
1.2. Fréchet spaces

1.2 Fréchet spaces

Definition 1.2.1. A complete metrizable locally convex t.v.s. is called a
Fréchet space (or F-space).

Note that by Theorem 1.1.2 and Proposition 1.1.9, any Fréchet space is in
particular a Hausdor↵ Baire space. Combining the properties of metrizable
t.v.s. which we proved in Exercise Sheet 1 and the results about complete
t.v.s. which we have seen in TVS-I, we easily get the following properties:

• Any closed linear subspace of an F-space endowed with the induced
subspace topology is an F-space.

• The product of a countable family of F-spaces endowed with the product
topology is an F-space.

• The quotient of an F-space modulo a closed subspace endowed with the
quotient topology is an F-space.

Examples of F-spaces are: Hausdor↵ finite dimensional t.v.s., Hilbert spaces,
and Banach spaces. In the following we will present two examples of F-spaces
which do not belong to any of these categories. Let us first recall some stan-
dard notations. For any x = (x

1

, . . . , x
d

) 2 Rd and ↵ = (↵
1

, . . . ,↵
d

) 2 Nd

0

, we
define x↵ := x↵1

1

· · ·x↵d

d

. For any � 2 Nd

0

, the symbol D� denotes the partial

derivative of order |�| where |�| :=
P

d

i=1

�
i

, i.e.

D� :=
@|�|

@x�1
1

· · · @x�d

d

=
@�1

@x�1
1

· · · @�

d

@x�d

d

.

Example: Cs

(⌦) with ⌦ ✓ Rd

open.

Let ⌦ ✓ Rd open in the euclidean topology. For any s 2 N
0

, we denote by
Cs(⌦) the set of all real valued s�times continuously di↵erentiable functions
on ⌦, i.e. all the derivatives of order  s exist (at every point of ⌦) and are
continuous functions in ⌦. Clearly, when s = 0 we get the set C(⌦) of all
real valued continuous functions on ⌦ and when s = 1 we get the so-called
set of all infinitely di↵erentiable functions or smooth functions on ⌦. For any
s 2 N

0

, Cs(⌦) (with pointwise addition and scalar multiplication) is a vector
space over R.

Let us consider the following family P of seminorms on Cs(⌦)

p
m,K

(f) := sup
�2Nd0
|�|m

sup
x2K

���(D�f)(x)
��� , 8K ⇢ ⌦ compact, 8m 2 {0, 1, . . . , s}.

(Note when s = 1 we have m 2 N
0

.) The topology ⌧P generated by P is
usually referred as Cs-topology or topology of uniform convergence on compact
sets of the functions and their derivatives up to order s.
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1. Special classes of topological vector spaces

1) The Cs-topology clearly turns Cs(⌦) into a locally convex t.v.s., which is
evidently Hausdor↵ as the family P is separating (see Prop 4.3.3 in TVS-I).
Indeed, if p

m,K

(f) = 0, 8m 2 {0, 1, . . . , s} and 8K compact subset of ⌦ then
in particular p

0,{x}(f) = |f(x)| = 0 8x 2 ⌦, which implies f ⌘ 0 on ⌦.

2) (Cs(⌦), ⌧P) is metrizable.
By Proposition 1.1.5, this is equivalent to prove that the Cs-topology can be
generated by a countable separating family of seminorms. In order to show
this, let us first observe that for any two non-negative integers m

1

 m
2

 s
and any two compact K

1

✓ K
2

⇢ ⌦ we have:

p
m1,K1(f)  p

m2,K2(f), 8f 2 Cs(⌦).

Then the family {p
s,K

: K ⇢ ⌦ compact} generates the Cs�topology on Cs(⌦).
Moreover, it is easy to show that there is a sequence of compact subsets
{K

j

}
j2N of ⌦ such that K

j

✓ K̊
j+1

for all j 2 N and ⌦ = [
j2NKj

. Then
for any K ⇢ ⌦ compact we have that there exists j 2 N s.t. K ✓ K

j

and
so p

s,K

(f)  p
s,K

j

(f), 8f 2 Cs(⌦). Hence, the countable family of seminorms
{p

s,K

j

: j 2 N} generates the Cs�topology on Cs(⌦) and it is separating. In-
deed, if p

s,K

j

(f) = 0 for all j 2 N then for every x 2 ⌦ we have x 2 K
i

for
some i 2 N and so 0  |f(x)|  p

s,K

i

(f) = 0, which implies |f(x)| = 0 for all
x 2 ⌦, i.e. f ⌘ 0 on ⌦.

3) (Cs(⌦), ⌧P) is complete.
By Proposition 1.1.6, it is enough to show that it is sequentially complete.
Let (f

⌫

)
⌫2N be a Cauchy sequence in Ck(⌦), i.e.

8m  s, 8K ⇢ ⌦ compact, 8" > 0, 9N 2 N s.t. 8µ, ⌫ � N : p
m,K

(f
⌫

�f
µ

)  ".
(1.7)

In particular, for any x 2 ⌦ by taking m = 0 and K = {x} we get that the
sequence (f

⌫

(x))
⌫2N is a Cauchy sequence in R. Hence, by the completeness

of R, it has a limit point in R which we denote by f(x). Obviously x 7! f(x) is
a function on ⌦, so we have just showed that the sequence (f

⌫

)
⌫2N converges

to f pointwise in ⌦, i.e.

8x 2 ⌦, 8" > 0, 9M
x

2 N s.t. 8µ � M
x

: |f
µ

(x)� f(x)|  ". (1.8)

Then it is easy to see that (f
⌫

)
⌫2N converges uniformly to f in every compact

subset K of ⌦. Indeed, we get it just passing to the pointwise limit for µ ! 1
in (1.7) for m = 0. 2

2Detailed proof: Let " > 0. By (1.7) for m = 0, 9N 2 N s.t.8µ, ⌫ � N : |f
⌫

(x)�f

µ

(x)| 
"

2 , 8x 2 K. Now for each fixed x 2 K one can always choose a µ

x

larger than both N and
the corresponding M

x

as in (1.8) so that |f
µ

x

(x)� f(x)|  "

2 . Hence, for all ⌫ � N one gets
that |f

⌫

(x)� f(x)|  |f
⌫

(x)� f

µ

x

(x)|+ |f
µ

x

(x)� f(x)|  ", 8x 2 K.
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1.2. Fréchet spaces

As (f
⌫

)
⌫2N converges uniformly to f in every compact subset K of ⌦, by

taking this subset identical with a suitable neighbourhood of any point of ⌦,
we conclude by Lemma 1.2.2 that f is continuous in ⌦.

• If s = 0, this completes the proof since we just showed f
⌫

! f in the
C0�topology and f 2 C(⌦).

• If 0 < s < 1, then observe that since (f
⌫

)
⌫2N is a Cauchy sequence

in Cs(⌦), for each j 2 {1, . . . , d} the sequence ( @

@x

j

f
⌫

)
⌫2N is a Cauchy

sequence in Cs�1(⌦). Then proceeding as above we can conclude that,
for each j 2 {1, . . . , d}, the sequence ( @

@x

j

f
⌫

)
⌫2N converges uniformly on

every compact subset of ⌦ to a function g(j) 2 Cs�1(⌦) and by Lemma
1.2.3 we have that g(j) = @

@x

j

f . Hence, by induction on s, we show that

(f
⌫

)
⌫2N converges to f 2 Cs(⌦) in the Cs�topology.

• If s = 1, then we are also done by the definition of the C1-topology. In-
deed, a Cauchy sequence (f

⌫

)
⌫2N in C1(⌦) it is in particular a Cauchy

sequence in the subspace topology given by Cs(⌦) for any s 2 N and
hence, for what we have already showed, it converges to f 2 Cs(⌦) in
the Cs�topology for any s 2 N. This means exactly that (f

⌫

)
⌫2N con-

verges to f 2 C1(⌦) in the in C1�topology.

Let us prove now the two lemmas which we have used in the previous proof:

Lemma 1.2.2. Let A ⇢ Rd and (f
⌫

)
⌫2N in C(A). If (f

⌫

)
⌫2N converges to a

function f uniformly in A then f 2 C(A).

Proof.
Let x

0

2 A and " > 0. By the uniform convergence of (f
⌫

)
⌫2N to f in A we

get that:

9N 2 N s.t. 8⌫ � N : |f
⌫

(y)� f(y)|  "

3
, 8y 2 A.

Fix such a ⌫. As f
⌫

is continuous on A, we obtain that

9� > 0 s.t. 8x 2 A with |x� x
0

|  � we have |f
⌫

(x)� f
⌫

(x
0

)|  "

3
.

Therefore, 8x 2 A with |x� x
0

|  � we get

|f(x)� f(x
0

)|  |f(x)� f
⌫

(x)|+ |f
⌫

(x)� f
⌫

(x
0

)|+ |f
⌫

(x
0

)� f(x
0

)|  ".
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1. Special classes of topological vector spaces

Lemma 1.2.3. Let A ⇢ Rd and (f
⌫

)
⌫2N in C1(A). If (f

⌫

)
⌫2N converges to a

function f uniformly in A and for each j 2 {1, . . . , d} the sequence ( @

@x

j

f
⌫

)
⌫2N

converges to a function g(j) uniformly in A, then

g(j) =
@

@x
j

f, 8j 2 {1, . . . , d}.

This means in particular that f 2 C1(A).

Proof. (for d = 1, A = [a, b])
By the fundamental theorem of calculus, we have that for any x 2 A

f
⌫

(x)� f
⌫

(a) =

Z
x

a

@

@t
f
⌫

(t)dt. (1.9)

By the uniform convergence of the first derivatives to g(1) and by the Lebesgue
dominated convergence theorem, we also have

Z
x

a

@

@t
f
⌫

(t)dt !
Z

x

a

g(1)(t)dt, as ⌫ ! 1. (1.10)

Using (1.9) and (1.10) together with the assumption that f
⌫

! f unformly in
A, we obtain that:

f(x)� f(a) =

Z
x

a

g(1)(t)dt,

i.e.
�

@

@x

f
�
(x) = g(1)(x), 8x 2 A.

Example: The Schwarz space S(Rd

).

The Schwartz space or space of rapidly decreasing functions on Rd is defined
as the set S(Rd) of all real-valued functions which are defined and infinitely
di↵erentiable on Rd and which have the additional property (regulating their
growth at infinity) that all their derivatives tend to zero at infinity faster than
any inverse power of x, i.e.

S(Rd) :=

(
f 2 C1(Rd) : sup

x2Rd

���x↵(D�f)(x)
��� < 1, 8↵,� 2 Nd

0

)
.

(For example, any smooth function f with compact support in Rd is in S(Rd),
since any derivative of f is continuous and supported on a compact subset of
Rd, so x↵(D�f(x)) has a maximum in Rd by the extreme value theorem.)
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1.2. Fréchet spaces

The Schwartz space S(Rd) is a vector space over R and we equip it with
the topology ⌧Q given by the family Q of seminorms on S(Rd):

q
m,k

(f) := sup
�2Nd0
|�|m

sup
x2Rd

(1 + |x|)k
���(D�)f(x)

��� , 8m, k 2 N
0

.

Note that f 2 S(Rd) if and only if 8m, k 2 N
0

, q
m,k

(f) < 1.
The space S(Rd) is a linear subspace of C1(Rd), but ⌧Q is finer than the
subspace topology induced on it by ⌧P where P is the family of seminorms
defined on C1(Rd) as in the above example. Indeed, it is clear that for any
f 2 S(Rd), any m 2 N

0

and any K ⇢ Rd compact we have p
m,K

(f)  q
m,0

(f)
which gives the desired inclusion of topologies.

1) (S(Rd), ⌧Q) is a locally convex t.v.s. which is also evidently Hausdor↵ since
the family Q is separating. Indeed, if q

m,k

(f) = 0, 8m, k 2 N
0

then in partic-
ular q

0,0

(f) = sup
x2Rd

|f(x)| = 0, which implies f ⌘ 0 on Rd.

2) (S(Rd), ⌧Q) is a metrizable, as Q is countable and separating (see Propo-
sition 1.1.5).

3) (S(Rd), ⌧Q) is a complete. By Proposition 1.1.6, it is enough to show that

it is sequentially complete. Let (f
⌫

)
⌫2N be a Cauchy sequence S(Rd) then a

fortiori we get that (f
⌫

)
⌫2N is a Cauchy sequence in C1(Rd) endowed with the

C1�topology. Since such a space is complete, then there exists f 2 C1(Rd)
s.t. (f

⌫

)
⌫2N converges to f in the the C1�topology. From this we also know

that:
8� 2 Nd

0

, 8x 2 Rd, (D�f
⌫

)(x) ! (D�f)(x) as ⌫ ! 1 (1.11)

We are going to prove at once that (f
⌫

)
⌫2N is converging to f in the ⌧Q

topology (not only in the C1�topology) and that f 2 S(Rd).
Let m, k 2 N

0

and let " > 0. As (f
⌫

)
⌫2N is a Cauchy sequence in S(Rd),

there exists a constant M s.t. 8⌫, µ � M we have: q
m,k

(f
⌫

� f
µ

)  ". Then
fixing � 2 Nd

0

with |�|  m and x 2 Rd we get

(1 + |x|)k
���(D�f

⌫

)(x)� (D�f
µ

)(x)
���  ".

Passing to the limit for µ ! 1 in the latter relation and using (1.11), we get

(1 + |x|)k
���(D�f

⌫

)(x)� (D�f)(x)
���  ".

Hence, for all ⌫ � M we have that q
m,k

(f
⌫

� f)  " as desired. Then by the
triangular inequality it easily follows that

8m, k 2 N
0

, q
m,k

(f) < 1, i.e. f 2 S(Rd).
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