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Let {(E
↵

, ⌧
↵

) : ↵ 2 A} be a family of locally convex t.v.s. over the field K of
real or complex numbers (A is an arbitrary index set). Let E be a vector space
over the same fieldK and, for each ↵ 2 A, let f

↵

: E ! E
↵

be a linear mapping.
The projective topology ⌧

proj

on E w.r.t. the family {(E
↵

, ⌧
↵

, f
↵

) : ↵ 2 A} is
the locally convex topology generated by the following basis of neighbourhoods
of the origin in E:

B
proj

:=

(
\

↵2F

f�1
↵

(U
↵

) : F ✓ A finite, U
↵

basic nbhood of o in (E
↵

, ⌧
↵

), 8↵ 2 F

)
.

Hence, (E, ⌧
proj

) is a locally convex t.v.s.. Indeed, since all (E
↵

, ⌧
↵

) are lo-
cally convex t.v.s., we can always choose the U

↵

’s to be convex, balanced and
absorbing and so, by the linearity of the f

↵

’s, we get that the corresponding
B
proj

is a collection of convex, balanced and absorbing subsets of E such that:
a) 8 U, V 2 B

proj

, U \ V 2 B
proj

, because U =
T

↵2F f�1

↵

(U
↵

) and V =T
↵2G f�1

↵

(U
↵

) for some F,G ✓ A finite and some U
↵

basic neighbourhoods
of the origin in (E

↵

, ⌧
↵

) and so U \ V =
T

↵2F[G f�1

↵

(U
↵

) 2 B
proj

.
b) 8 ⇢ > 0, 8 U 2 B

proj

, ⇢U 2 B
proj

, since U =
T

↵2F f�1

↵

(U
↵

) for some F ✓ A
finite and some U

↵

basic neighbourhoods of the origin in (E
↵

, ⌧
↵

) and so
⇢U =

T
↵2F f�1

↵

(⇢U
↵

) 2 B
proj

.
Then Theorem 4.1.14 in TVS-I ensures that ⌧

proj

makes E into a l.c. t.v.s..
Note that ⌧

proj

is the coarsest topology on E for which all the mappings f
↵

(↵ 2 A) are continuous. Suppose there exists another topology ⌧ on E such
that all the f

↵

’s are continuous and ⌧ ✓ ⌧
proj

. Then for any neighbourhood U
of the origin in ⌧

proj

there exists F ✓ A finite and for each ↵ 2 F there exists
U
↵

basic neighbourhood of the origin in (E
↵

, ⌧
↵

) such that
T

↵2F f�1

↵

(U
↵

) ✓ U .
Since the ⌧ -continuity of the f

↵

’s ensures that each f�1

↵

(U
↵

) is a neighbour-
hood of the origin in ⌧ , we have that U is itself a neighbourhood of the origin
in ⌧ . Hence, ⌧ ⌘ ⌧

proj

.

Proposition 1.4.1. Let E be a vector space over K endowed with the projec-
tive topology ⌧

proj

w.r.t. the family {(E
↵

, ⌧
↵

, f
↵

) : ↵ 2 A}, where each (E
↵

, ⌧
↵

)
is a locally convex t.v.s. over K and each f

↵

a linear mapping from E to E
↵

.
Then ⌧

proj

is Hausdor↵ if and only if for each 0 6= x 2 E, there exists an
↵ 2 A and a neighbourhood U

↵

of the origin in (E
↵

, ⌧
↵

) such that f
↵

(x) /2 U
↵

.

Proof. Suppose that (E, ⌧
proj

) is Hausdor↵ and let 0 6= x 2 E. By Propo-
sition 2.2.3 in TVS-I, there exists a neighbourhood U of the origin in E not
containing x. Then, by definition of ⌧

proj

there exists a finite subset F ✓ A
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1. Special classes of topological vector spaces

and, for any ↵ 2 F , there exists U
↵

neighbourhood of the origin in (E
↵

, ⌧
↵

)
s.t.

T
↵2F f�1

↵

(U
↵

) ✓ U . Hence, as x /2 U , there exists ↵ 2 F s.t. x /2 f�1

↵

(U
↵

)
i.e. f

↵

(x) /2 U
↵

. Conversely, suppose that there exists an ↵ 2 A and a neigh-
bourhood of the origin in (E

↵

, ⌧
↵

) such that f
↵

(x) /2 U
↵

. Then x /2 f�1

↵

(U
↵

),
which implies by Proposition 2.2.3 in TVS-I that ⌧

proj

is a Hausdor↵ topology,
as f�1

↵

(U
↵

) is a neighbourhood of the origin in (E, ⌧
proj

) not containing x.

Proposition 1.4.2. Let E be a vector space over K endowed with the pro-
jective topology ⌧

proj

w.r.t. the family {(E
↵

, ⌧
↵

, f
↵

) : ↵ 2 A}, where each
(E

↵

, ⌧
↵

) is a locally convex t.v.s. over K and each f
↵

a linear mapping from
E to E

↵

. Let (F, ⌧) be an arbitrary t.v.s. and u a linear mapping from F into
E. The mapping u : F ! E is continuous if and only if, for each ↵ 2 A,
f
↵

� u : F ! E
↵

is continuous.

Proof. (Exercise Sheet 3)

Example I: The product of locally convex t.v.s
Let {(E

↵

, ⌧
↵

) : ↵ 2 A} be a family of locally convex t.v.s. The product
topology ⌧

prod

on E =
Q

↵2AE
↵

(see Definition 1.1.20 in TVS-I) is the coarsest
topology for which all the canonical projections p

↵

: E ! E
↵

(defined by
p
↵

(x) := x
↵

for any x = (x
�

)
�2A 2 E) are continuous. Hence, ⌧

prod

coincides
with the projective topology on E w.r.t. {(E

↵

, ⌧
↵

, p
↵

) : ↵ 2 A}.

Let us consider now the case when we have a directed partially ordered
index set (A,), a family {(E

↵

, ⌧
↵

) : ↵ 2 A} of locally convex t.v.s. over K
and for any ↵  � a continuous linear mapping g

↵�

: E
�

! E
↵

. Let E be
the subspace of

Q
↵2AE

↵

whose elements x = (x
↵

)
↵2A satisfy the relation

x
↵

= g
↵�

(x
�

) whenever ↵  �. For any ↵ 2 A, let f
↵

be the canonical
projection p

↵

:
Q

�2AE
�

! E
↵

restricted to E. The space E endowed with
the projective topology w.r.t. the family {(E

↵

, ⌧
↵

, f
↵

) : ↵ 2 A} is said to be
the projective limit of the family {(E

↵

, ⌧
↵

) : ↵ 2 A} w.r.t. the mappings
{g

↵�

: ↵,� 2 A,↵  �} and {f
↵

: ↵ 2 A}. If each f
↵

(E) is dense in E
↵

then
the projective limit is said to be reduced.

Remark 1.4.3. Given a family {(E
↵

, ⌧
↵

) : ↵ 2 A} of locally convex t.v.s.
over K which is directed by topological embeddings (i.e. for any ↵,� 2 A there
exists � 2 A s.t. E

�

✓ E
↵

and E
�

✓ E
�

with continuous embeddings) and such
that the set E :=

T
↵2AE

↵

is dense in each E
↵

, we denote by i
↵

the embedding
of E into E

↵

. The directedness of the family induces a partial order on A
making A directed, i.e. ↵  � if and only if E

�

✓ E
↵

. For any ↵  �, let us
denote by i

↵�

the continuous embedding of E
�

in E
↵

. Then the set E endowed
with the projective topology ⌧

proj

w.r.t. the family {(E
↵

, ⌧
↵

, i
↵

) : ↵ 2 A}
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1.5. Open mapping theorem

is the reduced projective limit of {(E
↵

, ⌧
↵

) : ↵ 2 A} w.r.t. the mappings
{i

↵�

: ↵,� 2 A,↵  �} and {i
↵

: ↵ 2 A}. For convenience, in such cases,
(E, ⌧

proj

) is called just reduced projective limit of {(E
↵

, ⌧
↵

) : ↵ 2 A} (omitting
the maps as they are all natural embeddings).

Example II: The space of test functions
Let ⌦✓Rd be open in the euclidean topology. The space of test functions
C1
c

(⌦), i.e. the space of all the functions belonging to C1(⌦) which have a
compact support, can be constructed as a reduced projective limit of the kind
introduced in Remark 1.4.3. Consider the index set

T := {t := (t
1

, t
2

) : t
1

2 N
0

, t
2

2 C1(⌦) with t
2

(x) � 1, 8x 2 ⌦}

and for each t 2 T , let us introduce the following norm on C1
c

(⌦):

k'k
t

:= sup
x2⌦

0

@t
2

(x)
X

|↵|t1

|(D↵')(x)|

1

A .

For each t 2 T , let D
t

(⌦) be the completion of C1
c

(⌦) w.r.t. k · k
t

and denote
by ⌧

t

the topology induced by the norm k ·k
t

. Then the family {(D
t

(⌦), ⌧
t

, i
t

) :
t 2 T} is directed by topological embeddings, since for any t := (t

1

, t
2

), s :=
(s

1

, s
2

) 2 T we always have that r := (t
1

+ s
1

, t
2

+ s
2

) 2 T is such that
D

r

(⌦) ✓ D
t

(⌦) and D
r

(⌦) ✓ D
s

(⌦). Moreover, we have that as sets

C1
c

(⌦) =
\

t2T
D

t

(⌦).

Hence, the space of test functions C1
c

(⌦) endowed with the projective topology
⌧
proj

w.r.t. the family {(D
t

(⌦), ⌧
t

, i
t

) : t 2 T}, where (for each t 2 T ) i
t

denotes
the natural embedding of C1

c

(⌦) into D
t

(⌦) is the reduced projective limit of
the family {(D

t

(⌦), ⌧
t

) : t 2 T}.
Using Sobolev embeddings theorems, it can be showed that the space of

test functions C1
c

(⌦) can be actually written as projective limit of a fam-
ily of weighted Sobolev spaces which are Hilbert spaces (see [1, Chapter I,
Section 3.10]).

1.5 Open mapping theorem

In this section we are going to come back for a moment to the general theory of
metrizable t.v.s. to give one of the most celebrated theorems in this framework,
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1. Special classes of topological vector spaces

the so-called open mapping theorem. Let us first try to motivate the question
on which such a theorem is based on.

Let X and Y be two t.v.s. over K and f : X ! Y a linear map. Then
there exists a unique linear map f̄ : X/Ker(f) ! Im(f) making the following
diagram commutative, i.e.

8x 2 X, f(x) = f̄(�(x)).

X Im(f) Y

X/Ker(f)

�

f

i

¯

f

where i is the natural injection of Im(f) into Y , i.e. the mapping which to
each element y of Im(f) assigns that same element y regarded as an element
of Y ; � is the canonical map of X onto its quotient X/Ker(f) (since we are
between t.v.s. � is continuous and open).

Note that
• f̄ is well-defined.

Indeed, if �(x) = �(y), i.e. x � y 2 Ker(f), then f(x � y) = 0 that is
f(x) = f(y) and so f̄(�(x)) = f̄(�(y)).

• f̄ is linear.
This is an immediate consequence of the linearity of f and of the linear
structure of X/Ker(f).

• f̄ is a one-to-one map of X/Ker(f) onto Im(f).
The onto property is evident from the definition of Im(f) and of f̄ .
As for the one-to-one property, note that f̄(�(x)) = f̄(�(y)) means by
definition that f(x) = f(y), i.e. f(x � y) = 0. This is equivalent, by
linearity of f , to say that x�y 2 Ker(f), which means that �(x) = �(y).

Proposition 1.5.1. Let f : X ! Y a linear map between two t.v.s. X and Y .
The map f is continuous if and only if the map f̄ is continuous.

Proof. Suppose f continuous and let U be an open subset in Im(f) (endowed
with the subspace topology induced by the topology on Y ). Then f�1(U)
is open in X. By definition of f̄ , we have f̄�1(U) = �(f�1(U)). Since the
quotient map � : X ! X/Ker(f) is open, �(f�1(U)) is open in X/Ker(f).
Hence, f̄�1(U) is open inX/Ker(f) and so the map f̄ is continuous. Viceversa,
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1.5. Open mapping theorem

suppose that f̄ is continuous. Since f = f̄ � � and � is continuous, f is also
continuous as composition of continuous maps.

In general, the inverse of f̄ , which is well defined on Im(f) since f̄ is
injective, is not continuous, i.e. f̄ is not necessarily open. However, combining
the previous proposition with the definition of f̄ , it is easy to see that

Proposition 1.5.2. Let f : X ! Y a linear map between two t.v.s. X
and Y . The map f is a topological homomorphism (i.e. linear, continuous
and open) if and only if f̄ is a topological isomorphism (i.e. bijective topological
homomorphism).

Now if Y is additionally Hausdor↵ and Im(f) finite dimensional, then
whenever f is continuous we have that f̄ is not only continuous but also open
(see Theorem 3.1.1-c in TVS-I and recall that in this case Ker(f) is closed and
so X/Ker(f) is a Hausdor↵ t.v.s..). Hence, any linear continuous map from a
t.v.s. into a Hausdor↵ t.v.s. whose image is finite dimensional is also open.
It is then natural to ask for which classes of t.v.s. any linear continuous map
is also open. Of course, we are really interested in loosening the restriction of
the finite dimensionality of Im(f) but we do expect that in doing so we shall
give up some of the generality on the domain X of f . The open mapping
theorem exactly provides an answer to this question.

Theorem 1.5.3. Let X and Y be two metrizable and complete t.v.s.. Every
continuous linear surjective map f : X ! Y is open.

The proof consists of two rather distinct parts. In the first one, we make
use only of the fact that the mapping under consideration is onto and that
Y is metrizable and complete (and so Baire). In the second part, we take
advantage of the fact that both X and Y can be turned into metric spaces,
and that Y is also complete.

Proof. Since Y is metrizable and complete, it is a Baire t.v.s. by Proposi-
tion 1.1.9. This together with the fact that f : X ! Y is linear, continuous,
onto map (and so Im(f) has non-empty interior) implies that the assumptions
of Lemma 1.5.4 below are satisfied and so we get that f(V ) is a neighbour-
hood of the origin in Y whenever V is a neighbourhood of the origin in X.
This provides in particular that, for any r > 0 there exists ⇢ > 0 such that
B

⇢

(o) ✓ f(B
r

(o)) since X and Y are both metrizable t.v.s.. Since the met-
rics employed can be always chosen to be translation invariant (see Proposi-
tion 1.1.3), we easily obtain that the assumption (1.14) in Lemma 1.5.5 below
holds.
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1. Special classes of topological vector spaces

Let U be a neighbourhood of the origin in X. Then there exists s > 0 s.t.
B

s

(o) ✓ U and so f(B
s

(o)) ✓ f(U). By applying (1.14) for r = s

2

, we obtain

that 9 ⇢ := ⇢ s

2
> 0 s.t. B

⇢

(o) ✓ f(B s

2
(o)) and so, by Lemma 1.5.5, we have

B
⇢

(o) ✓ f(B
s

(o)) ✓ f(U) since s > s

2

. Hence, f(U) is a neighbourhood of the
origin in Y .

Lemma 1.5.4. Let X be a t.v.s., Y a Baire t.v.s. and f : X ! Y a continuous
linear map. If f(X) has non-empty interior, then f(V ) is a neighbourhood of
the origin in Y whenever V is a neighbourhood of the origin in X.

Proof. (see Exercise Sheet 1)

Lemma 1.5.5. Let X be a metrizable and complete t.v.s. and Y a metrizable
(not necessarily complete) t.v.s.. If f : X ! Y is a continuous linear map
such that

8r > 0, 9 ⇢
r

> 0 s.t. B
⇢

r

(f(x)) ✓ f(B
r

(x)), 8x 2 X, (1.14)

then for any a > r we have that B
⇢

r

(f(x)) ✓ f(B
a

(x)) for all x 2 X.
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