
1. Special classes of topological vector spaces

1.3 Inductive topologies and LF-spaces

Let {(E
↵

, ⌧
↵

) : ↵ 2 A} be a family of locally convex t.v.s. over the field K of
real or complex numbers (A is an arbitrary index set), E a vector space over
the same field K and, for each ↵ 2 A, let g

↵

: E
↵

! E be a linear mapping.
The inductive topology ⌧

ind

on E w.r.t. the family {(E
↵

, ⌧
↵

, g
↵

) : ↵ 2 A} is
the topology generated by the following basis of neighbourhoods of the origin
in E:

B
ind

: = {U ⇢ E convex, balanced, absorbing : 8↵ 2 A, g�1

↵

(U) is

a neighbourhood of the origin in (E
↵

, ⌧
↵

)}.

Then it easily follows that the space (E, ⌧
ind

) is a l.c. t.v.s.. Indeed, B
ind

is a
family of absorbing and absolutely convex subsets of E such that
a) 8 U, V 2 B

ind

, U \ V 2 B
ind

, since g�1

↵

(U \ V ) = g�1

↵

(U) \ g�1

↵

(V ) is
a neighbourhood of the origin in (E

↵

, ⌧
↵

) (as finite intersection of such
neighbourhoods).

b) 8 ⇢ > 0, 8 U 2 B
ind

, ⇢U 2 B
ind

, since g�1

↵

(⇢U) = ⇢g�1

↵

(U) which is a neigh-
bourhood of the origin in (E

↵

, ⌧
↵

)(as a dilation of such a neighbourhood).
Then Theorem 4.1.14 in TVS-I ensures that ⌧

ind

makes E into a l.c. t.v.s..
Note that ⌧

ind

is the finest locally convex topology on E for which all the
mappings g

↵

(↵ 2 A) are continuous. Suppose there exists a locally convex
topology ⌧ on E s.t. all the g

↵

’s are continuous and ⌧
ind

✓ ⌧ . As (E, ⌧)
is locally convex, there always exists a basis of neighbourhood of the origin
consisting of convex, balanced, absorbing subsets of E. Then for any such a
neighbourhood U of the origin in (E, ⌧) we have, by continuity, that g�1

↵

(U)
is a neighbourhood of the origin in (E

↵

, ⌧
↵

). Hence, U 2 B
ind

and so ⌧ ⌘ ⌧
ind

.
It is also worth to underline that (E, ⌧

ind

) is not necessarily a Hausdor↵
t.v.s., even when all the spaces (E

↵

, ⌧
↵

) are Hausdor↵ t.v.s..

Example 1.3.1. Let (X, ⌧) be a l.c. Hausdor↵ t.v.s., M a non-closed subspace
of X and ' : X ! X/M the quotient map. Then the inductive limit topology
on X/M w.r.t. (X, ⌧,�) (here the index set A is just a singleton) coincides
with the quotient topology on X/M , which is not Hausdor↵ since M is not
closed (see Proposition 2.3.5 in TVS-I).

Proposition 1.3.2. Let E be a vector space over the field K endowed with
the inductive topology ⌧

ind

w.r.t. a family {(E
↵

, ⌧
↵

, g
↵

) : ↵ 2 A}, where each
(E

↵

, ⌧
↵

) is a locally convex t.v.s. over K and each g
↵

: E
↵

! E is a linear map.
A linear map u from (E, ⌧

ind

) to any locally convex t.v.s. (F, ⌧) is continuous
if and only if for each ↵ 2 A the map u � g

↵

: E
↵

! F is continuous.
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Proof. Suppose u is continuous and fix ↵ 2 A. Since g
↵

is also continuous, we
have that u � g

↵

is continuous as composition of continuous mappings.
Conversely, suppose that for each ↵ 2 A the mapping u � g

↵

is continuous.
As (F, ⌧) is locally convex, there always exists a basis of neighbourhoods of
the origin consisting of convex, balanced, absorbing subsets of F . Let W be
such a neighbourhood. Then, by the linearity of u, we get that u�1(W ) is a
convex, balanced and absorbing subset of E. Moreover, the continuity of all
u � g

↵

guarantees that each (u � g
↵

)�1(W ) is a neighbourhood of the origin in
(E

↵

, ⌧
↵

), i.e. g�1

↵

(u�1(W )) is a neighbourhood of the origin in (E
↵

, ⌧
↵

). Then
u�1(W ), being also convex, balanced and absorbing, must be in B

ind

and so
it is a neighbourhood of the origin in (E, ⌧

ind

). Hence, u is continuous.

Let us consider now the case when we have a total order  on the index
set A and {E

↵

: ↵ 2 A} is a family of linear subspaces of a vector space E
over K which is directed under inclusion, i.e. E

↵

✓ E
�

whenever ↵  �, and
s.t. E =

S
↵2AE

↵

. For each ↵ 2 A, let i
↵

be the canonical embedding of
E

↵

in E and ⌧
↵

a topology on E
↵

s.t. (E
↵

, ⌧
↵

) is a locally convex Hausdor↵
t.v.s. and, whenever ↵  �, the topology induced by ⌧

�

on E
↵

is coarser
than ⌧

↵

. The space E equipped with the inductive topology ⌧
ind

w.r.t. the
family {(E

↵

, ⌧
↵

, i
↵

) : ↵ 2 A} is said to be the inductive limit of the family
of linear subspaces {(E

↵

, ⌧
↵

) : ↵ 2 A}.
An inductive limit of a family of linear subspaces {(E

↵

, ⌧
↵

) : ↵ 2 A} is
said to be a strict inductive limit if, whenever ↵  �, the topology induced
by ⌧

�

on E
↵

coincides with ⌧
↵

.

There are even more general constructions of inductive limits of a family
of locally convex t.v.s. but in the following we will focus on a more concrete
family of inductive limits which are more common in applications. Namely,
we are going to consider the so-called LF-spaces , i.e. countable strict induc-
tive limits of increasing sequences of Fréchet spaces. For convenience, let us
explicitly write down the definition of an LF-space.

Definition 1.3.3. Let {E
n

: n 2 N} be an increasing sequence of linear
subspaces of a vector space E over K, i.e. E

n

✓ E
n+1

for all n 2 N, such that
E =

S
n2NE

n

. For each n 2 N let i
n

be the canonical embedding of E
n

in E
and (E

n

, ⌧
n

) be a Fréchet space such that the topology induced by ⌧
n+1

on E
n

coincides with ⌧
n

(i.e. the natural embedding of E
n

into E
n+1

is a topological
embedding). The space E equipped with the inductive topology ⌧

ind

w.r.t. the
family {(E

n

, ⌧
n

, i
n

) : n 2 N} is said to be the LF-space with defining sequence
{(E

n

, ⌧
n

) : n 2 N}.
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A basis of neighbourhoods of the origin in the LF-space (E, ⌧
ind

) with
defining sequence {(E

n

, ⌧
n

) : n 2 N} is given by:

{U ⇢ E convex, balanced, abs. : 8n 2 N, U\ E
n

is a nbhood of o in (E
n

, ⌧
n

)}.

Note that from the construction of the LF-space (E, ⌧
ind

) with defining
sequence {(E

n

, ⌧
n

) : n 2 N} we know that each E
n

is topologically embedded
in the subsequent ones, but a priori we do not know if E

n

is topologically
embedded in E, i.e. if the topology induced by ⌧

ind

on E
n

is identical to
the topology ⌧

n

initially given on E
n

. This is indeed true and it will be a
consequence of the following lemma.

Lemma 1.3.4. Let X be a locally convex t.v.s., X
0

a linear subspace of X
equipped with the subspace topology, and U a convex neighbourhood of the
origin in X

0

. Then there exists a convex neighbourhood V of the origin in X
such that V \X

0

= U .

Proof.
As X

0

carries the subspace topology induced by X, there exists a neighbour-
hood W of the origin in X such that U = W \X

0

. Since X is a locally convex
t.v.s., there exists a convex neighbourhood W

0

of the origin in X such that
W

0

✓ W . Let V be the convex hull of U [W
0

. Then by construction we have
that V is a convex neighbourhood of the origin in X and that U ✓ V which
implies U = U \X

0

✓ V \X
0

. We claim that actually V \X
0

= U . Indeed,
let x 2 V \ X

0

; as x 2 V and as U and W
0

are both convex, we may write
x = ty + (1 � t)z with y 2 U, z 2 W

0

and t 2 [0, 1]. If t = 1, then x = y 2 U
and we are done. If 0  t < 1, then z = (1� t)�1(x� ty) belongs to X

0

and
so z 2 W

0

\ X
0

✓ W \ X
0

= U . This implies, by the convexity of U , that
x 2 U . Hence, V \X

0

✓ U .

Proposition 1.3.5.

Let (E, ⌧
ind

) be an LF-space with defining sequence {(E
n

, ⌧
n

) : n 2 N}. Then

⌧
ind

� E
n

⌘ ⌧
n

, 8n 2 N.

Proof.
(✓) Let V 2 B

ind

. Then, by definition, for each n 2 N we have that V \E
n

is a neighbourhood of the origin in (E
n

, ⌧
n

). Hence, ⌧
ind

� E
n

✓ ⌧
n

, 8n 2 N.
(◆) Given n 2 N, let U

n

be a convex, balanced, absorbing neighbourhood
of the origin in (E

n

, ⌧
n

). Since E
n

is a linear subspace of E
n+1

, we can apply
Lemma 1.3.4 (for X = E

n+1

, X
0

= E
n

and U = U
n

) which ensures the
existence of a convex neighbourhood U

n+1

of the origin in (E
n+1

, ⌧
n+1

) such
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that U
n+1

\ E
n

= U
n

. Then, by induction, we get that for any k 2 N there
exists a convex neighbourhood U

n+k

of the origin in (E
n+k

, ⌧
n+k

) such that
U
n+k

\ E
n+k�1

= U
n+k�1

. Hence, for any k 2 N, we get U
n+k

\ E
n

=
U
n

. If we consider now U :=
S1

k=1

U
n+k

, then U \ E
n

= U
n

and U is a
neighbourhood of the origin in (E, ⌧

ind

). Indeed, for any m 2 N we have
U \E

m

=
S1

k=1

U
n+k

\E
m

=
S1

k=m�n

U
n+k

\E
m

, which is a countable union
of neighbourhoods of the origin in ⌧

m

as for k � m� n we get n+ k � m and
so ⌧

n+k

� E
m

= ⌧
m

. We can then conclude that ⌧
n

✓ ⌧
ind

� E
n

, 8n 2 N.
Corollary 1.3.6. Any LF-space is a locally convex Hausdor↵. t.v.s..

Proof. Let (E, ⌧
ind

) be the LF-space with defining sequence {(E
n

, ⌧
n

) : n 2 N}
and denote by F(o) [resp. F

n

(o)] the filter of neighbourhoods of the origin in
(E, ⌧

ind

) [resp. in (E
n

, ⌧
n

)]. Then:

\

V 2F(o)

V =
\

V 2F(o)

V \
 
[

n2N
E

n

!
=
[

n2N

\

V 2F(o)

(V \ E
n

) =
[

n2N

\

U

n

2F
n

(o)

U
n

= {o},

which implies that (E, ⌧
ind

) is Hausdor↵ by Corollary 2.2.4 in TVS-I.

As a particular case of Proposition 1.3.2 we easily get that:

Proposition 1.3.7.

Let (E, ⌧
ind

) be an LF-space with defining sequence {(E
n

, ⌧
n

) : n 2 N} and
(F, ⌧) an arbitrary locally convex t.v.s..

1. A linear mapping u from E into F is continuous if and only if, for each
n 2 N, the restriction u � E

n

of u to E
n

is continuous.
2. A linear form on E is continuous if and only if its restrictions to each

E
n

are continuous.

Note that Propositions 1.3.5 and 1.3.7 and Corollary 1.3.6 hold for any
countable strict inductive limit of an increasing sequence of locally convex
Hausdor↵ t.v.s. (even when they are not Fréchet).
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