
Chapter 2

Bounded subsets of topological vector spaces

In this chapter we will study the notion of bounded set in any t.v.s. and
analyzing some properties which will be useful in the following and especially
in relation with duality theory. Since compactness plays an important role in
the theory of bounded sets, we will start this chapter by recalling some basic
definitions and properties of compact subsets of a t.v.s..

2.1 Preliminaries on compactness
Let us recall some basic definitions of compact subset of a topological space
(not necessarily a t.v.s.)

Definition 2.1.1. A topological space X is said to be compact if X is Haus-
dor↵ and if every open covering {⌦

i

}
i2I of X contains a finite subcovering,

i.e. for any collection {⌦
i

}
i2I of open subsets of X s.t.

S
i2I ⌦i

= X there
exists a finite subset J ✓ I s.t.

S
j2J ⌦j

= X.

By going to the complements, we obtain the following equivalent definition
of compactness.

Definition 2.1.2. A topological space X is said to be compact if X is Haus-
dor↵ and if every family {F

i

}
i2I of closed subsets of X whose intersection is

empty contains a finite subfamily whose intersection is also empty, i.e. for
any collection {F

i

}
i2I of closed subsets of X s.t.

T
i2I Fi

= ; there exists a
finite subset J ✓ I s.t.

T
j2J Fj

= ;.

Definition 2.1.3. A subset K of a topological space X is said to be compact if
K endowed with the topology induced by X is Hausdor↵ and for any collection
{⌦

i

}
i2I of open subsets of X s.t.

S
i2I ⌦i

◆ K there exists a finite subset
J ✓ I s.t.

S
j2J ⌦j

◆ K.

Let us state without proof a few well-known properties of compact spaces.
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2. Bounded subsets of topological vector spaces

Proposition 2.1.4.

a) A closed subset of a compact space is compact.
b) Finite unions of compact sets are compact.
c) Let f be a continuous mapping of a compact space X into a Hausdor↵

topological space Y . Then f(X) is a compact subset of Y .

In the following we will almost always be concerned with compact subsets
of a Hausdor↵ t.v.s. X carrying the topology induced by X (and so which are
themselves Hausdor↵ t.v.s.). Therefore, we now introduce a useful character-
ization of compactness in Hausdor↵ topological spaces.

Theorem 2.1.5. Let X be a Hausdor↵ topological space. X is compact if
and only if every filter on X has at least one accumulation point (see Defini-
tion 1.3.8).

Proof.
Suppose thatX is compact. Let F be a filter onX and C := {M : M 2 F}. As
F is a filter, no finite intersection of elements in C can be empty. Therefore, by
compactness, the intersection of all elements in C cannot be empty. Then there
exists at least a point x 2 M for all M 2 F , i.e. x is an accumulation point of
F . Conversely, suppose that every filter on X has at least one accumulation
point. Let � be a family of closed subsets of X whose intersection is empty. To
show that X is compact, we need to show that there exists a finite subfamily
of � whose intersection is empty. Suppose by contradiction that no finite
subfamily of � has empty intersection. Then the family �0 of all the finite
intersections of subsets belonging to � forms a basis of a filter F on X. By
our initial assumption, F has an accumulation point, say x. Thus, x belongs
to the closure of any element of F and in particular to any set belonging to �0

(as the elements in �0 clearly belong to F and are closed). This means that x
belongs to the intersection of all the sets belonging to �0, which is the same as
the intersection of all the sets belonging to �. But we had assumed the latter
to be empty and so we have a contradiction.

Corollary 2.1.6.

Any compact subset of a Hausdor↵ topological space is closed.

Proof.
Let K be a compact subset of a Hausdor↵ topological space X and let x 2 K.
Denote by F(x) the filter of neighbourhoods of x in X and by F(x) � K the
filter in K generated by all the sets U \ K where U 2 F(x). By Theorem
2.1.5, F(x) � K has an accumulation point x

1

2 K. We claim that x
1

⌘ x,
which implies that K = K and so that K is closed. In fact, if x

1

6= x then

34



2.1. Preliminaries on compactness

the Hausdor↵ness of X implies that there exists U 2 F(x) s.t. X \ U is a
neighbourhood of x

1

and, thus, x
1

/2 U \K, which contradicts the fact that
x
1

is an accumulation point of F(x) � K.

Corollary 2.1.7.

1) Arbitrary intersections of compact subsets of a Hausdor↵ topological space
are compact.

2) Any bijective continuous map from a compact space to a Hausdor↵ space
is a homeomorphism.

3) Let ⌧
1

, ⌧
2

be two Hausdor↵ topologies on a set X. If ⌧
1

✓ ⌧
2

and (X, ⌧
2

)
is compact then ⌧

1

⌘ ⌧
2

.

Proof.

1. Let X be a Hausdor↵ topological space and {K
i

}
i2I be an arbitrary

family of compact subsets of X. Then each K
i

is closed in X by Corol-
lary 2.1.6 and so

T
i2I Ki

is a closed subset of each fixed K
i

. As K
i

is compact, Proposition 2.1.4-a) ensures that
T

i2I Ki

is compact in K
i

and so in X.

2. Let U be an open subset of a compact space X and f a continuous map
from X to a Hausdor↵ space Y . Since X \ U is closed in X and X is
compact, we have that X \ U is compact in X by Proposition 2.1.4-a).
Then Proposition 2.1.4-c) guarantees that f(X \ U) is compact in Y ,
which implies in turn that f(X \ U) is closed in Y by Corollary 2.1.6.
Since f is bijective, we have that Y \ f(U) = f(X \U) and so that f(U)
is open. Hence, f�1 is continuous.

3. Since ⌧
1

✓ ⌧
2

, the identity map from (X, ⌧
2

) to (X, ⌧
1

) is continuous and
clearly bijective. Then the previous item implies that the identity from
(X, ⌧

1

) to (X, ⌧
2

) is also continuous. Hence, ⌧
1

⌘ ⌧
2

.

Last but not least, let us recall the following two definitions.

Definition 2.1.8. A subset A of a topological space X is said to be relatively
compact if the closure A of A is compact in X.

Definition 2.1.9. A subset A of a Hausdor↵ t.v.s. E is said to be precompact
if A is relatively compact when viewed as a subset of the completion Ê of E.
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2. Bounded subsets of topological vector spaces

2.2 Bounded subsets: definition and general properties

Definition 2.2.1. A subset B of a t.v.s. E is said to be bounded if for every
U neighbourhood of the origin in E there exists � > 0 such that B ✓ �U .

In rough words this means that a subset B of E is bounded if B can be
swallowed by any neighbourhood of the origin.

Proposition 2.2.2.

1. If every element in some basis of neighbourhoods of the origin of a t.v.s.
swallows a subset, then such a subset is bounded.

2. The closure of a bounded set is bounded.
3. Finite unions of bounded sets are bounded sets.
4. Any subset of a bounded set is a bounded set.

Proof. Let E be a t.v.s. and B ⇢ E.
1. Suppose that N is a basis of neighbourhoods of the origin o in E such

that for every N 2 N there exists �
N

> 0 with B ✓ �
N

N . Then, by
definition of basis of neighbourhoods of o, for every U neighbourhood of
o in E there exists M 2 N s.t. M ✓ U . Hence, there exists �

M

> 0 s.t.
B ✓ �

M

M ✓ �
M

U , i.e. B is bounded.
2. Suppose that B is bounded in E. Then, as there always exists a basis

C of neighbourhoods of the origin in E consisting of closed sets (see
Corollary 2.1.14-a) in TVS-I), we have that for any C 2 C there exists
� > 0 s.t. B ✓ �C and thus B ✓ �C = �C = �C. By Proposition 2.2.2-
1, this is enough to conclude that B is bounded in E.

3. Let n 2 N and B
1

, . . . , B
n

bounded subsets of E. As there always
exists a basis B of balanced neighbourhoods of the origin in E (see
Corollary 2.1.14-b) in TVS-I), we have that for any V 2 B there exist
�
1

, . . . ,�
n

> 0 s.t. B
i

✓ �
i

V for all i = 1, . . . , n. Then
S

n

i=1

B
i

✓
S

n

i=1

�
i

V ✓
✓

max
i=1,...,n

�
i

◆
V , which implies the boundedness of

S
n

i=1

B
i

by Proposition 2.2.2-1.
4. Let B be bounded in E and let A be a subset of B. The boundedness

of B guarantees that for any neighbourhood U of the origin in E there
exists � > 0 s.t. �U contains B and so A. Hence, A is bounded.

The properties in Proposition 2.2.2 lead to the following definition which
is dually corresponding to the notion of basis of neighbourhoods.
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2.2. Bounded subsets: definition and general properties

Definition 2.2.3. Let E be a t.v.s.. A family {B
↵

}
↵2I of bounded subsets

of E is called a basis of bounded subsets of E if for every bounded subset B
of E there is ↵ 2 I s.t. B ✓ B

↵

.

This duality between neighbourhoods and bounded subsets will play an
important role in the study of the strong topology on the dual of a t.v.s.

Which sets do we know to be bounded in any t.v.s.?
• Singletons are bounded in any t.v.s., as every neighbourhood of the

origin is absorbing.
• Finite subsets in any t.v.s. are bounded as finite union of singletons.

Proposition 2.2.4. Compact subsets of a t.v.s. are bounded.

Proof. Let E be a t.v.s. and K be a compact subset of E. For any neigh-
bourhood U of the origin in E we can always find an open and balanced
neighbourhood V of the origin s.t. V ✓ U . Then we have

K ✓ E =
1[

n=0

nV.

From the compactness of K, it follows that there exist finitely many integers
n
1

, . . . , n
r

2 N
0

s.t.

K ✓
r[

i=1

n
i

V ✓
✓

max
i=1,...,r

n
i

◆
V ✓

✓
max

i=1,...,r

n
i

◆
U.

Hence, K is bounded in E.

This together with Corollary 2.1.6 gives that in any Hausdor↵ t.v.s. a
compact subset is always bounded and closed. In finite dimensional Hausdor↵
t.v.s. we know that also the converse holds (because of Theorem 3.1.1 in
TVS-I) and thus the Heine-Borel property always holds, i.e.

K compact , K bounded and closed.

This is not true, in general, in infinite dimensional t.v.s.

37


	Special classes of topological vector spaces
	Metrizable topological vector spaces
	Fréchet spaces
	Inductive topologies and LF-spaces
	Projective topologies and examples of projective limits
	Open mapping theorem

	Bounded subsets of topological vector spaces
	Preliminaries on compactness
	Bounded subsets: definition and general properties

	Bibliography

