �-linearly disjoint. Let us briefly sketch the main steps of the
proof that span(�(E ⇥ F )) = B(E0

�, F
0
�).

a) Take any ' 2 B(E0
�, F

0
�). By the continuity of ', it follows that there exist

finite subsets A ⇢ E and B ⇢ F s.t. |'(x0, y0)|  1, 8x0 2 A�, 8 y0 2 B�.
b) Set EA := span(A) and FB := span(B). Since EA and EB are finite

dimensional, their orthogonals (EA)� and (FB)� have finite codimension
and so

E0⇥F 0 = (M 0�(EA)
�)⇥(N 0�(FB)

�) = (M 0⇥N 0)�((EA)
�⇥F 0)�(E0⇥(FB)

�),

where M 0 and N 0 finite dimensional subspaces of E0 and F 0, respectively.
c) Using a) and b) one can prove that ' vanishes on the direct sum ((EA)�⇥

F 0)�(E0⇥(FB)�) and so that ' is completely determined by its restriction
to a finite dimensional subspace M 0 ⇥N 0 of E0 ⇥ F 0.

d) Let r := dim(EA) and s := dim(FB). Then there exist x
1

, . . . , xr 2 EA

and y
1

, . . . , ys 2 FB s.t. the restriction of ' to M 0 ⇥N 0 is given by

(x0, y0) 7!
r
X

i=1

s
X

j=1

hx0, xiihy0, yji.

Hence, by c), we can conclude that � 2 span(�(E ⇥ F )).

The "�topology on E ⌦ F will be then naturally defined by the so-called
topology of bi-equicontinuous convergence on the space B(E0

�, F
0
�). As the

name suggests this topology is intimately related to the notion equicontinuous
sets of linear mappings between t.v.s..

Definition 4.2.10. Let X and Y be two t.v.s.. A set S of linear mappings
of X into Y is said to be equicontinuous if for any neighbourhood V of the
origin in Y there exists a neighbourhood U of the origin in X such that

8 f 2 S, x 2 U ) f(x) 2 V

i.e. 8 f 2 S, f(U) ✓ V (or U ✓ f�1(V )).

The equicontinuity condition can be also rewritten as follows: S is equicon-
tinuous if for any neighbourhood V of the origin in Y there exists a neighbour-
hood U of the origin in X such that

S

f2S f(U) ✓ V or, equivalently, if for any

neighbourhood V of the origin in Y the set
T

f2S f�1(V ) is a neighbourhood
of the origin in X. 69
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Note that if S is equicontinuous then each mapping f 2 S is continuous
but clearly the converse does not hold.

A first property of equicontinuous sets which is clear from the definition
is that any subset of an equicontinuous set is itself equicontinuous. We are
going to introduce now few more properties of equicontinuous sets of linear
functionals on a t.v.s. which will be useful in the following.

Proposition 4.2.11. A set of continuous linear functionals on a t.v.s. X is
equicontinuous if and only if it is contained in the polar of some neighbourhood
of the origin in X.

Proof.
For any ⇢ > 0, let us denote by D⇢ := {k 2 K : |k|  ⇢}. Let H be an
equicontinuous set of linear forms on X. Then there exists a neighbourhood
U of the origin in X s.t.

S

f2H f(U) ✓ D
1

, i.e. 8f 2 H, |hf, xi|  1, 8x 2 U ,
which means exactly that H ✓ U�.

Conversely, let U be an arbitrary neighbourhood of the origin in X and
let us consider the polar U� := {f 2 X 0 : supx2U |hf, xi|  1}. Then for any
⇢ > 0

8 f 2 U�, |hf, yi|  ⇢, 8 y 2 ⇢U,

which is equivalent to [

f2U�

f(⇢U) ✓ D⇢.

This means that U� is equicontinuous and so any subset H of U� is also
equicontinuous, which yields the conclusion.

Proposition 4.2.12. Let X be a non-trivial locally convex Hausdor↵ t.v.s.2.
Any equicontinuous subset of X 0 is bounded in X 0

�.

Proof. Let H be an equicontinuous subset of X 0. Then, by Proposition 4.2.11,
we get that there exists a neighbourhood U of the origin in X such that
H ✓ U�. By Banach-Alaoglu theorem (see Theorem 3.3.3), we know that
U�is compact in X 0

� and so bounded by Proposition 2.2.4. Hence, by Propo-
sition 2.2.2-4, H is also bounded in X 0

�.

It is also possible to show, but we are not going to prove this here, that
the following holds.

Proposition 4.2.13. Let X be a non-trivial locally convex Hausdor↵ t.v.s..
The union of all equicontinuous subsets of X 0 is dense in X 0

�.

2Recall that non-trivial locally convex Hausdor↵ t.v.s. have non-trivial topological dual
by Proposition 3.2.870
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Now let us come back to the space B(X,Y ;Z) of continuous bilinear map-
pings from X⇥Y to Z, where X,Y and Z are non-trivial locally convex t.v.s..
The following is a very natural way of introducing a topology on B(X,Y ;Z)
and is a kind of generalization of the method we have used to define polar
topologies in Chapter 3.

Consider a family ⌃ (resp. �) of bounded subsets of X (resp. Y ) satisfying
the following properties:
(P1) If A

1

, A
2

2 ⌃, then 9A
3

2 ⌃ s.t. A
1

[A
2

✓ A
3

.
(P2) If A

1

2 ⌃ and � 2 K, then 9A
2

2 ⌃ s.t. �A
1

✓ A
2

.
(resp. satisfying (P1) and (P2) replacing ⌃ by �). The ⌃-�-topology on
B(X,Y ;Z), or topology of uniform convergence on subsets of the form A⇥B
with A 2 ⌃ and B 2 �, is defined by taking as a basis of neighbourhoods of
the origin in B(X,Y ;Z) the following family:

U := {U(A,B;W ) : A 2 ⌃, B 2 �,W 2 BZ(o)} ,

where
U(A,B;W ) := {' 2 B(X,Y ;Z) : '(A,B) ✓ W}

and BZ(o) is a basis of neighbourhoods of the origin in Z. It is not di�cult
to verify that (c.f. [5, Chapter 32]):
a) each U(A,B;W ) is an absorbing, convex, balanced subset of B(X,Y ;Z);
b) the ⌃-�-topology makes B(X,Y ;Z) into a locally convex t.v.s. (by Theo-

rem 4.1.14 of TVS-I);
c) If Z is Hausdor↵, the union of all subsets in ⌃ is dense in X and the union

of all subsets in � is dense in Y , then the ⌃-�-topology on B(X,Y ;Z) is
Hausdor↵.

In particular, given two non-trivial locally convex Hausdor↵ t.v.s. E and F , we
call topology of bi-equicontinuous convergence on B(E0

�, F
0
�) the ⌃-�-topology

when ⌃ is the family of all equicontinuous subsets of E0 and � is the family
of all equicontinuous subsets of F 0. Note that we can make this choice of ⌃
and �, because by Proposition 4.2.12 all equicontinuous subsets of E0 (resp.
F 0) are bounded in E0

� (resp. F 0
�) and satisfy the properties (P1) and (P2).

A basis for the topology of bi-equicontinuous convergence B(E0
�, F

0
�) is then

given by:
U := {U(A,B; ") : A 2 ⌃, B 2 �, " > 0}

where

U(A,B; ") := {' 2 B(E0
�, F

0
�) : '(A,B) ✓ D"}

= {' 2 B(E0
�, F

0
�) : |'(x0, y0)|  ", 8x0 2 A, 8y0 2 B}
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and D" := {k 2 K : |k|  "}. By using a) and b), we get that B(E0
�, F

0
�)

endowed with the topology of bi-equicontinuous convergence is a locally convex
t.v.s.. Also, by using Proposition 4.2.13 together with c), we can prove that
the topology of bi-equicontinuous convergence on B(E0

�, F
0
�) is Hausdor↵ (as

E and F are both assumed to be Hausdor↵).
We can then use the isomorphism between E⌦F and B(E0

�, F
0
�) provided

by Proposition 4.2.9 to carry the topology of bi-equicontinuous convergence
on B(E0

�, F
0
�) over E ⌦ F .

Definition 4.2.14 ("�topology).
Given two non-trivial locally convex Hausdor↵ t.v.s. E and F , we define
the "�topology on E ⌦ F to be the topology carried over from B(E0

�, F
0
�)

endowed with the topology of bi-equicontinuous convergence, i.e. topology of
uniform convergence on the products of an equicontinuous subset of E0 and an
equicontinuous subset of F 0. The space E ⌦ F equipped with the "�topology
will be denoted by E ⌦" F .

It is clear then E ⌦" F is a locally convex Hausdor↵ t.v.s.. Moreover, we
have that:

Proposition 4.2.15. Given two non-trivial locally convex Hausdor↵ t.v.s. E
and F , the canonical mapping from E ⇥F into E ⌦" F is continuous. Hence,
the ⇡�topology is finer than the "�topology on E ⌦ F .

Proof.
By definition of ⇡�topology and "�topology, it is enough to show that the
canonical mapping � from E⇥F into B(E0

�, F
0
�) defined in (4.5) is continuous

w.r.t. the topology of bi-equicontinuous convergence on B(E0
�, F

0
�). Let " > 0,

A any equicontinuous subset of E0 and B any equicontinuous subset of F 0,
then by Proposition 4.2.11 we get that there exist a neighbourhood NA of the
origin in E and a neighbourhood NB of the origin in F s.t. A ✓ (NA)� and
B ✓ (NB)�. Hence, we obtain that

��1(U(A,B; ")) = {(x, y) 2 E ⇥ F : �(x, y) 2 U(A,B; ")}
=

�

(x, y) 2 E ⇥ F : |�(x, y)(x0, y0)|  ", 8x0 2 A, 8 y0 2 B
 

=
�

(x, y) 2 E ⇥ F : |hx0, xihy0, yi|  ", 8x0 2 A, 8 y0 2 B
 

◆ �

(x, y) 2 E ⇥ F : |hx0, xihy0, yi|  ", 8x0 2 (NA)
�, 8 y0 2 (NB)

� 

◆ "NA ⇥NB,

which proves the continuity of � as "NA⇥NB is a neighbourhood of the origin
in E ⇥ F .
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