
1.3. Inductive topologies and LF-spaces

that U
n+1

\ E
n

= U
n

. Then, by induction, we get that for any k 2 N there
exists a convex neighbourhood U

n+k

of the origin in (E
n+k

, ⌧
n+k

) such that
U
n+k

\ E
n+k�1

= U
n+k�1

. Hence, for any k 2 N, we get U
n+k

\ E
n

=
U
n

. If we consider now U :=
S1

k=1

U
n+k

, then U \ E
n

= U
n

and U is a
neighbourhood of the origin in (E, ⌧

ind

). Indeed, for any m 2 N we have
U \E

m

=
S1

k=1

U
n+k

\E
m

=
S1

k=m�n

U
n+k

\E
m

, which is a countable union
of neighbourhoods of the origin in ⌧

m

as for k � m� n we get n+ k � m and
so ⌧

n+k

� E
m

= ⌧
m

. We can then conclude that ⌧
n

✓ ⌧
ind

� E
n

, 8n 2 N.

Corollary 1.3.6. Any LF-space is a locally convex Hausdor↵. t.v.s..

Proof. Let (E, ⌧
ind

) be the LF-space with defining sequence {(E
n

, ⌧
n

) : n 2 N}
and denote by F(o) [resp. F

n

(o)] the filter of neighbourhoods of the origin in
(E, ⌧

ind

) [resp. in (E
n

, ⌧
n

)]. Then:

\

V 2F(o)

V =
\

V 2F(o)

V \
 
[

n2N
E

n

!
=

[

n2N

\

V 2F(o)

(V \ E
n

) =
[

n2N

\

U

n

2F
n

(o)

U
n

= {o},

which implies that (E, ⌧
ind

) is Hausdor↵ by Corollary 2.2.4 in TVS-I.

As a particular case of Proposition 1.3.2 we easily get that:

Proposition 1.3.7.

Let (E, ⌧
ind

) be an LF-space with defining sequence {(E
n

, ⌧
n

) : n 2 N} and
(F, ⌧) an arbitrary locally convex t.v.s..

1. A linear mapping u from E into F is continuous if and only if, for each
n 2 N, the restriction u � E

n

of u to E
n

is continuous.
2. A linear form on E is continuous if and only if its restrictions to each

E
n

are continuous.

Note that Propositions 1.3.5 and 1.3.7 and Corollary 1.3.6 hold for any
countable strict inductive limit of an increasing sequence of locally convex
Hausdor↵ t.v.s. (even when they are not Fréchet).

The next theorem is instead typical of LF-spaces as it heavily relies on the
completeness of the t.v.s. of the defining sequence. Before introducing it, let
us recall the concept of accumulation point of a filter on a topological space
together with some basic useful properties.

Definition 1.3.8. Let F be a filter on a topological space X. A point x 2 X
is called an accumulation point of F if x belongs to the closure of every set
which belongs to F , i.e. x 2 M, 8M 2 F .
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1. Special classes of topological vector spaces

Proposition 1.3.9. If a filter F of a topological space X converges to a
point x, then x is an accumulation point of F .

Proof. If x were not an accumulation point of F , then there would be a set
M 2 F such that x /2 M . Hence, X \M is open in X and contains x, so it
is a neighbourhood of x. Then X \ M 2 F as F ! x by assumption. But
F is a filter and so M \

�
X \M

�
2 F and so M \

�
X \M

�
6= ;, which is a

contradiction.

Proposition 1.3.10. If a Cauchy filter F of a t.v.s. X has an accumulation
point x, then F converges to x.

Proof. Let us denote by F(o) the filter of neighbourhoods of the origin in X
and consider U 2 F(o). Since X is a t.v.s., there exists V 2 F(o) such that
V +V ✓ U . Then there exists M 2 F such that M�M ✓ V as F is a Cauchy
filter in X. Being x an accumulation point of F guarantees that x 2 M and
so that (x + V ) \ M 6= ;. Then M � ((x+ V ) \M) ✓ M � M ✓ V and
so M ✓ V + ((x+ V ) \M) ✓ V + V + x ✓ U + x. Since F is a filter and
M 2 F , the latter implies that U + x 2 F . This proves that F(x) ✓ F , i.e.
F ! x.

Theorem 1.3.11. Any LF-space is complete.

Proof.
Let (E, ⌧

ind

) be an LF-space with defining sequence {(E
n

, ⌧
n

) : n 2 N}. Let F
be a Cauchy filter on (E, ⌧

ind

). Denote by F
E

(o) the filter of neighbourhoods
of the origin in (E, ⌧

ind

) and consider

G := {A ✓ E : A ◆ M + V for some M 2 F , V 2 F
E

(o)}.

1) G is a filter on E.
Indeed, it is clear from its definition that G does not contain the empty set
and that any subset of E containing a set in G has to belong to G. Moreover,
for any A

1

, A
2

2 G there exist M
1

,M
2

2 F , V
1

, V
2

2 F
E

(o) s.t. M
1

+ V
1

✓ A
1

and M
2

+ V
2

✓ A
2

; and therefore

A
1

\A
2

◆ (M
1

+ V
1

) \ (M
2

+ V
2

) ◆ (M
1

\M
2

) + (V
1

\ V
2

).

The latter proves that A
1

\A
2

2 G, since F and F
E

(o) are both filters and so
M

1

\M
2

2 F and V
1

\ V
2

2 F
E

(o).
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1.3. Inductive topologies and LF-spaces

2) G ✓ F .
In fact, for any A 2 G there exist M 2 F and V 2 F

E

(o) s.t.

A ◆ M + V � M + {0} = M

which implies that A 2 F since F is a filter.

3) G is a Cauchy filter on E.
Let U 2 F

E

(o). Then there always exists V 2 F
E

(o) balanced such that
V +V �V ✓ U . As F is a Cauchy filter on (E, ⌧

ind

), there exists M 2 F such
that M �M ✓ V . Then

(M + V )� (M + V ) ✓ (M �M) + (V � V ) ✓ V + V � V ✓ U

which proves that G is a Cauchy filter since M + V 2 G.

It is possible to show (and we do it later on) that

9 p 2 N : 8A 2 G, A \ E
p

6= ;. (1.12)

This property together with the fact that G is a filter ensures that the family

G
p

:= {A \ E
p

: A 2 G}

is a filter on E
p

. Moreover, since G is a Cauchy filter on (E, ⌧
ind

) and
since by Proposition 1.3.5 we have ⌧

ind

� E
p

= ⌧
p

, G
p

is a Cauchy filter on
(E

p

, ⌧
p

). Hence, the completeness of E
p

guarantees that there exists x 2 E
p

s.t. G
p

! x which implies in turn that x is an accumulation point for G
p

by Proposition 1.3.9. In particular, this gives that for any A 2 G we have
x 2 A \ E

p

⌧

p = A \ E
p

⌧

ind ✓ A
⌧

ind , i.e. x is an accumulation point for the
Cauchy filter G. Then, by Proposition 1.3.10, we get that G ! x and so
F
E

(x) ✓ G ✓ F . Hence, we proved that F ! x 2 E.

Proof. of (1.12)
Suppose that (1.12) is false, i.e. 8n 2 N, 9A

n

2 G s.t. A
n

\ E
n

= ;. By the
definition of G, this implies that

8n 2 N, 9M
n

2 F , V
n

2 F
E

(o), s.t. (M
n

+ V
n

) \ E
n

= ;. (1.13)

Since E is a locally convex t.v.s., we may assume that each V
n

is balanced,
convex, and such that V

n+1

✓ V
n

. For each n 2 N, define

W
n

:= conv

 
V
n

[
n�1[

k=1

(V
k

\ E
k

)

!
.
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1. Special classes of topological vector spaces

Moreover, if for some n 2 N there exists h 2 (W
n

+ M
n

) \ E
n

then h 2 E
n

and h 2 (W
n

+ M
n

). Therefore, we can write h = x + w with x 2 M
n

and
w 2 W

n

✓ conv (V
n

[ (V
1

\ E
n�1

)). As V
n

and V
1

\ E
n�1

are both convex,
we get that h = x + ty + (1 � t)z with x 2 M

n

, y 2 V
n

, z 2 V
1

\ E
n�1

and
t 2 [0, 1]. Then x+ ty = h� (1� t)z 2 E

n

, but we also have x+ ty 2 M
n

+V
n

(since V
n

is balanced). Hence, x + ty 2 (M
n

+ V
n

) \ E
n

which contradicts
(1.13), proving that

(W
n

+M
n

) \ E
n

= ;, 8n 2 N.

Now let us define

W := conv

 1[

k=1

(V
k

\ E
k

)

!
.

As W is convex and as W \ E
k

contains V
k

\ E
k

for all k 2 N, W is a
neighbourhood of the origin in (E, ⌧

ind

). Moreover, as (V
n

)
n2N is decreasing,

we have that for all n 2 N

W = conv

 
n�1[

k=1

(V
k

\ E
k

) [
1[

k=n

(V
k

\ E
k

)

!
✓ conv

 
n�1[

k=1

(V
k

\ E
k

) [ V
n

!
= W

n

.

Since F is a Cauchy filter on (E, ⌧
ind

), there exists B 2 F such that B�B ✓ W
and so B �B ✓ W

n

, 8n 2 N. We also have that B \M
n

6= ;, 8n 2 N, as both
B and M

n

belong to F . Hence, for all n 2 N we get

B � (B \M
n

) ✓ B �B ✓ W
n

,

which implies
B ✓ W

n

+ (B \M
n

) ✓ W
n

+M
n

and so

B \ E
n

✓ (W
n

+M
n

) \ E
n

(1.13)

= ;.

Therefore, we have got that B \ E
n

= ; for all n 2 N and so that B = ;,
which is impossible as B 2 F . Hence, (1.12) must hold true.

Example I: The space of polynomials

Let n 2 N and x := (x
1

, . . . , x
n

). Denote by R[x] the space of polynomials in
the n variables x

1

, . . . , x
n

with real coe�cients. A canonical algebraic basis
for R[x] is given by all the monomials

x

↵ := x↵1
1

· · ·x↵n

n

, 8↵ = (↵
1

, . . . ,↵
n

) 2 Nn

0

.
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1.3. Inductive topologies and LF-spaces

For any d 2 N
0

, let R
d

[x] be the linear subpace of R[x] spanned by all
monomials x↵ with |↵| :=

P
n

i=1

↵
i

 d, i.e.

R
d

[x] := {f 2 R[x]| deg f  d}.

Since there are exactly
�
n+d

d

�
monomials x↵ with |↵|  d, we have that

dim(R
d

[x]) =
(d+ n)!

d!n!
,

and so that R
d

[x] is a finite dimensional vector space. Hence, by Tychono↵
Theorem (see Corollary 3.1.4 in TVS-I) there is a unique topology ⌧d

e

that
makes R

d

[x] into a Hausdor↵ t.v.s. which is also complete and so Fréchet (as it
topologically isomorphic to Rdim(R

d

[x]) equipped with the euclidean topology).
As R[x] :=

S1
d=0

R
d

[x], we can then endow it with the inductive topol-
ogy ⌧

ind

w.r.t. the family of F-spaces
�
(R

d

[x], ⌧d
e

) : d 2 N
0

 
; thus (R[x], ⌧

ind

)
is a LF-space and the following properties hold (proof in Exercise Sheet 3):
a) ⌧

ind

is the finest locally convex topology on R[x],
b) every linear map f from (R[x], ⌧

ind

) into any t.v.s. is continuous.

Example II: The space of test functions

Let ⌦✓Rd be open in the euclidean topology. For any integer 0 s1, we
have defined in Section 1.2 the set Cs(⌦) of all real valued s�times continuously
di↵erentiable functions on ⌦, which is a real vector space w.r.t. pointwise
addition and scalar multiplication. We have equipped this space with the
Cs-topology (i.e. the topology of uniform convergence on compact sets of the
functions and their derivatives up to order s) and showed that this turns Cs(⌦)
into a Fréchet space.

Let K be a compact subset of ⌦, which means that it is bounded and
closed in Rd and that its closure is contained in ⌦. For any integer 0  s  1,
consider the subset Ck

c

(K) of Cs(⌦) consisting of all the functions f 2 Cs(⌦)
whose support lies in K, i.e.

Cs

c

(K) := {f 2 Cs(⌦) : supp(f) ✓ K},

where supp(f) denotes the support of the function f on ⌦, that is the closure
in ⌦ of the subset {x 2 ⌦ : f(x) 6= 0}.

For any integer 0  s  1, Cs

c

(K) is always a closed linear subspace
of Cs(⌦). Indeed, for any f, g 2 Cs

c

(K) and any � 2 R, we clearly have
f + g 2 Cs(⌦) and �f 2 Cs(⌦) but also supp(f + g) ✓ supp(f)[ supp(g) ✓ K
and supp(�f) = supp(f) ✓ K, which gives f + g,�f 2 Cs

c

(K). To show
that Cs

c

(K) is closed in Cs(⌦), it su�ces to prove that it is sequentially closed
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1. Special classes of topological vector spaces

as Cs(⌦) is a F-space. Consider a sequence (f
j

)
j2N of functions in Cs

c

(K)
converging to f in the Cs�topology. Then clearly f 2 Cs(⌦) and since all the
f
j

vanish in the open set ⌦ \ K, obviously their limit f must also vanish in
⌦ \ K. Thus, regarded as a subspace of Cs(⌦), Cs

c

(K) is also complete (see
Proposition 2.5.8 in TVS-I) and so it is itself an F-space.

Let us now denote by Cs

c

(⌦) the union of the subspaces Cs

c

(K) asK varies in
all possible ways over the family of compact subsets of ⌦, i.e. Cs

c

(⌦) is linear
subspace of Cs(⌦) consisting of all the functions belonging to Cs(⌦) which
have a compact support (this is what is actually encoded in the subscript c).
In particular, C1

c

(⌦) (smooth functions with compact support in ⌦) is called
space of test functions and plays an essential role in the theory of distributions.

We will not endow Cs

c

(⌦) with the subspace topology induced by Cs(⌦),
but we will consider a finer one, which will turn Cs

c

(⌦) into an LF-space. Let us
consider a sequence (K

j

)
j2N of compact subsets of ⌦ s.t. K

j

✓ K
j+1

, 8j 2 N
and

S1
j=1

K
j

= ⌦. (Sometimes is even more advantageous to choose the
K

j

’s to be relatively compact i.e. the closures of open subsets of ⌦ such that
K

j

✓ ˚K
j+1

, 8j 2 N and
S1

j=1

K
j

= ⌦.)
Then Cs

c

(⌦) =
S1

j=1

Cs

c

(K
j

), as an arbitrary compact subset K of ⌦ is
contained inK

j

for some su�ciently large j. Because of our way of defining the
F-spaces Cs

c

(K
j

), we have that Cs

c

(K
j

) ✓ Cs

c

(K
j+1

) and Cs

c

(K
j+1

) induces on
the subset Cs

c

(K
j

) the same topology as the one originally given on it, i.e. the
subspace topology induced on Cs

c

(K
j

) by Cs(⌦). Thus we can equip Cs

c

(⌦) with
the inductive topology ⌧

ind

w.r.t. the sequence of F-spaces {Cs

c

(K
j

), j 2 N},
which makes Cs

c

(⌦) an LF-space. It is easy to check that ⌧
ind

does not depend
on the choice of the sequence of compact sets K

j

’s provided they fill ⌦.
Note that (Cs

c

(⌦), ⌧
ind

) is not metrizable since it is not Baire (proof in
Exercise Sheet 3).

Proposition 1.3.12. For any integer 0  s  1, consider Cs

c

(⌦) endowed
with the LF-topology ⌧

ind

described above. Then we have the following contin-
uous injections:

C1
c

(⌦) ! Cs

c

(⌦) ! Cs�1

c

(⌦), 8 0 < s < 1.

Proof. Let us just prove the first inclusion i : C1
c

(⌦) ! Cs

c

(⌦) as the others
follows in the same way. As C1

c

(⌦) =
S1

j=1

C1
c

(K
j

) is the inductive limit
of the sequence of F-spaces (C1

c

(K
j

))
j2N, where (K

j

)
j2N is a sequence of

compact subsets of ⌦ such that K
j

✓ K
j+1

, 8j 2 N and
S1

j=1

K
j

= ⌦, by
Proposition 1.3.7 we know that i is continuous if and only if, for any j 2 N,
e
j

:= i � C1
c

(K
j

) is continuous. But from the definition we gave of the
topology on each Cs

c

(K
j

) and C1
c

(K
j

), it is clear that both the inclusions
i
j

: C1
c

(K
j

) ! Cs

c

(K
j

) and s
j

: Cs

c

(K
j

) ! Cs

c

(⌦) are continuous. Hence, for
each j 2 N, e

j

= s
j

� i
j

is indeed continuous.
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