1.2 Fréchet spaces

Definition 1.2.1. A complete metrizable locally convex t.v.s. is called a Fréchet space (or F-space).

Note that by Theorem 1.1.2 and Proposition 1.1.9, any Fréchet space is in particular a Hausdorff Baire space. Combining the properties of metrizable t.v.s. which we proved in Exercise Sheet 1 and the results about complete t.v.s. which we have seen in TVS-I, we easily get the following properties:

- Any closed linear subspace of an F-space endowed with the induced subspace topology is an F-space.
- The product of a countable family of F-spaces endowed with the product topology is an F-space.
- The quotient of an F-space modulo a closed subspace endowed with the quotient topology is an F-space.

Examples of F-spaces are: Hausdorff finite dimensional t.v.s., Hilbert spaces, and Banach spaces. In the following we will present two examples of F-spaces which do not belong to any of these categories. Let us first recall some standard notations. For any $x = (x_1, \ldots, x_d) \in \mathbb{R}^d$ and $\alpha = (\alpha_1, \ldots, \alpha_d) \in \mathbb{N}_0^d$, we define $x^{\alpha} := x_1^{\alpha_1} \cdots x_d^{\alpha_d}$. For any $\beta \in \mathbb{N}_0^d$, the symbol D^{β} denotes the partial derivative of order $|\beta|$ where $|\beta| := \sum_{i=1}^d \beta_i$, i.e.

$$D^{\beta} := \frac{\partial^{|\beta|}}{\partial x_1^{\beta_1} \cdots \partial x_d^{\beta_d}} = \frac{\partial^{\beta_1}}{\partial x_1^{\beta_1}} \cdots \frac{\partial^{\beta_d}}{\partial x_d^{\beta_d}}$$

Example: $C^{s}(\Omega)$ with $\Omega \subseteq \mathbb{R}^{d}$ open.

Let $\Omega \subseteq \mathbb{R}^d$ open in the euclidean topology. For any $s \in \mathbb{N}_0$, we denote by $\mathcal{C}^s(\Omega)$ the set of all real valued s-times continuously differentiable functions on Ω , i.e. all the derivatives of order $\leq s$ exist (at every point of Ω) and are continuous functions in Ω . Clearly, when s = 0 we get the set $\mathcal{C}(\Omega)$ of all real valued continuous functions on Ω and when $s = \infty$ we get the so-called set of all *infinitely differentiable functions* or smooth functions on Ω . For any $s \in \mathbb{N}_0$, $\mathcal{C}^s(\Omega)$ (with pointwise addition and scalar multiplication) is a vector space over \mathbb{R} .

Let us consider the following family \mathcal{P} of seminorms on $\mathcal{C}^{s}(\Omega)$

$$p_{m,K}(f) := \sup_{\substack{\beta \in \mathbb{N}_0^d \\ |\beta| < m}} \sup_{x \in K} \left| (D^{\beta} f)(x) \right|, \, \forall K \subset \Omega \text{ compact}, \forall m \in \{0, 1, \dots, s\}$$

(Note when $s = \infty$ we have $m \in \mathbb{N}_0$.) The topology $\tau_{\mathcal{P}}$ generated by \mathcal{P} is usually referred as \mathcal{C}^s -topology or topology of uniform convergence on compact sets of the functions and their derivatives up to order s.

1) The C^s -topology clearly turns $C^s(\Omega)$ into a locally convex t.v.s., which is evidently <u>Hausdorff</u> as the family \mathcal{P} is separating (see Prop 4.3.3 in TVS-I). Indeed, if $p_{m,K}(f) = 0$, $\forall m \in \{0, 1, \ldots, s\}$ and $\forall K$ compact subset of Ω then in particular $p_{0,\{x\}}(f) = |f(x)| = 0 \ \forall x \in \Omega$, which implies $f \equiv 0$ on Ω .

2) $(\mathcal{C}^{s}(\Omega), \tau_{\mathcal{P}})$ is <u>metrizable</u>.

By Proposition 1.1.5, this is equivalent to prove that the C^s -topology can be generated by a countable separating family of seminorms. In order to show this, let us first observe that for any two non-negative integers $m_1 \leq m_2 \leq s$ and any two compact $K_1 \subseteq K_2 \subset \Omega$ we have:

$$p_{m_1,K_1}(f) \le p_{m_2,K_2}(f), \quad \forall f \in \mathcal{C}^s(\Omega).$$

Then the family $\{p_{s,K} : K \subset \Omega \text{ compact}\}$ generates the \mathcal{C}^s -topology on $\mathcal{C}^s(\Omega)$. Moreover, it is easy to show that there is a sequence of compact subsets $\{K_j\}_{j\in\mathbb{N}}$ of Ω such that $K_j \subseteq \mathring{K}_{j+1}$ for all $j \in \mathbb{N}$ and $\Omega = \bigcup_{j\in\mathbb{N}}K_j$. Then for any $K \subset \Omega$ compact we have that there exists $j \in \mathbb{N}$ s.t. $K \subseteq K_j$ and so $p_{s,K}(f) \leq p_{s,K_j}(f), \forall f \in \mathcal{C}^s(\Omega)$. Hence, the countable family of seminorms $\{p_{s,K_j} : j \in \mathbb{N}\}$ generates the \mathcal{C}^s -topology on $\mathcal{C}^s(\Omega)$ and it is separating. Indeed, if $p_{s,K_j}(f) = 0$ for all $j \in \mathbb{N}$ then for every $x \in \Omega$ we have $x \in K_i$ for some $i \in \mathbb{N}$ and so $0 \leq |f(x)| \leq p_{s,K_i}(f) = 0$, which implies |f(x)| = 0 for all $x \in \Omega$, i.e. $f \equiv 0$ on Ω .

3) $(\mathcal{C}^s(\Omega), \tau_{\mathcal{P}})$ is complete.

By Proposition 1.1.6, it is enough to show that it is sequentially complete. Let $(f_{\nu})_{\nu \in \mathbb{N}}$ be a Cauchy sequence in $\mathcal{C}^{k}(\Omega)$, i.e.

$$\forall m \le s, \forall K \subset \Omega \text{ compact}, \forall \varepsilon > 0, \exists N \in \mathbb{N} \text{ s.t. } \forall \mu, \nu \ge N : p_{m,K}(f_{\nu} - f_{\mu}) \le \varepsilon.$$
(1.7)

In particular, for any $x \in \Omega$ by taking m = 0 and $K = \{x\}$ we get that the sequence $(f_{\nu}(x))_{\nu \in \mathbb{N}}$ is a Cauchy sequence in \mathbb{R} . Hence, by the completeness of \mathbb{R} , it has a limit point in \mathbb{R} which we denote by f(x). Obviously $x \mapsto f(x)$ is a function on Ω , so we have just showed that the sequence $(f_{\nu})_{\nu \in \mathbb{N}}$ converges to f pointwise in Ω , i.e.

$$\forall x \in \Omega, \forall \varepsilon > 0, \exists M_x \in \mathbb{N} \text{ s.t. } \forall \mu \ge M_x : |f_\mu(x) - f(x)| \le \varepsilon.$$
(1.8)

Then it is easy to see that $(f_{\nu})_{\nu \in \mathbb{N}}$ converges uniformly to f in every compact subset K of Ω . Indeed, we get it just passing to the pointwise limit for $\mu \to \infty$ in (1.7) for m = 0.²

²Detailed proof: Let $\varepsilon > 0$. By (1.7) for m = 0, $\exists N \in \mathbb{N}$ s.t. $\forall \mu, \nu \geq N : |f_{\nu}(x) - f_{\mu}(x)| \leq \frac{\varepsilon}{2}, \forall x \in K$. Now for each fixed $x \in K$ one can always choose a μ_x larger than both N and the corresponding M_x as in (1.8) so that $|f_{\mu_x}(x) - f(x)| \leq \frac{\varepsilon}{2}$. Hence, for all $\nu \geq N$ one gets that $|f_{\nu}(x) - f(x)| \leq |f_{\nu}(x) - f_{\mu_x}(x)| + |f_{\mu_x}(x) - f(x)| \leq \varepsilon, \forall x \in K$.

As $(f_{\nu})_{\nu \in \mathbb{N}}$ converges uniformly to f in every compact subset K of Ω , by taking this subset identical with a suitable neighbourhood of any point of Ω , we conclude by Lemma 1.2.2 that f is continuous in Ω .

- If s = 0, this completes the proof since we just showed $f_{\nu} \to f$ in the \mathcal{C}^0 -topology and $f \in \mathcal{C}(\Omega)$.
- If $0 < s < \infty$, then observe that since $(f_{\nu})_{\nu \in \mathbb{N}}$ is a Cauchy sequence in $\mathcal{C}^{s}(\Omega)$, for each $j \in \{1, \ldots, d\}$ the sequence $(\frac{\partial}{\partial x_{j}}f_{\nu})_{\nu \in \mathbb{N}}$ is a Cauchy sequence in $\mathcal{C}^{s-1}(\Omega)$. Then proceeding as above we can conclude that, for each $j \in \{1, \ldots, d\}$, the sequence $(\frac{\partial}{\partial x_{j}}f_{\nu})_{\nu \in \mathbb{N}}$ converges uniformly on every compact subset of Ω to a function $g^{(j)} \in \mathcal{C}^{s-1}(\Omega)$ and by Lemma 1.2.3 we have that $g^{(j)} = \frac{\partial}{\partial x_{j}}f$. Hence, by induction on s, we show that $(f_{\nu})_{\nu \in \mathbb{N}}$ converges to $f \in \mathcal{C}^{s}(\Omega)$ in the \mathcal{C}^{s} -topology.
- If $s = \infty$, then we are also done by the definition of the \mathcal{C}^{∞} -topology. Indeed, a Cauchy sequence $(f_{\nu})_{\nu \in \mathbb{N}}$ in $\mathcal{C}^{\infty}(\Omega)$ it is in particular a Cauchy sequence in the subspace topology given by $\mathcal{C}^{s}(\Omega)$ for any $s \in \mathbb{N}$ and hence, for what we have already showed, it converges to $f \in \mathcal{C}^{s}(\Omega)$ in the C^{s} -topology for any $s \in \mathbb{N}$. This means exactly that $(f_{\nu})_{\nu \in \mathbb{N}}$ converges to $f \in \mathcal{C}^{\infty}(\Omega)$ in the in \mathcal{C}^{∞} -topology.

Let us prove now the two lemmas which we have used in the previous proof:

Lemma 1.2.2. Let $A \subset \mathbb{R}^d$ and $(f_{\nu})_{\nu \in \mathbb{N}}$ in $\mathcal{C}(A)$. If $(f_{\nu})_{\nu \in \mathbb{N}}$ converges to a function f uniformly in A then $f \in \mathcal{C}(A)$.

Proof.

Let $x_0 \in A$ and $\varepsilon > 0$. By the uniform convergence of $(f_{\nu})_{\nu \in \mathbb{N}}$ to f in A we get that:

$$\exists N \in \mathbb{N} \text{ s.t. } \forall \nu \ge N : |f_{\nu}(y) - f(y)| \le \frac{\varepsilon}{3}, \forall y \in A.$$

Fix such a ν . As f_{ν} is continuous on A, we obtain that

$$\exists \delta > 0 \text{ s.t. } \forall x \in A \text{ with } |x - x_0| \leq \delta \text{ we have } |f_{\nu}(x) - f_{\nu}(x_0)| \leq \frac{\varepsilon}{3}.$$

Therefore, $\forall x \in A \text{ with } |x - x_0| \leq \delta \text{ we get}$

$$|f(x) - f(x_0)| \le |f(x) - f_{\nu}(x)| + |f_{\nu}(x) - f_{\nu}(x_0)| + |f_{\nu}(x_0) - f(x_0)| \le \varepsilon.$$

Lemma 1.2.3. Let $A \subset \mathbb{R}^d$ and $(f_{\nu})_{\nu \in \mathbb{N}}$ in $\mathcal{C}^1(A)$. If $(f_{\nu})_{\nu \in \mathbb{N}}$ converges to a function f uniformly in A and for each $j \in \{1, \ldots, d\}$ the sequence $(\frac{\partial}{\partial x_j}f_{\nu})_{\nu \in \mathbb{N}}$ converges to a function $g^{(j)}$ uniformly in A, then

$$g^{(j)} = \frac{\partial}{\partial x_j} f, \, \forall j \in \{1, \dots, d\}$$

This means in particular that $f \in \mathcal{C}^1(A)$.

Proof. (for d = 1, A = [a, b])

By the fundamental theorem of calculus, we have that for any $x \in A$

$$f_{\nu}(x) - f_{\nu}(a) = \int_{a}^{x} \frac{\partial}{\partial t} f_{\nu}(t) dt.$$
(1.9)

By the uniform convergence of the first derivatives to $g^{(1)}$ and by the Lebesgue dominated convergence theorem, we also have

$$\int_{a}^{x} \frac{\partial}{\partial t} f_{\nu}(t) dt \to \int_{a}^{x} g^{(1)}(t) dt, \text{ as } \nu \to \infty.$$
(1.10)

Using (1.9) and (1.10) together with the assumption that $f_{\nu} \to f$ unformly in A, we obtain that:

$$f(x) - f(a) = \int_{a}^{x} g^{(1)}(t) dt$$

i.e. $\left(\frac{\partial}{\partial x}f\right)(x) = g^{(1)}(x), \forall x \in A.$

Example: The Schwarz space $S(\mathbb{R}^d)$.

The Schwartz space or space of rapidly decreasing functions on \mathbb{R}^d is defined as the set $\mathcal{S}(\mathbb{R}^d)$ of all real-valued functions which are defined and infinitely differentiable on \mathbb{R}^d and which have the additional property (regulating their growth at infinity) that all their derivatives tend to zero at infinity faster than any inverse power of x, i.e.

$$\mathcal{S}(\mathbb{R}^d) := \left\{ f \in \mathcal{C}^{\infty}(\mathbb{R}^d) : \sup_{x \in \mathbb{R}^d} \left| x^{\alpha} (D^{\beta} f)(x) \right| < \infty, \ \forall \alpha, \beta \in \mathbb{N}_0^d \right\}.$$

(For example, any smooth function f with compact support in \mathbb{R}^d is in $\mathcal{S}(\mathbb{R}^d)$, since any derivative of f is continuous and supported on a compact subset of \mathbb{R}^d , so $x^{\alpha}(D^{\beta}f(x))$ has a maximum in \mathbb{R}^d by the extreme value theorem.) The Schwartz space $\mathcal{S}(\mathbb{R}^d)$ is a vector space over \mathbb{R} and we equip it with the topology $\tau_{\mathcal{Q}}$ given by the family \mathcal{Q} of seminorms on $\mathcal{S}(\mathbb{R}^d)$:

$$q_{m,k}(f) := \sup_{\substack{\beta \in \mathbb{N}_0^d \\ |\beta| \le m}} \sup_{x \in \mathbb{R}^d} (1+|x|)^k \left| (D^\beta) f(x) \right|, \ \forall m, k \in \mathbb{N}_0.$$

Note that $f \in \mathcal{S}(\mathbb{R}^d)$ if and only if $\forall m, k \in \mathbb{N}_0, q_{m,k}(f) < \infty$.

The space $\mathcal{S}(\mathbb{R}^d)$ is a linear subspace of $\mathcal{C}^{\infty}(\mathbb{R}^d)$, but $\tau_{\mathcal{Q}}$ is finer than the subspace topology induced on it by $\tau_{\mathcal{P}}$ where \mathcal{P} is the family of seminorms defined on $\mathcal{C}^{\infty}(\mathbb{R}^d)$ as in the above example. Indeed, it is clear that for any $f \in \mathcal{S}(\mathbb{R}^d)$, any $m \in \mathbb{N}_0$ and any $K \subset \mathbb{R}^d$ compact we have $p_{m,K}(f) \leq q_{m,0}(f)$ which gives the desired inclusion of topologies.

1) $(\mathcal{S}(\mathbb{R}^d), \tau_Q)$ is a locally convex t.v.s. which is also evidently <u>Hausdorff</u> since the family \mathcal{Q} is separating. Indeed, if $q_{m,k}(f) = 0$, $\forall m, k \in \mathbb{N}_0$ then in particular $q_{0,0}(f) = \sup_{x \in \mathbb{R}^d} |f(x)| = 0$, which implies $f \equiv 0$ on \mathbb{R}^d .

2) $(\mathcal{S}(\mathbb{R}^d), \tau_Q)$ is a <u>metrizable</u>, as Q is countable and separating (see Proposition 1.1.5).

3) $(\mathcal{S}(\mathbb{R}^d), \tau_Q)$ is a <u>complete</u>. By Proposition 1.1.6, it is enough to show that it is sequentially complete. Let $(f_{\nu})_{\nu \in \mathbb{N}}$ be a Cauchy sequence $\mathcal{S}(\mathbb{R}^d)$ then a fortiori we get that $(f_{\nu})_{\nu \in \mathbb{N}}$ is a Cauchy sequence in $\mathcal{C}^{\infty}(\mathbb{R}^d)$ endowed with the \mathcal{C}^{∞} -topology. Since such a space is complete, then there exists $f \in \mathcal{C}^{\infty}(\mathbb{R}^d)$ s.t. $(f_{\nu})_{\nu \in \mathbb{N}}$ converges to f in the the \mathcal{C}^{∞} -topology. From this we also know that:

$$\forall \beta \in \mathbb{N}_0^d, \forall x \in \mathbb{R}^d, (D^\beta f_\nu)(x) \to (D^\beta f)(x) \text{ as } \nu \to \infty$$
(1.11)

We are going to prove at once that $(f_{\nu})_{\nu \in \mathbb{N}}$ is converging to f in the $\tau_{\mathcal{Q}}$ topology (not only in the \mathcal{C}^{∞} -topology) and that $f \in \mathcal{S}(\mathbb{R}^d)$.

Let $m, k \in \mathbb{N}_0$ and let $\varepsilon > 0$. As $(f_{\nu})_{\nu \in \mathbb{N}}$ is a Cauchy sequence in $\mathcal{S}(\mathbb{R}^d)$, there exists a constant M s.t. $\forall \nu, \mu \geq M$ we have: $q_{m,k}(f_{\nu} - f_{\mu}) \leq \varepsilon$. Then fixing $\beta \in \mathbb{N}_0^d$ with $|\beta| \leq m$ and $x \in \mathbb{R}^d$ we get

$$(1+|x|)^k \left| (D^\beta f_\nu)(x) - (D^\beta f_\mu)(x) \right| \le \varepsilon.$$

Passing to the limit for $\mu \to \infty$ in the latter relation and using (1.11), we get

$$(1+|x|)^k \left| (D^\beta f_\nu)(x) - (D^\beta f)(x) \right| \le \varepsilon.$$

Hence, for all $\nu \geq M$ we have that $q_{m,k}(f_{\nu} - f) \leq \varepsilon$ as desired. Then by the triangular inequality it easily follows that

$$\forall m, k \in \mathbb{N}_0, q_{m,k}(f) < \infty$$
, i.e. $f \in \mathcal{S}(\mathbb{R}^d)$