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Inductive topologies and LF-spaces

Let {(Eq,Ta) : @ € A} be a family of locally convex t.v.s. over the field K of
real or complex numbers (A is an arbitrary index set), E a vector space over
the same field K and, for each a € A, let g, : £, — E be a linear mapping.
The inductive topology Tinq on E w.r.t. the family {(Eq, 7o, ga) : @ € A} is
the topology generated by the following basis of neighbourhoods of the origin
in E:

Bing: = {U C E convex, balanced, absorbing : Ya € A, g5 1(U) is
a neighbourhood of the origin in (Eq, 74)}-

Then it easily follows that the space (F, Tiq) is a l.c. t.v.s. Indeed, B;,q is a
family of absorbing and absolutely convex subsets of E such that
a) V U,V € Bing, UNV € By, since g, (UNV) = g (U)N g1 (V) is
a neighbourhood of the origin in (E,,7,) (as finite intersection of such
neighbourhoods).
b) V p>0,YU € Bina, pU € Bing, since g, 1(pU) = pg, 1 (U) which is a neigh-
bourhood of the origin in (E,, 7,)(as a dilation of such a neighbourhood).
Then Theorem 4.1.14 in TVS-I ensures that 7;,4 makes F into a l.c. t.v.s.
Note that 7,4 is the finest locally convex topology on E for which all the
mappings g, (o € A) are continuous. Suppose there exists a locally convex
topology 7 on E s.t. all the g,’s are continuous and 7;,q € 7. As (E,7)
is locally convex, there always exists a basis of neighbourhood of the origin
consisting of convex, balanced, absorbing subsets of £. Then for any such a
neighbourhood U of the origin in (E,7) we have, by continuity, that g;*(U)
is a neighbourhood of the origin in (E,, 7,). Hence, U € B;,q and so 7 = Typq4.
It is also worth to underline that (E,7;,4) is not necessarily a Hausdorff
t.v.s., even when all the spaces (F,, 7o) are Hausdorff t.v.s..

Example 1.3.1. Let (X, 7) be a l.c. Hausdorff t.v.s., M a non-closed subspace
of X and ¢ : X — X/M the quotient map. Then the inductive limit topology
on X/M w.r.t. (X,7,¢) (here the index set A is just a singleton) coincides
with the quotient topology on X /M, which is not Hausdorff since M is not
closed (see Proposition 2.3.5 in TVS-I).

Proposition 1.3.2. Let E be a vector space over the field K endowed with
the inductive topology Ting w.r.t. a family {(Eq, Ta, ga) : o € A}, where each
(Eo,Ta) 18 a locally convex t.v.s. over K and each g4 : Eo — E is a linear map.
A linear map u from (E, Ting) to any locally convex t.v.s. (F,T) is continuous
if and only if for each o € A the map wo g : Eo — F is continuous.
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Proof. Suppose u is continuous and fix a € A. Since g, is also continuous, we
have that u o g, is continuous as composition of continuous mappings.
Conversely, suppose that for each a € A the mapping u o g, is continuous.
As (F, ) is locally convex, there always exists a basis of neighbourhoods of
the origin consisting of convex, balanced, absorbing subsets of F'. Let W be
such a neighbourhood. Then, by the linearity of u, we get that u=1(W) is a
convex, balanced and absorbing subset of E. Moreover, the continuity of all
u 0 g, guarantees that each (u o g,)~1(W) is a neighbourhood of the origin in
(Ea,Ta), ie. g3t (u™(W)) is a neighbourhood of the origin in (E,,7s). Then
u~t (W), being also convex, balanced and absorbing, must be in Bj,q and so
it is a neighbourhood of the origin in (E, 7;,4). Hence, u is continuous. O

Let us consider now the case when we have a total order < on the index
set A and {E, : @ € A} is a family of linear subspaces of a vector space F
over K which is directed under inclusion, i.e. £, C Eg whenever a < 3, and
st. F = UaEA FE,. For each a € A, let i, be the canonical embedding of
E, in E and 7, a topology on E, s.t. (E4,7s) is a locally convex Hausdorff
t.v.s. and, whenever a < (3, the topology induced by 73 on E, is coarser
than 7,. The space E equipped with the inductive topology 7;,q w.r.t. the
family {(Eq, Ta,ia) : @ € A} is said to be the inductive limit of the family
of linear subspaces {(Eq, 7o) : o € A}.

An inductive limit of a family of linear subspaces {(Fq, 7o) : a € A} is
said to be a strict inductive limit if, whenever o < 3, the topology induced
by 74 on E, coincides with 7.

There are even more general constructions of inductive limits of a family
of locally convex t.v.s. but in the following we will focus on a more concrete
family of inductive limits which are more common in applications. Namely,
we are going to consider the so-called LF-spaces, i.e. countable strict induc-
tive limits of increasing sequences of Fréchet spaces. For convenience, let us
explicitly write down the definition of an LF-space.

Definition 1.3.3. Let {E, : n € N} be an increasing sequence of linear
subspaces of a vector space E over K, i.e. E,, C E, 1 for alln € N, such that
FE = UneN E,. For each n € N let 1,, be the canonical embedding of E,, in E
and (E,,m,) be a Fréchet space such that the topology induced by Tn,+1 on E,
coincides with T, (i.e. the natural embedding of E, into E,11 is a topological
embedding). The space E equipped with the inductive topology Ting w.r.t. the
family {(Ey, Tn,in) : n € N} is said to be the LF-space with defining sequence
{(En,m) :n € N}
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A Dbasis of neighbourhoods of the origin in the LF-space (F,7;,q) with
defining sequence {(E,, 7,) : n € N} is given by:

{U C E convex, balanced, abs. : Vn € N, UN E,, is a nbhood of o in (E,,m,)}.

Note that from the construction of the LF-space (E,T;nq) with defining
sequence {(Ep, T,) : n € N} we know that each E,, is topologically embedded
in the subsequent ones, but a priori we do not know if E, is topologically
embedded in F, i.e. if the topology induced by 7;,4 on E, is identical to
the topology 7, initially given on FE,,. This is indeed true and it will be a
consequence of the following lemma.

Lemma 1.3.4. Let X be a locally convex t.v.s., Xy a linear subspace of X
equipped with the subspace topology, and U a convex neighbourhood of the
origin in Xg. Then there exists a convex neighbourhood V' of the origin in X
such that VN Xy ="U.

Proof.

As X carries the subspace topology induced by X, there exists a neighbour-
hood W of the origin in X such that U = W N Xj. Since X is a locally convex
t.v.s., there exists a convex neighbourhood Wy of the origin in X such that
Wo C W. Let V be the convex hull of U UWj. Then by construction we have
that V is a convex neighbourhood of the origin in X and that U C V which
implies U = U N Xy C VN Xyp. We claim that actually V N Xg = U. Indeed,
let x € VNXy; asz €V and as U and W are both convex, we may write
r=ty+(1—t)zwithyeUzeWyandte[0,1]. ift=1,thenz=yec U
and we are done. If 0 < ¢ < 1, then z = (1 — t)~!(x — ty) belongs to X, and
soz € WonNXg C Wn Xy = U. This implies, by the convexity of U, that
x € U. Hence, VN Xy CU. O

Proposition 1.3.5.
Let (E, Tinq) be an LF-space with defining sequence {(Ey,,) : n € N}. Then

Tind | En = Th, Yn € N.

Proof.
(C) Let V € B;j4. Then, by definition, for each n € N we have that VN E,
is a neighbourhood of the origin in (E,, 7,). Hence, Ting | En C 7, Vn € N.
(2) Given n € N, let U,, be a convex, balanced, absorbing neighbourhood
of the origin in (FE,, 7,). Since E, is a linear subspace of F,, 1, we can apply
Lemma 1.34 (for X = E,11, Xo = E, and U = U,) which ensures the
existence of a convex neighbourhood U, 1 of the origin in (F,41, Tht1) such
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that U,1+1 N E, = U,. Then, by induction, we get that for any & € N there
exists a convex neighbourhood U, of the origin in (Ej,4k, Th+x) such that
Up+t N Epyg—1 = Upsr—1. Hence, for any k € N, we get Upspy N E, =
U,. If we consider now U := Uiil Uptg, then UNE, = U, and U is a
neighbourhood of the origin in (F,7;,4). Indeed, for any m € N we have
UNEn, =Uiey Untk NEm = Ure—p Untk N Ery, which is a countable union
of neighbourhoods of the origin in 7, as for k > m —n we get n+ k > m and
SO Ttk | Em = 7. We can then conclude that 7, C 7jnq | By, Vn € N. ]

Corollary 1.3.6. Any LF-space is a locally convex Hausdorff. t.v.s..

Proof. Let (E, Ting) be the LF-space with defining sequence {(E,,, 7,) : n € N}
and denote by F (o) [resp. Fy,(0)] the filter of neighbourhoods of the origin in
(E, Ting) [resp. in (Ey, ,)]. Then:

V= ﬂVﬂ(UEn>:U ﬂ)(VﬂEn)zu () Un={o},

VeF(o) VeF(o) neN neNVeF(o neNU, eFy, (o)

which implies that (E, 7,4) is Hausdorff by Corollary 2.2.4 in TVS-I. O

As a particular case of Proposition 1.3.2 we easily get that:

Proposition 1.3.7.
Let (E,Tina) be an LF-space with defining sequence {(Ey,T,) : n € N} and
(F,7) an arbitrary locally convex t.v.s..
1. A linear mapping u from E into F is continuous if and only if, for each
n € N, the restriction u [ E, of u to E, is continuous.
2. A linear form on E is continuous if and only if its restrictions to each
FE,, are continuous.

Note that Propositions 1.3.5 and 1.3.7 and Corollary 1.3.6 hold for any
countable strict inductive limit of an increasing sequence of locally convex
Hausdorff t.v.s. (even when they are not Fréchet).
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