1.3. Inductive topologies and LF-spaces

that U,1+1 N E, = U,. Then, by induction, we get that for any & € N there
exists a convex neighbourhood U, of the origin in (Ej,4k, Th+x) such that
Up+t N Epyg—1 = Upsr—1. Hence, for any £ € N, we get U1 N E

U,. If we consider now U := Uiil Uptg, then UNE, = U, and U is a
neighbourhood of the origin in (F,7;,4). Indeed, for any m € N we have
UNEn, =Uiey Untk NEm = Ure—p Untk N Ery, which is a countable union
of neighbourhoods of the origin in 7, as for k > m —n we get n+ k > m and
SO Ttk | Em = 7. We can then conclude that 7, C 7jnq | By, Vn € N. ]

Corollary 1.3.6. Any LF-space is a locally convex Hausdorff. t.v.s..

Proof. Let (E, Tinq) be the LF-space with defining sequence {(E,, ) : n € N}
and denote by F(0) [resp. F,(0)] the filter of neighbourhoods of the origin in
(E, Ting) [resp. in (E,, 7,)]. Then:

Nv- mm<U ) U Nons=U N th=to)

VeF(o) VeF neN neENVeF (o neN U, €Fn (o)

which implies that (E, 7,4) is Hausdorff by Corollary 2.2.4 in TVS-I. O

As a particular case of Proposition 1.3.2 we easily get that:

Proposition 1.3.7.
Let (E,Ting) be an LF-space with defining sequence {(E,,m,) : n € N} and
(F,7) an arbitrary locally convex t.v.s..
1. A linear mapping u from E into F is continuous if and only if, for each
n € N, the restriction u [ E, of u to E, is continuous.
2. A linear form on E is continuous if and only if its restrictions to each
FE,, are continuous.

Note that Propositions 1.3.5 and 1.3.7 and Corollary 1.3.6 hold for any
countable strict inductive limit of an increasing sequence of locally convex
Hausdorff t.v.s. (even when they are not Fréchet).

The next theorem is instead typical of LF-spaces as it heavily relies on the
completeness of the t.v.s. of the defining sequence. Before introducing it, let
us recall the concept of accumulation point of a filter on a topological space
together with some basic useful properties.

Definition 1.3.8. Let F be a filter on a topological space X. A point x € X
is called an accumulation point of F if x belongs to the closure of every set
which belongs to F, i.e. x € M,VYM € F.
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Proposition 1.3.9. If a filter F of a topological space X converges to a
point x, then x is an accumulation point of F.

Proof. If x were not an accumulation point of F, then there would be a set
M € F such that z ¢ M. Hence, X \ M is open in X and contains x, so it
is a neighbourhood of . Then X \ M € F as F — x by assumption. But
F is a filter and so M N (X \ M) € F and so M N (X \ M) # 0, which is a
contradiction. O

Proposition 1.3.10. If a Cauchy filter F of a t.v.s. X has an accumulation
point x, then F converges to x.

Proof. Let us denote by F(0) the filter of neighbourhoods of the origin in X
and consider U € F(o0). Since X is a t.v.s., there exists V' € F(o) such that
V+V CU. Then there exists M € F such that M — M C V as F is a Cauchy
filter in X. Being x an accumulation point of F guarantees that € M and
sothat (z +V)NM # 0. Then M — ((z+V)NM) C M — M CV and
soM CV4+({(z+V)NM) CV +V+4+x CU-+z. Since F is a filter and
M € F, the latter implies that U + = € F. This proves that F(z) C F, i.e.
F = O]

Theorem 1.3.11. Any LF-space is complete.

Proof.

Let (E, Ting) be an LF-space with defining sequence {(E,, 7,) : n € N}. Let F
be a Cauchy filter on (F, 7;nq). Denote by Fg (o) the filter of neighbourhoods
of the origin in (F, 7;,4) and consider

G={ACE: ADM+YV forsome M € F,V € Fg(o)}.

1) G is a filter on E.

Indeed, it is clear from its definition that G does not contain the empty set
and that any subset of E' containing a set in G has to belong to G. Moreover,
for any Aj, Ay € G there exist My, My € F, V1, V5 € Fg(o) s.t. M1+ V) C A
and My + V5 C Ay; and therefore

A1N A O (My + V1) N (Mz+ Va) 2 (M N M) + (V1N Va).

The latter proves that A; N Ay € G, since F and Fg(o0) are both filters and so
MiNnMye Fand VNV, € .FE(O)
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2) GC F.
In fact, for any A € G there exist M € F and V € Fg(o) s.t.

ADM+VOM+{0}=M

which implies that A € F since F is a filter.

3) G is a Cauchy filter on E.

Let U € Fg(o). Then there always exists V € Fg(o) balanced such that
V+V -V CU. As F is a Cauchy filter on (E, 7;q), there exists M € F such
that M — M C V. Then

M+V)—(M+V)C(M-M)+(V-V)CV+V-VCU

which proves that G is a Cauchy filter since M +V € G.

It is possible to show (and we do it later on) that
dpeN:VAe G, ANE, #0. (1.12)
This property together with the fact that G is a filter ensures that the family
G, ={ANE,: AcG}

is a filter on E,. Moreover, since G is a Cauchy filter on (E,7;,q) and
since by Proposition 1.3.5 we have 7,4 | E, = 7p, G, is a Cauchy filter on
(Ep,7p). Hence, the completeness of E, guarantees that there exists z € E,
s.t. G, — x which implies in turn that z is an accumulation point for G,
by Proposition 1.3.9. In particular, this gives that for any A € G we have
r € ANE,” = ANE,"™ C A™ ie. = is an accumulation point for the
Cauchy filter G. Then, by Proposition 1.3.10, we get that G — x and so
Fe(x) € G C F. Hence, we proved that F — x € E. O

Proof. of (1.12)
Suppose that (1.12) is false, i.e. Vn € N, 34, € G s.t. A, N E, = 0. By the
definition of G, this implies that

VneN, IM, € F, V, € Fg(o), s.t. (M, + Vi) N E, = 0. (1.13)

Since FE is a locally convex t.v.s., we may assume that each V,, is balanced,
convex, and such that V.1 C V,,. For each n € N, define

n—1
Wy, == conv (Vn U U (Ve N Ek)> .

k=1
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Moreover, if for some n € N there exists h € (W,, + M,,) N E,, then h € E,
and h € (W, + M,). Therefore, we can write h = x + w with x € M,, and
w € W, C conv(Vp,U(ViNE,_1)). As V,, and V4 N E,,_1 are both convex,
we get that h =z +ty+ (1 —t)z withz € M,,, y € V,,, z € V1N E,_; and
t €[0,1]. Then z +ty = h— (1 —t)z € E,, but we also have x +ty € M, +V,
(since V;, is balanced). Hence, z + ty € (M, + V,) N E,, which contradicts
(1.13), proving that

(Wn + M,)NE, =0,Yn € N.

Now let us define

W := conv (U (Vi N Ek)> .

k=1
As W is convex and as W N Ej contains Vi N Ej, for all Kk € N, W is a
neighbourhood of the origin in (E, 7,4). Moreover, as (V;,)nen is decreasing,
we have that for all n € N

n—1 o) n—1
W = conv (U VinEy) U JWn Ek)> C conv <U (Vi N Ey,) U vn> = W,

k=1 k=n k=1

Since F is a Cauchy filter on (E, 7;,4), there exists B € F such that B—B C W
and so B— B C W,,,Vn € N. We also have that BN M, # (),Vn € N, as both
B and M, belong to F. Hence, for all n € N we get

B_(BmMn)gB_Bng

which implies
B C W, + (BN M,) CW,+ M,
and so
(1.13)
BnE,C(W,+M,)NE, ="1.
Therefore, we have got that BN E,, = () for all n € N and so that B = (),
which is impossible as B € F. Hence, (1.12) must hold true. O

Example I: The space of polynomials

Let n € N and x := (x1,...,2,). Denote by R[x] the space of polynomials in
the n variables z1,...,x, with real coefficients. A canonical algebraic basis
for R[x] is given by all the monomials

x* =zt apt, Ya=(aq,...,0p) € Nj.
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For any d € Ny, let R4[x] be the linear subpace of R[x] spanned by all
monomials x* with |af := Y ; a; < d, i.e.

Ralx] := {f € R[x]|deg f < d}.

Since there are exactly (”ji'd) monomials x* with |a| < d, we have that
. (d+n)!
dlm(Rd[X]) = W,

and so that R4[x] is a finite dimensional vector space. Hence, by Tychonoff
Theorem (see Corollary 3.1.4 in TVS-I) there is a unique topology Tg that
makes Ry[x] into a Hausdorff t.v.s. which is also complete and so Fréchet (as it
topologically isomorphic to R%“™Rdlz]) equipped with the euclidean topology).
As R[x] := [J;2, Rq[x], we can then endow it with the inductive topol-
0gY Ting W.r.t. the family of F-spaces {(Rd[x], ) . d € NO}; thus (R[x], Tinag)
is a LF-space and the following properties hold (proof in Exercise Sheet 3):
a) Ting is the finest locally convex topology on R[x],
b) every linear map f from (R[x], 7j,4) into any t.v.s. is continuous.

Example IlI: The space of test functions

Let QCR? be open in the euclidean topology. For any integer 0 < s < oo, we
have defined in Section 1.2 the set C*(12) of all real valued s—times continuously
differentiable functions on 2, which is a real vector space w.r.t. pointwise
addition and scalar multiplication. We have equipped this space with the
C*-topology (i.e. the topology of uniform convergence on compact sets of the
functions and their derivatives up to order s) and showed that this turns C*(2)
into a Fréchet space.

Let K be a compact subset of €2, which means that it is bounded and
closed in R and that its closure is contained in €. For any integer 0 < s < o0,
consider the subset C¥(K) of C*(Q2) consisting of all the functions f € C*(f2)
whose support lies in K, i.e.

Co(K) == {f € C*(Q) : supp(f) C K},

where supp(f) denotes the support of the function f on 2, that is the closure
in Q of the subset {z € Q: f(z) # 0}.

For any integer 0 < s < oo, C5(K) is always a closed linear subspace
of C*(Q2). Indeed, for any f,g € CJ(K) and any A € R, we clearly have
f+g€C(Q) and \f € C5(Q2) but also supp(f + g) C supp(f) Usupp(g) € K
and supp(Af) = supp(f) € K, which gives f + g,A\f € CJ(K). To show
that CS(K) is closed in C*(12), it suffices to prove that it is sequentially closed
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as C*(Q2) is a F-space. Consider a sequence (f;)jen of functions in C;(K)
converging to f in the C*—topology. Then clearly f € C*(£2) and since all the
fj vanish in the open set Q \ K, obviously their limit f must also vanish in
Q\ K. Thus, regarded as a subspace of C*(Q2), C3(K) is also complete (see
Proposition 2.5.8 in TVS-I) and so it is itself an F-space.

Let us now denote by C3(2) the union of the subspaces C3(K) as K varies in
all possible ways over the family of compact subsets of €, i.e. CZ(2) is linear
subspace of C*(f2) consisting of all the functions belonging to C*(€2) which
have a compact support (this is what is actually encoded in the subscript c).
In particular, C2°(Q2) (smooth functions with compact support in ) is called
space of test functions and plays an essential role in the theory of distributions.

We will not endow C2(Q2) with the subspace topology induced by C*(£2),
but we will consider a finer one, which will turn C2(€2) into an LF-space. Let us
consider a sequence (Kj);cn of compact subsets of Q s.t. K; € Kj1,Vj € N
and |72, K; = Q. (Sometimes is even more advantageous to choose the
Kj’s to be relatively compact i.e. the closures of open subsets of {2 such that
K; C Kj1,¥j € Nand U2, K; = Q)

Then C3(Q) = UjZ, C3(Kj;), as an arbitrary compact subset K of  is
contained in K; for some sufficiently large j. Because of our way of defining the
F-spaces C:(Kj), we have that CJ(K;) C C3(Kj4+1) and CZ(Kj4+1) induces on
the subset CJ(K;) the same topology as the one originally given on it, i.e. the
subspace topology induced on CZ(K;) by C*(€2). Thus we can equip C;(€2) with
the inductive topology Ti,q¢ w.r.t. the sequence of F-spaces {C;(Kj), j € N},
which makes CZ(€2) an LF-space. It is easy to check that 7;,4 does not depend
on the choice of the sequence of compact sets K;’s provided they fill €.

Note that (CZ(£2), Ting) is not metrizable since it is not Baire (proof in
Exercise Sheet 3).

Proposition 1.3.12. For any integer 0 < s < oo, consider C:(€2) endowed
with the LF-topology Ting described above. Then we have the following contin-
uous injections:

C(Q) = C3(Q) = C57HQ), V0 <s< oo

Proof. Let us just prove the first inclusion ¢ : C°(2) — C3(€2) as the others
follows in the same way. As C°(Q) = 2, C2°(K;) is the inductive limit
of the sequence of F-spaces (C2°(Kj));cy, Where (Kj)jen is a sequence of
compact subsets of € such that K; C K;1,Vj € N and U;’il K; = Q, by
Proposition 1.3.7 we know that 7 is continuous if and only if, for any j € N,
ej = 1 | CX(Kj) is continuous. But from the definition we gave of the
topology on each C:(Kj;) and C°(Kj), it is clear that both the inclusions
ij 1 CO(K;) — CI(K;) and s; : C3(K;) — Ci(€2) are continuous. Hence, for
each j € N, e; = s 04, is indeed continuous. O
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