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Chapter 1

Special classes of topological vector spaces

In these notes we consider vector spaces over the field K of real or complex
numbers given the usual euclidean topology defined by means of the modulus.

1.1 Metrizable topological vector spaces

Definition 1.1.1. A t.v.s. X is said to be metrizable if there exists a metric
d which defines the topology of X.

We recall that a metric d on a set X is a mapping d : X ×X → R+ with
the following properties:

1. d(x, y) = 0 if and only if x = y (identity of indiscernibles);

2. d(x, y) = d(y, x) for all x, y ∈ X (symmetry);

3. d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X (triangular inequality).

To say that the topology of a t.v.s. X is defined by a metric d means that
for any x ∈ X the sets of all open (or equivalently closed) balls:

Br(x) := {y ∈ X : d(x, y) < r}, ∀r > 0

forms a basis of neighbourhoods of x w.r.t. to the original topology on X.
There exists a completely general characterization of metrizable t.v.s..

Theorem 1.1.2. A t.v.s. X is metrizable if and only if X is Hausdorff and
has a countable basis of neighbourhoods of the origin.

One direction is quite straightforward. Indeed, suppose that X is a metriz-
able t.v.s. and that d is a metric defining the topology of X, then the collection
of all B 1

n
(o) with n ∈ N is a countable basis of neighbourhoods of the origin

o in X. Moreover, the intersection of all these balls is just the singleton {o},
which proves that the t.v.s. X is also Hausdorff (see Corollary 2.2.4 in TVS-I).
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1. Special classes of topological vector spaces

The other direction requires more work and we are not going to prove it
in full generality but only for locally convex (l.c.) t.v.s., since this class of
t.v.s. is anyway the most commonly used in applications. Before doing it, let
us make another general observation:

Proposition 1.1.3. In any metrizable t.v.s. X, there exists a translation
invariant metric which defines the topology of X.

Recall that a metric d on X is said to be translation invariant if

d(x+ z, y + z) = d(x, y), ∀x, y, z ∈ X.

It is important to highlight that the converse of Proposition 1.1.3 does
not hold in general. Indeed, the topology τd defined on a vector space X by
a translation invariant metric d is a translation invariant topology and also
the addition is always continuous w.r.t. τd. However, the multiplication by
scalars might be not continuous w.r.t. τd and so (X, τd) is not necessarily a
t.v.s.. For example, the discrete metric on any non-trivial vector space X is
translation invariant but the discrete topology on X is not compatible with
the multiplication by scalars (see Interactive Sheet 1).

Proof. (of Theorem 1.1.2 and Proposition 1.1.3 for l.c. t.v.s.)
Let X be a l.c. t.v.s.. Suppose that X is Hausdorff and has a countable
basis {Un, n ∈ N} of neighbourhoods of the origin. Since X is a l.c. t.v.s.,
we can assume that such a countable basis of neighbourhoods of the ori-
gin consists of barrels, i.e. closed, convex, absorbing and balanced sets (see
Proposition 4.1.13 in TVS-I) and that satisfies the following property (see
Theorem 4.1.14 in TVS-I):

∀j ∈ N,∀ρ > 0, ∃ n ∈ N : Un ⊂ ρUj .

We may then take

Vn = U1 ∩ · · · ∩ Un, ∀n ∈ N

as a basis of neighbourhoods of the origin in X. Each Vn is a still barrel,
Vn+1 ⊆ Vn for any n ∈ N and:

∀j ∈ N,∀ρ > 0,∃ n ∈ N : Vn ⊂ ρVj . (1.1)

By Lemma 4.2.7 in TVS-I we know that for any n ∈ N we have Vn ⊆ UpVn ,
where pVn := {λ > 0 : x ∈ λVn} is the Minkowski functional associated to
Vn and UpVn := {x ∈ X : pVn(x) ≤ 1}. Also, if x ∈ UpVn then there exists a
sequence (λj)j∈N such that λj > 0 and x ∈ λjVn for each j ∈ N, and λj → 1
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1.1. Metrizable topological vector spaces

as j → ∞. This implies that x
λj
→ x as j → ∞ and so x ∈ Vn since Vn is

closed. Hence, we have just showed that for any n ∈ N there is a seminorm pn
(i.e. pn := pVn) on X such that Vn = {x ∈ X : pn(x) ≤ 1}. Then clearly we
have that (pn)n∈N is a countable family of seminorms generating the topology
of X and such that pn ≤ pn+1 for all n ∈ N.

Let us now fix a sequence of real positive numbers {aj}j∈N such that∑∞
j=1 aj <∞ and define the mapping d on X ×X as follows:

d(x, y) :=

∞∑
j=1

aj
pj(x− y)

1 + pj(x− y)
, ∀, x, y ∈ X.

We want to show that this is a metric which defines the topology of X.
Let us immediately observe that the positive homogeneity of the seminorms

pj gives that d is a symmetric function. Also, since X is a Hausdorff t.v.s.,
we get that {o} ⊆ ∩∞n=1Ker(pn) ⊆ ∩∞n=1Vn = {o}, i.e. ∩∞n=1Ker(pn) = {o}.
This provides that d(x, y) = 0 if and only if x = y . We must therefore check
the triangular inequality for d. This will follow by applying, for any fixed
j ∈ N and x, y, z ∈ X, Lemma 1.1.4 below to a := pj(x − y), b := pj(y − z)
and c := pj(x − z). In fact, since each pj is a seminorm on X, we have
that the above defined a, b, c are all non-negative real numbers such that:
c = pj(x− z) = pj(x− y + y − z) ≤ pj(x− y) + pj(y − z) = a+ b. Hence, the
assumption of Lemma 1.1.4 are fulfilled for such a choice of a, b and c and we
get that for each j ∈ N:

pj(x− z)
1 + pj(x− z)

≤ pj(x− y)

1 + pj(x− y)
+

pj(y − z)
1 + pj(y − z)

, ∀x, y, z ∈ X.

Since the aj ’s are all positive, this implies that d(x, z) ≤ d(x, y) + d(y, z),
∀x, y, z ∈ X. We have then proved that d is indeed a metric and from its
definition it is clear that it is also translation invariant.

To complete the proof, we need to show that the topology defined by
this metric d coincides with the topology initially given on X. By Hausdorff
criterion (see Theorem 1.1.17 in TVS-I), we therefore need to prove that for
any x ∈ X both the following hold:

1. ∀r > 0,∃n ∈ N : x+ Vn ⊆ Br(x)
2. ∀n ∈ N,∃r > 0 : Br(x) ⊆ x+ Vn

Because of the translation invariance of both topologies, we can consider just
the case x = o.

Let us fix r > 0. As
∑∞

j=1 aj <∞, we can find j(r) ∈ N such that

∞∑
j=j(r)+1

aj <
r

2
. (1.2)
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1. Special classes of topological vector spaces

Using that pn ≤ pn+1 for all n ∈ N and denoting by A the sum of the series
of the aj ’s, we get:

j(r)∑
j=1

aj
pj(x)

1 + pj(x)
≤ pj(r)(x)

j(r)∑
j=1

aj ≤ pj(r)(x)

∞∑
j=1

aj = Apj(r)(x). (1.3)

Combining (1.2) and (1.3), we get that if x ∈ r
2AVj(r), i.e. if pj(r)(x) ≤ r

2A ,
then:

d(x, o) =

j(r)∑
j=1

aj
pj(x)

1 + pj(x)
+

∞∑
j=j(r)+1

aj
pj(x)

1 + pj(x)
< Apj(r)(x) +

r

2
≤ r.

This proves that r
2AVj(r) ⊆ Br(o). By (1.1), there always exists n ∈ N s.t.

Vn ⊆ r
2AVj(r) and so 1 holds. To prove 2, let us fix j ∈ N. Then clearly

aj
pj(x)

1 + pj(x)
≤ d(x, o), ∀x ∈ X.

As the aj ’s are all positive, the latter implies that:

pj(x) ≤ a−1
j (1 + pj(x))d(x, o), ∀x ∈ X.

Therefore, if x ∈ Baj
2

(o) then d(x, o) ≤ aj
2 and so pj(x) ≤ (1+pj(x))

2 , which

gives pj(x) ≤ 1. Hence, Baj
2

(o) ⊆ Vj which proves 2.

Let us show now the small lemma used in the proof above:

Lemma 1.1.4. Let a, b, c ∈ R+ such that c ≤ a+ b then c
1+c ≤

a
1+a + b

1+b .

Proof. W.l.o.g. we can assume c > 0 and a + b > 0. (Indeed, if c = 0 or
a + b = 0 then there is nothing to prove.)Then c ≤ a + b is equivalent to

1
a+b ≤

1
c . This implies that

(
1 + 1

c

)−1 ≤
(

1 + 1
a+b

)−1
which is equivalent to:

c

1 + c
≤ a+ b

1 + a+ b
=

a

1 + a+ b
+

b

1 + a+ b
≤ a

1 + a
+

b

1 + b
.

We have therefore the following characterization of l.c. metrizable t.v.s.:

Proposition 1.1.5. A locally convex t.v.s. (X, τ) is metrizable if and only if
τ can be generated by a countable separating family of seminorms.
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1.1. Metrizable topological vector spaces

Let us introduce now three general properties of all metrizable t.v.s. (not
necessarily l.c.), which are well-known in the theory of metric spaces.

Proposition 1.1.6. A metrizable t.v.s. X is complete if and only if X is
sequentially complete.

Proof. (Exercise Sheet 1)

(For the definitions of completeness and sequentially completeness of a
t.v.s., see Definition 2.5.5 and Definition 2.5.6 in TVS-I. See also Proposi-
tion 2.5.7 and Example 2.5.11 n TVS-I for more details on the relation between
these two notions for general t.v.s..)

Proposition 1.1.7. Let X be a metrizable t.v.s. and Y be any t.v.s. (not
necessarily metrizable). A mapping f : X → Y (not necessarily linear) is
continuous if and only if it is sequentially continuous.

Proof. (Exercise Sheet 1)

Recall that a mapping f from a topological space X into a topological
space Y is said to be sequentially continuous if for every sequence {xn}n∈N
convergent to a point x ∈ X the sequence {f(xn)}n∈N converges to f(x) in Y .

The proof that continuity of f : X → Y always implies its sequentially
continuity is pretty straightforward and holds under the general assumption
that X and Y are topological spaces (see Proposition 1.1.39 in TVS-I). The
converse does not hold in general as the following example shows.

Example 1.1.8.
Let us consider the set C([0, 1]) of all real-valued continuous functions on [0, 1].
This is a vector space w.r.t. the pointwise addition and multiplication by real
scalars. We endow C([0, 1]) with two topologies which both make it into a
t.v.s.. The first topology σ is the one give by the metric:

d(f, g) :=

∫ 1

0

|f(x)− g(x)|
1 + |f(x)− g(x)|

, ∀f, g ∈ C([0, 1]).

The second topology τ is instead the topology generated by the family (px)x∈[0,1]

of seminorms on C([0, 1]), where

px(f) := |f(x)|, ∀f ∈ C([0, 1]).

We will show that the identity map I : (C([0, 1]), τ)→ (C([0, 1]), σ) is sequen-
tially continuous but not continuous.
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1. Special classes of topological vector spaces

• I is sequentially continuous
Let (fn)n∈N be a sequence of elements in C([0, 1]) which is τ−convergent to
f ∈ C([0, 1]) as n→∞, i.e. |fn(x)− f(x)| → 0, ∀x ∈ [0, 1] as n→∞. Set

gn(x) :=
|fn(x)− f(x)|

1 + |fn(x)− f(x)|
, ∀x ∈ [0, 1], ∀n ∈ N.

Then |gn(x)| ≤ 1, ∀x ∈ [0, 1], ∀n ∈ N and gn(x) → 0, ∀x ∈ [0, 1] as n → ∞.
Hence, by the Lebesgue dominated convergence theorem, we get

∫ 1
0 gn(x)dx→ 0

as n → ∞, that is, d(fn, f) → 0 as n → ∞, i.e. the sequence (I(fn))n∈N is
σ−convergent to f as n→∞.
• I is not continuous
Suppose that I is continuous at o ∈ C([0, 1]) and fix ε ∈ (0, 1). Then there
exists a neighbourhood N of the origin in (C([0, 1]), τ) s.t. N ⊂ I−1(Bd

ε (o)),
where Bd

ε (o) := {f ∈ C([0, 1]) : d(f, 0) ≤ ε}. This means that there exist
n ∈ N, x1, . . . , xn ∈ [0, 1] and δ > 0 s.t.

n⋂
i=1

δUpxi ⊂ B
d
ε (o), (1.4)

where Upxi := {f ∈ C([0, 1]) : |f(xi)| ≤ 1}.
Take now fk(x) := k(x − x1) · · · (x − xn), ∀k ∈ N, ∀x ∈ [0, 1]. Then fk ∈
C([0, 1]) for all k ∈ N and fk(xi) = 0 < δ for all i = 1, . . . , n. Hence,

fk ∈
n⋂
i=1

{f ∈ C([0, 1]) : |f(xi)| ≤ δ} =

n⋂
i=1

δUpxi
(1.4)
⊂ Bd

ε (o), ∀k ∈ N (1.5)

Set

hk(x) :=
|fk(x)|

1 + |fk(x)|
, ∀x ∈ [0, 1], ∀k ∈ N.

Then |hk(x)| ≤ 1, ∀x ∈ [0, 1], ∀k ∈ N and hk(x)→ 1 ∀x ∈ [0, 1] \ {x1, . . . , xn}
as k → ∞. Hence, by the Lebesgue dominated convergence theorem, we get∫ 1

0 hk(x)dx →
∫ 1

0 1dx = 1 as k → ∞, that is, d(fk, f) → 1 as k → ∞. This
together with (1.5) gives tha ε ≥ 1 which contradicts our assumption ε ∈ (0, 1).

By Proposition 1.1.7, we then conclude that (C([0, 1]), τ) is not metrizable.

Proposition 1.1.9. A complete metrizable t.v.s. X is a Baire space, i.e. X
fulfills any of the following properties:
(B) the union of any countable family of closed sets, none of which has interior
points, has no interior points.
(B’) the intersection of any countable family of everywhere dense open sets is
an everywhere dense set.
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1.1. Metrizable topological vector spaces

Note that the equivalence of (B) and (B’) is easily given by taking the
complements. Indeed, the complement of a closed set C without interior
points is clearly open and we get: X \ (X \ C) = C̊ = ∅ which is equivalent
to X \ C = X, i.e. X \ C is everywhere dense.

Example 1.1.10. An example of Baire space is R with the euclidean topology.
Instead Q with the subset topology given by the euclidean topology on R is not
a Baire space. Indeed, for any q ∈ Q the subset {q} is closed and has empty
interior in Q, but ∪q∈Q{q} = Q which has interior points in Q (actually its
interior is the whole Q).

Before proving Proposition 1.1.9, let us observe that the converse of the
proposition does not hold because there exist Baire spaces which are not
metrizable. Moreover, the assumptions of Proposition 1.1.9 cannot be weak-
ened, because there exist complete non-metrizable t.v.s and metrizable non-
complete t.v.s which are not Baire spaces.

Proof. of Proposition 1.1.9
We are going to prove that Property (B’) holds in any complete metrizable
t.v.s.. Let {Ωk}k∈N be a sequence of dense open subsets of X and let us denote
by A their intersection. We need to show that A intersects every non-empty
open subset of X (this implies that A is dense, since every neighbourhood of
every point in X contains some open set and hence some point of A).

Let O be an arbitrary non-empty open subset of X. Since X is a metrizable
t.v.s., there exists a countable basis {Uk}k∈N of neighbourhoods of the origin
which we may take all closed and s.t. Uk+1 ⊆ Uk for all k ∈ N. As Ω1 is
open and dense we have that O∩Ω1 is open and non-empty. Therefore, there
exists x1 ∈ O ∩ Ω1 and k1 ∈ N s.t. x1 + Uk1 ⊆ O ∩ Ω1. Let us denote by
G1 the interior of x1 + Uk1 , which is non-empty since it contains x1 (Indeed,
x1 +Uk1 is a neighbourhood of x1 and so there exists an open set V such that
x1 ∈ V ⊂ x1 + Uk1 , i.e. x1 belongs to the interior of x1 + Uk1).

As Ω2 is dense and G1 is a non-empty open set, we have that G1 ∩ Ω2

is open and non-empty. Hence, there exists x2 ∈ G1 ∩ Ω2 and k2 ∈ N s.t.
x2 +Uk2 ⊆ G1∩Ω2. Let us choose k2 > k1 and call G2 the interior of x2 +Uk2 ,
which is non-empty since it contains x2. Proceeding in this way, we get a
sequence of non-empty open sets G := {Gl}l∈N with the following properties
for any l ∈ N:

1. Gl ⊆ Ωl ∩O
2. Gl+1 ⊆ Gl
3. Gl ⊆ xl + Ukl .

7



1. Special classes of topological vector spaces

Note that the family G does not contain the empty set and Property 2 implies
that for any Gj , Gk ∈ G the intersection Gj ∩ Gk = Gmax{j,k} ∈ G. Hence, G
is a basis of a filter F in X1. Moreover, Property 3 implies that

∀l ∈ N, Gl −Gl ⊆ Ukl − Ukl (1.6)

which guarantees that F is a Cauchy filter in X. Indeed, for any neighbour-
hood U of the origin in X there exists a balanced neighbourhood of the origin
such that V − V ⊆ U and so there exists k ∈ N such that Uk ⊆ V . Hence,
there exists l ∈ N s.t. kl ≥ l and so Ukl ⊆ Uk. Then by (1.6) we have that
Gl − Gl ⊆ Ukl − Ukl ⊆ V − V ⊆ U . Since Gl ∈ G and so in F , we have got
that F is a Cauchy filter.

As X is complete, the Cauchy filter F has a limit point x ∈ X, i.e. the filter
of neighbourhoods of x is contained in the filter F . This implies that x ∈ Gl
for all l ∈ N (If there would exists l ∈ N s.t. x /∈ Gl then there would exists a
neighbourhood N of x s.t. N ∩ Gl = ∅. As Gl ∈ F and any neighbourhood
of x belongs to F , we get ∅ ∈ F which contradicts the definition of filter.)
Hence:

x ∈
⋂
l∈N

Gl ⊆ O ∩
⋂
l∈N

Ωl = O ∩A.

1Recall that a basis of a filter on X is a family G of non-empty subsets of X such that
∀G1, G2 ∈ G, ∃G3 ∈ G s.t. G3 ⊂ G1 ∩G2.
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1.2. Fréchet spaces

1.2 Fréchet spaces

Definition 1.2.1. A complete metrizable locally convex t.v.s. is called a
Fréchet space (or F-space).

Note that by Theorem 1.1.2 and Proposition 1.1.9, any Fréchet space is in
particular a Hausdorff Baire space. Combining the properties of metrizable
t.v.s. which we proved in Exercise Sheet 1 and the results about complete
t.v.s. which we have seen in TVS-I, we easily get the following properties:
• Any closed linear subspace of an F-space endowed with the induced

subspace topology is an F-space.
• The product of a countable family of F-spaces endowed with the product

topology is an F-space.
• The quotient of an F-space modulo a closed subspace endowed with the

quotient topology is an F-space.
Examples of F-spaces are: Hausdorff finite dimensional t.v.s., Hilbert spaces,
and Banach spaces. In the following we will present two examples of F-spaces
which do not belong to any of these categories. Let us first recall some stan-
dard notations. For any x = (x1, . . . , xd) ∈ Rd and α = (α1, . . . , αd) ∈ Nd0, we
define xα := xα1

1 · · ·x
αd
d . For any β ∈ Nd0, the symbol Dβ denotes the partial

derivative of order |β| where |β| :=
∑d

i=1 βi, i.e.

Dβ :=
∂|β|

∂xβ11 · · · ∂x
βd
d

=
∂β1

∂xβ11

· · · ∂
βd

∂xβdd
.

Example: Cs(Ω) with Ω ⊆ Rd open.
Let Ω ⊆ Rd open in the euclidean topology. For any s ∈ N0, we denote by
Cs(Ω) the set of all real valued s−times continuously differentiable functions
on Ω, i.e. all the derivatives of order ≤ s exist (at every point of Ω) and are
continuous functions in Ω. Clearly, when s = 0 we get the set C(Ω) of all
real valued continuous functions on Ω and when s = ∞ we get the so-called
set of all infinitely differentiable functions or smooth functions on Ω. For any
s ∈ N0, Cs(Ω) (with pointwise addition and scalar multiplication) is a vector
space over R.

Let us consider the following family P of seminorms on Cs(Ω)

pm,K(f) := sup
β∈Nd0
|β|≤m

sup
x∈K

∣∣∣(Dβf)(x)
∣∣∣ , ∀K ⊂ Ω compact,∀m ∈ {0, 1, . . . , s}.

(Note when s = ∞ we have m ∈ N0.) The topology τP generated by P is
usually referred as Cs-topology or topology of uniform convergence on compact
sets of the functions and their derivatives up to order s.

9



1. Special classes of topological vector spaces

1) The Cs-topology clearly turns Cs(Ω) into a locally convex t.v.s., which is
evidently Hausdorff as the family P is separating (see Prop 4.3.3 in TVS-I).
Indeed, if pm,K(f) = 0, ∀m ∈ {0, 1, . . . , s} and ∀K compact subset of Ω then
in particular p0,{x}(f) = |f(x)| = 0 ∀x ∈ Ω, which implies f ≡ 0 on Ω.

2) (Cs(Ω), τP) is metrizable.
By Proposition 1.1.5, this is equivalent to prove that the Cs-topology can be
generated by a countable separating family of seminorms. In order to show
this, let us first observe that for any two non-negative integers m1 ≤ m2 ≤ s
and any two compact K1 ⊆ K2 ⊂ Ω we have:

pm1,K1(f) ≤ pm2,K2(f), ∀f ∈ Cs(Ω).

Then the family {ps,K : K ⊂ Ω compact} generates the Cs−topology on Cs(Ω).
Moreover, it is easy to show that there is a sequence of compact subsets
{Kj}j∈N of Ω such that Kj ⊆ K̊j+1 for all j ∈ N and Ω = ∪j∈NKj . Then
for any K ⊂ Ω compact we have that there exists j ∈ N s.t. K ⊆ Kj and
so ps,K(f) ≤ ps,Kj (f), ∀f ∈ Cs(Ω). Hence, the countable family of seminorms
{ps,Kj : j ∈ N} generates the Cs−topology on Cs(Ω) and it is separating. In-
deed, if ps,Kj (f) = 0 for all j ∈ N then for every x ∈ Ω we have x ∈ Ki for
some i ∈ N and so 0 ≤ |f(x)| ≤ ps,Ki(f) = 0, which implies |f(x)| = 0 for all
x ∈ Ω, i.e. f ≡ 0 on Ω.

3) (Cs(Ω), τP) is complete.
By Proposition 1.1.6, it is enough to show that it is sequentially complete.
Let (fν)ν∈N be a Cauchy sequence in Ck(Ω), i.e.

∀m ≤ s, ∀K ⊂ Ω compact,∀ε > 0,∃N ∈ N s.t. ∀µ, ν ≥ N : pm,K(fν−fµ) ≤ ε.
(1.7)

In particular, for any x ∈ Ω by taking m = 0 and K = {x} we get that the
sequence (fν(x))ν∈N is a Cauchy sequence in R. Hence, by the completeness
of R, it has a limit point in R which we denote by f(x). Obviously x 7→ f(x) is
a function on Ω, so we have just showed that the sequence (fν)ν∈N converges
to f pointwise in Ω, i.e.

∀x ∈ Ω, ∀ε > 0,∃Mx ∈ N s.t. ∀µ ≥Mx : |fµ(x)− f(x)| ≤ ε. (1.8)

Then it is easy to see that (fν)ν∈N converges uniformly to f in every compact
subset K of Ω. Indeed, we get it just passing to the pointwise limit for µ→∞
in (1.7) for m = 0. 2

2Detailed proof: Let ε > 0. By (1.7) for m = 0, ∃N ∈ N s.t.∀µ, ν ≥ N : |fν(x)−fµ(x)| ≤
ε
2
,∀x ∈ K. Now for each fixed x ∈ K one can always choose a µx larger than both N and

the corresponding Mx as in (1.8) so that |fµx(x)− f(x)| ≤ ε
2
. Hence, for all ν ≥ N one gets

that |fν(x)− f(x)| ≤ |fν(x)− fµx(x)|+ |fµx(x)− f(x)| ≤ ε, ∀x ∈ K.

10



1.2. Fréchet spaces

As (fν)ν∈N converges uniformly to f in every compact subset K of Ω, by
taking this subset identical with a suitable neighbourhood of any point of Ω,
we conclude by Lemma 1.2.2 that f is continuous in Ω.

• If s = 0, this completes the proof since we just showed fν → f in the
C0−topology and f ∈ C(Ω).

• If 0 < s < ∞, then observe that since (fν)ν∈N is a Cauchy sequence
in Cs(Ω), for each j ∈ {1, . . . , d} the sequence ( ∂

∂xj
fν)ν∈N is a Cauchy

sequence in Cs−1(Ω). Then proceeding as above we can conclude that,
for each j ∈ {1, . . . , d}, the sequence ( ∂

∂xj
fν)ν∈N converges uniformly on

every compact subset of Ω to a function g(j) ∈ Cs−1(Ω) and by Lemma
1.2.3 we have that g(j) = ∂

∂xj
f . Hence, by induction on s, we show that

(fν)ν∈N converges to f ∈ Cs(Ω) in the Cs−topology.

• If s =∞, then we are also done by the definition of the C∞-topology. In-
deed, a Cauchy sequence (fν)ν∈N in C∞(Ω) it is in particular a Cauchy
sequence in the subspace topology given by Cs(Ω) for any s ∈ N and
hence, for what we have already showed, it converges to f ∈ Cs(Ω) in
the Cs−topology for any s ∈ N. This means exactly that (fν)ν∈N con-
verges to f ∈ C∞(Ω) in the in C∞−topology.

Let us prove now the two lemmas which we have used in the previous proof:

Lemma 1.2.2. Let A ⊂ Rd and (fν)ν∈N in C(A). If (fν)ν∈N converges to a
function f uniformly in A then f ∈ C(A).

Proof.
Let x0 ∈ A and ε > 0. By the uniform convergence of (fν)ν∈N to f in A we
get that:

∃N ∈ N s.t. ∀ν ≥ N : |fν(y)− f(y)| ≤ ε

3
,∀y ∈ A.

Fix such a ν. As fν is continuous on A, we obtain that

∃δ > 0 s.t. ∀x ∈ A with |x− x0| ≤ δ we have |fν(x)− fν(x0)| ≤ ε

3
.

Therefore, ∀x ∈ A with |x− x0| ≤ δ we get

|f(x)− f(x0)| ≤ |f(x)− fν(x)|+ |fν(x)− fν(x0)|+ |fν(x0)− f(x0)| ≤ ε.

11



1. Special classes of topological vector spaces

Lemma 1.2.3. Let A ⊂ Rd and (fν)ν∈N in C1(A). If (fν)ν∈N converges to a
function f uniformly in A and for each j ∈ {1, . . . , d} the sequence ( ∂

∂xj
fν)ν∈N

converges to a function g(j) uniformly in A, then

g(j) =
∂

∂xj
f, ∀j ∈ {1, . . . , d}.

This means in particular that f ∈ C1(A).

Proof. (for d = 1, A = [a, b])
By the fundamental theorem of calculus, we have that for any x ∈ A

fν(x)− fν(a) =

∫ x

a

∂

∂t
fν(t)dt. (1.9)

By the uniform convergence of the first derivatives to g(1) and by the Lebesgue
dominated convergence theorem, we also have∫ x

a

∂

∂t
fν(t)dt→

∫ x

a
g(1)(t)dt, as ν →∞. (1.10)

Using (1.9) and (1.10) together with the assumption that fν → f unformly in
A, we obtain that:

f(x)− f(a) =

∫ x

a
g(1)(t)dt,

i.e.
(
∂
∂xf

)
(x) = g(1)(x),∀x ∈ A.

Example: The Schwartz space S(Rd).
The Schwartz space or space of rapidly decreasing functions on Rd is defined
as the set S(Rd) of all real-valued functions which are defined and infinitely
differentiable on Rd and which have the additional property (regulating their
growth at infinity) that all their derivatives tend to zero at infinity faster than
any inverse power of x, i.e.

S(Rd) :=

{
f ∈ C∞(Rd) : sup

x∈Rd

∣∣∣xα(Dβf)(x)
∣∣∣ <∞, ∀α, β ∈ Nd0

}
.

(For example, any smooth function f with compact support in Rd is in S(Rd),
since any derivative of f is continuous and supported on a compact subset of
Rd, so xα(Dβf(x)) has a maximum in Rd by the extreme value theorem.)

12



1.2. Fréchet spaces

The Schwartz space S(Rd) is a vector space over R and we equip it with
the topology τQ given by the family Q of seminorms on S(Rd):

qm,k(f) := sup
β∈Nd0
|β|≤m

sup
x∈Rd

(1 + |x|)k
∣∣∣(Dβ)f(x)

∣∣∣ , ∀m, k ∈ N0.

Note that f ∈ S(Rd) if and only if ∀m, k ∈ N0, qm,k(f) <∞.
The space S(Rd) is a linear subspace of C∞(Rd), but τQ is finer than the
subspace topology induced on it by τP where P is the family of seminorms
defined on C∞(Rd) as in the above example. Indeed, it is clear that for any
f ∈ S(Rd), any m ∈ N0 and any K ⊂ Rd compact we have pm,K(f) ≤ qm,0(f)
which gives the desired inclusion of topologies.

1) (S(Rd), τQ) is a locally convex t.v.s. which is also evidently Hausdorff since
the family Q is separating. Indeed, if qm,k(f) = 0, ∀m, k ∈ N0 then in partic-
ular q0,0(f) = supx∈Rd |f(x)| = 0, which implies f ≡ 0 on Rd.

2) (S(Rd), τQ) is a metrizable, as Q is countable and separating (see Propo-
sition 1.1.5).

3) (S(Rd), τQ) is a complete. By Proposition 1.1.6, it is enough to show that

it is sequentially complete. Let (fν)ν∈N be a Cauchy sequence S(Rd) then a
fortiori we get that (fν)ν∈N is a Cauchy sequence in C∞(Rd) endowed with the
C∞−topology. Since such a space is complete, then there exists f ∈ C∞(Rd)
s.t. (fν)ν∈N converges to f in the the C∞−topology. From this we also know
that:

∀β ∈ Nd0,∀x ∈ Rd, (Dβfν)(x)→ (Dβf)(x) as ν →∞ (1.11)

We are going to prove at once that (fν)ν∈N is converging to f in the τQ
topology (not only in the C∞−topology) and that f ∈ S(Rd).

Let m, k ∈ N0 and let ε > 0. As (fν)ν∈N is a Cauchy sequence in S(Rd),
there exists a constant M s.t. ∀ν, µ ≥ M we have: qm,k(fν − fµ) ≤ ε. Then
fixing β ∈ Nd0 with |β| ≤ m and x ∈ Rd we get

(1 + |x|)k
∣∣∣(Dβfν)(x)− (Dβfµ)(x)

∣∣∣ ≤ ε.
Passing to the limit for µ→∞ in the latter relation and using (1.11), we get

(1 + |x|)k
∣∣∣(Dβfν)(x)− (Dβf)(x)

∣∣∣ ≤ ε.
Hence, for all ν ≥ M we have that qm,k(fν − f) ≤ ε as desired. Then by the
triangular inequality it easily follows that

∀m, k ∈ N0, qm,k(f) <∞, i.e. f ∈ S(Rd).
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1. Special classes of topological vector spaces

1.3 Inductive topologies and LF-spaces

Let {(Eα, τα) : α ∈ A} be a family of locally convex t.v.s. over the field K of
real or complex numbers (A is an arbitrary index set), E a vector space over
the same field K and, for each α ∈ A, let gα : Eα → E be a linear mapping.
The inductive topology τind on E w.r.t. the family {(Eα, τα, gα) : α ∈ A} is
the locally convex topology generated by the following basis of neighbourhoods
of the origin in E:

Bind : = {U ⊂ E convex, balanced, absorbing : ∀α ∈ A, g−1
α (U) is

a neighbourhood of the origin in (Eα, τα)}.

Hence, the space (E, τind) is a l.c. t.v.s.. Indeed, Bind is a family of absorbing
and absolutely convex subsets of E such that

a) ∀ U, V ∈ Bind, U ∩ V ∈ Bind, since g−1
α (U ∩ V ) = g−1

α (U) ∩ g−1
α (V ) is

a neighbourhood of the origin in (Eα, τα) (as finite intersection of such
neighbourhoods).

b) ∀ ρ > 0, ∀ U ∈ Bind, ρU ∈ Bind, since g−1
α (ρU) = ρg−1

α (U) which is a neigh-
bourhood of the origin in (Eα, τα)(as a dilation of such a neighbourhood).

Then Theorem 4.1.14 in TVS-I ensures that τind makes E into a l.c. t.v.s..

Note that τind is the finest locally convex topology on E for which all the
mappings gα (α ∈ A) are continuous. Suppose there exists a locally convex
topology τ on E s.t. all the gα’s are continuous and τind ⊆ τ . As (E, τ)
is locally convex, there always exists a basis of neighbourhood of the origin
consisting of convex, balanced, absorbing subsets of E. Then for any such a
neighbourhood U of the origin in (E, τ) we have, by continuity, that g−1

α (U)
is a neighbourhood of the origin in (Eα, τα). Hence, U ∈ Bind and so τ ≡ τind.

It is also worth to underline that (E, τind) is not necessarily a Hausdorff
t.v.s., even when all the spaces (Eα, τα) are Hausdorff t.v.s..

Example 1.3.1. Let (X, τ) be a l.c. Hausdorff t.v.s., M a non-closed subspace
of X and ϕ : X → X/M the quotient map. Then the inductive limit topology
on X/M w.r.t. (X, τ, φ) (here the index set A is just a singleton) coincides
with the quotient topology on X/M , which is not Hausdorff since M is not
closed (see Proposition 2.3.5 in TVS-I).

Proposition 1.3.2. Let E be a vector space over the field K endowed with
the inductive topology τind w.r.t. a family {(Eα, τα, gα) : α ∈ A}, where each
(Eα, τα) is a locally convex t.v.s. over K and each gα : Eα → E is a linear map.
A linear map u from (E, τind) to any locally convex t.v.s. (F, τ) is continuous
if and only if for each α ∈ A the map u ◦ gα : Eα → F is continuous.
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1.3. Inductive topologies and LF-spaces

Proof. Suppose u is continuous and fix α ∈ A. Since gα is also continuous, we
have that u ◦ gα is continuous as composition of continuous mappings.

Conversely, suppose that for each α ∈ A the mapping u ◦ gα is continuous.
As (F, τ) is locally convex, there always exists a basis of neighbourhoods of
the origin consisting of convex, balanced, absorbing subsets of F . Let W be
such a neighbourhood. Then, by the linearity of u, we get that u−1(W ) is a
convex, balanced and absorbing subset of E. Moreover, the continuity of all
u ◦ gα guarantees that each (u ◦ gα)−1(W ) is a neighbourhood of the origin in
(Eα, τα), i.e. g−1

α (u−1(W )) is a neighbourhood of the origin in (Eα, τα). Then
u−1(W ), being also convex, balanced and absorbing, must be in Bind and so
it is a neighbourhood of the origin in (E, τind). Hence, u is continuous.

Let us consider now the case when we have a total order ≤ on the index
set A and {Eα : α ∈ A} is a family of linear subspaces of a vector space E
over K which is directed under inclusion, i.e. Eα ⊆ Eβ whenever α ≤ β, and
s.t. E =

⋃
α∈AEα. For each α ∈ A, let iα be the canonical embedding of

Eα in E and τα a topology on Eα s.t. (Eα, τα) is a locally convex Hausdorff
t.v.s. and, whenever α ≤ β, the topology induced by τβ on Eα is coarser
than τα. The space E equipped with the inductive topology τind w.r.t. the
family {(Eα, τα, iα) : α ∈ A} is said to be the inductive limit of the family
of linear subspaces {(Eα, τα) : α ∈ A}.

An inductive limit of a family of linear subspaces {(Eα, τα) : α ∈ A} is
said to be a strict inductive limit if, whenever α ≤ β, the topology induced
by τβ on Eα coincides with τα.

There are even more general constructions of inductive limits of a family
of locally convex t.v.s. but in the following we will focus on a more concrete
family of inductive limits which are more common in applications. Namely,
we are going to consider the so-called LF-spaces, i.e. countable strict induc-
tive limits of increasing sequences of Fréchet spaces. For convenience, let us
explicitly write down the definition of an LF-space.

Definition 1.3.3. Let {En : n ∈ N} be an increasing sequence of linear
subspaces of a vector space E over K, i.e. En ⊆ En+1 for all n ∈ N, such that
E =

⋃
n∈NEn. For each n ∈ N let in be the canonical embedding of En in E

and (En, τn) be a Fréchet space such that the topology induced by τn+1 on En
coincides with τn (i.e. the natural embedding of En into En+1 is a topological
embedding). The space E equipped with the inductive topology τind w.r.t. the
family {(En, τn, in) : n ∈ N} is said to be the LF-space with defining sequence
{(En, τn) : n ∈ N}.
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1. Special classes of topological vector spaces

A basis of neighbourhoods of the origin in the LF-space (E, τind) with
defining sequence {(En, τn) : n ∈ N} is given by:

{U ⊂ E convex, balanced, abs. : ∀n ∈ N, U∩ En is a nbhood of o in (En, τn)}.

Note that from the construction of the LF-space (E, τind) with defining
sequence {(En, τn) : n ∈ N} we know that each En is topologically embedded
in the subsequent ones, but a priori we do not know if En is topologically
embedded in E, i.e. if the topology induced by τind on En is identical to
the topology τn initially given on En. This is indeed true and it will be a
consequence of the following lemma.

Lemma 1.3.4. Let X be a locally convex t.v.s., X0 a linear subspace of X
equipped with the subspace topology, and U a convex neighbourhood of the
origin in X0. Then there exists a convex neighbourhood V of the origin in X
such that V ∩X0 = U .

Proof.
As X0 carries the subspace topology induced by X, there exists a neighbour-
hood W of the origin in X such that U = W ∩X0. Since X is a locally convex
t.v.s., there exists a convex neighbourhood W0 of the origin in X such that
W0 ⊆W . Let V be the convex hull of U ∪W0. Then by construction we have
that V is a convex neighbourhood of the origin in X and that U ⊆ V which
implies U = U ∩X0 ⊆ V ∩X0. We claim that actually V ∩X0 = U . Indeed,
let x ∈ V ∩ X0; as x ∈ V and as U and W0 are both convex, we may write
x = ty + (1 − t)z with y ∈ U, z ∈ W0 and t ∈ [0, 1]. If t = 1, then x = y ∈ U
and we are done. If 0 ≤ t < 1, then z = (1− t)−1(x− ty) belongs to X0 and
so z ∈ W0 ∩ X0 ⊆ W ∩ X0 = U . This implies, by the convexity of U , that
x ∈ U . Hence, V ∩X0 ⊆ U .

Proposition 1.3.5.
Let (E, τind) be an LF-space with defining sequence {(En, τn) : n ∈ N}. Then

τind � En ≡ τn, ∀n ∈ N.

Proof.
(⊆) Let V ∈ Bind. Then, by definition, for each n ∈ N we have that V ∩En

is a neighbourhood of the origin in (En, τn). Hence, τind � En ⊆ τn, ∀n ∈ N.
(⊇) Given n ∈ N, let Un be a convex, balanced, absorbing neighbourhood

of the origin in (En, τn). Since En is a linear subspace of En+1, we can apply
Lemma 1.3.4 (for X = En+1, X0 = En and U = Un) which ensures the
existence of a convex neighbourhood Un+1 of the origin in (En+1, τn+1) such
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that Un+1 ∩ En = Un. Then, by induction, we get that for any k ∈ N there
exists a convex neighbourhood Un+k of the origin in (En+k, τn+k) such that
Un+k ∩ En+k−1 = Un+k−1. Hence, for any k ∈ N, we get Un+k ∩ En =
Un. If we consider now U :=

⋃∞
k=1 Un+k, then U ∩ En = Un and U is a

neighbourhood of the origin in (E, τind). Indeed, for any m ∈ N we have
U ∩Em =

⋃∞
k=1 Un+k ∩Em =

⋃∞
k=m−n Un+k ∩Em, which is a countable union

of neighbourhoods of the origin in τm as for k ≥ m− n we get n+ k ≥ m and
so τn+k � Em = τm. We can then conclude that τn ⊆ τind � En, ∀n ∈ N.

Corollary 1.3.6. Any LF-space is a locally convex Hausdorff. t.v.s..

Proof. Let (E, τind) be the LF-space with defining sequence {(En, τn) : n ∈ N}
and denote by F(o) [resp. Fn(o)] the filter of neighbourhoods of the origin in
(E, τind) [resp. in (En, τn)]. Then:⋂
V ∈F(o)

V =
⋂

V ∈F(o)

V ∩

(⋃
n∈N

En

)
=
⋃
n∈N

⋂
V ∈F(o)

(V ∩ En) =
⋃
n∈N

⋂
Un∈Fn(o)

Un = {o},

which implies that (E, τind) is Hausdorff by Corollary 2.2.4 in TVS-I.

As a particular case of Proposition 1.3.2 we easily get that:

Proposition 1.3.7.
Let (E, τind) be an LF-space with defining sequence {(En, τn) : n ∈ N} and
(F, τ) an arbitrary locally convex t.v.s..

1. A linear mapping u from E into F is continuous if and only if, for each
n ∈ N, the restriction u � En of u to En is continuous.

2. A linear form on E is continuous if and only if its restrictions to each
En are continuous.

Note that Propositions 1.3.5 and 1.3.7 and Corollary 1.3.6 hold for any
countable strict inductive limit of an increasing sequence of locally convex
Hausdorff t.v.s. (even when they are not Fréchet).

The next theorem is instead typical of LF-spaces as it heavily relies on the
completeness of the t.v.s. of the defining sequence. Before introducing it, let
us recall the concept of accumulation point of a filter on a topological space
together with some basic useful properties.

Definition 1.3.8. Let F be a filter on a topological space X. A point x ∈ X
is called an accumulation point of F if x belongs to the closure of every set
which belongs to F , i.e. x ∈M, ∀M ∈ F .
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1. Special classes of topological vector spaces

Proposition 1.3.9. If a filter F of a topological space X converges to a
point x, then x is an accumulation point of F .

Proof. If x were not an accumulation point of F , then there would be a set
M ∈ F such that x /∈ M . Hence, X \M is open in X and contains x, so it
is a neighbourhood of x. Then X \M ∈ F as F → x by assumption. But
F is a filter and so M ∩

(
X \M

)
∈ F and so M ∩

(
X \M

)
6= ∅, which is a

contradiction.

Proposition 1.3.10. If a Cauchy filter F of a t.v.s. X has an accumulation
point x, then F converges to x.

Proof. Let us denote by F(o) the filter of neighbourhoods of the origin in X
and consider U ∈ F(o). Since X is a t.v.s., there exists V ∈ F(o) such that
V +V ⊆ U . Then there exists M ∈ F such that M−M ⊆ V as F is a Cauchy
filter in X. Being x an accumulation point of F guarantees that x ∈ M and
so that (x + V ) ∩M 6= ∅. Then M − ((x+ V ) ∩M) ⊆ M −M ⊆ V and
so M ⊆ V + ((x+ V ) ∩M) ⊆ V + V + x ⊆ U + x. Since F is a filter and
M ∈ F , the latter implies that U + x ∈ F . This proves that F(x) ⊆ F , i.e.
F → x.

Theorem 1.3.11. Any LF-space is complete.

Proof.
Let (E, τind) be an LF-space with defining sequence {(En, τn) : n ∈ N}. Let F
be a Cauchy filter on (E, τind). Denote by FE(o) the filter of neighbourhoods
of the origin in (E, τind) and consider

G := {A ⊆ E : A ⊇M + V for some M ∈ F , V ∈ FE(o)}.

1) G is a filter on E.
Indeed, it is clear from its definition that G does not contain the empty set
and that any subset of E containing a set in G has to belong to G. Moreover,
for any A1, A2 ∈ G there exist M1,M2 ∈ F , V1, V2 ∈ FE(o) s.t. M1 + V1 ⊆ A1

and M2 + V2 ⊆ A2; and therefore

A1 ∩A2 ⊇ (M1 + V1) ∩ (M2 + V2) ⊇ (M1 ∩M2) + (V1 ∩ V2).

The latter proves that A1 ∩A2 ∈ G, since F and FE(o) are both filters and so
M1 ∩M2 ∈ F and V1 ∩ V2 ∈ FE(o).
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1.3. Inductive topologies and LF-spaces

2) G ⊆ F .
In fact, for any A ∈ G there exist M ∈ F and V ∈ FE(o) s.t.

A ⊇M + V ⊃M + {0} = M

which implies that A ∈ F since F is a filter.

3) G is a Cauchy filter on E.
Let U ∈ FE(o). Then there always exists V ∈ FE(o) balanced such that
V +V −V ⊆ U . As F is a Cauchy filter on (E, τind), there exists M ∈ F such
that M −M ⊆ V . Then

(M + V )− (M + V ) ⊆ (M −M) + (V − V ) ⊆ V + V − V ⊆ U

which proves that G is a Cauchy filter since M + V ∈ G.

It is possible to show (and we do it later on) that

∃ p ∈ N : ∀A ∈ G, A ∩ Ep 6= ∅. (1.12)

This property together with the fact that G is a filter ensures that the family

Gp := {A ∩ Ep : A ∈ G}

is a filter on Ep. Moreover, since G is a Cauchy filter on (E, τind) and
since by Proposition 1.3.5 we have τind � Ep = τp, Gp is a Cauchy filter on
(Ep, τp). Hence, the completeness of Ep guarantees that there exists x ∈ Ep
s.t. Gp → x which implies in turn that x is an accumulation point for Gp
by Proposition 1.3.9. In particular, this gives that for any A ∈ G we have
x ∈ A ∩ Ep

τp
= A ∩ Ep

τind ⊆ A
τind , i.e. x is an accumulation point for the

Cauchy filter G. Then, by Proposition 1.3.10, we get that G → x and so
FE(x) ⊆ G ⊆ F . Hence, we proved that F → x ∈ E.

Proof. of (1.12)
Suppose that (1.12) is false, i.e. ∀n ∈ N, ∃An ∈ G s.t. An ∩ En = ∅. By the
definition of G, this implies that

∀n ∈ N, ∃Mn ∈ F , Vn ∈ FE(o), s.t. (Mn + Vn) ∩ En = ∅. (1.13)

Since E is a locally convex t.v.s., we may assume that each Vn is balanced,
convex, and such that Vn+1 ⊆ Vn. For each n ∈ N, define

Wn := conv

(
Vn ∪

n−1⋃
k=1

(Vk ∩ Ek)

)
.
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Moreover, if for some n ∈ N there exists h ∈ (Wn + Mn) ∩ En then h ∈ En
and h ∈ (Wn + Mn). Therefore, we can write h = x + w with x ∈ Mn and
w ∈ Wn ⊆ conv (Vn ∪ (V1 ∩ En−1)). As Vn and V1 ∩ En−1 are both convex,
we get that h = x + ty + (1 − t)z with x ∈ Mn, y ∈ Vn, z ∈ V1 ∩ En−1 and
t ∈ [0, 1]. Then x+ ty = h− (1− t)z ∈ En, but we also have x+ ty ∈Mn +Vn
(since Vn is balanced). Hence, x + ty ∈ (Mn + Vn) ∩ En which contradicts
(1.13), proving that

(Wn +Mn) ∩ En = ∅, ∀n ∈ N.

Now let us define

W := conv

( ∞⋃
k=1

(Vk ∩ Ek)

)
.

As W is convex and as W ∩ Ek contains Vk ∩ Ek for all k ∈ N, W is a
neighbourhood of the origin in (E, τind). Moreover, as (Vn)n∈N is decreasing,
we have that for all n ∈ N

W = conv

(
n−1⋃
k=1

(Vk ∩ Ek) ∪
∞⋃
k=n

(Vk ∩ Ek)

)
⊆ conv

(
n−1⋃
k=1

(Vk ∩ Ek) ∪ Vn

)
= Wn.

Since F is a Cauchy filter on (E, τind), there exists B ∈ F such that B−B ⊆W
and so B −B ⊆Wn,∀n ∈ N. We also have that B ∩Mn 6= ∅,∀n ∈ N, as both
B and Mn belong to F . Hence, for all n ∈ N we get

B − (B ∩Mn) ⊆ B −B ⊆Wn,

which implies
B ⊆Wn + (B ∩Mn) ⊆Wn +Mn

and so

B ∩ En ⊆ (Wn +Mn) ∩ En
(1.13)

= ∅.

Therefore, we have got that B ∩ En = ∅ for all n ∈ N and so that B = ∅,
which is impossible as B ∈ F . Hence, (1.12) must hold true.

Example I: The space of polynomials
Let n ∈ N and x := (x1, . . . , xn). Denote by R[x] the space of polynomials in
the n variables x1, . . . , xn with real coefficients. A canonical algebraic basis
for R[x] is given by all the monomials

xα := xα1
1 · · ·x

αn
n , ∀α = (α1, . . . , αn) ∈ Nn0 .
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1.3. Inductive topologies and LF-spaces

For any d ∈ N0, let Rd[x] be the linear subpace of R[x] spanned by all
monomials xα with |α| :=

∑n
i=1 αi ≤ d, i.e.

Rd[x] := {f ∈ R[x]| deg f ≤ d}.

Since there are exactly
(
n+d
d

)
monomials xα with |α| ≤ d, we have that

dim(Rd[x]) =
(d+ n)!

d!n!
,

and so that Rd[x] is a finite dimensional vector space. Hence, by Tychonoff
Theorem (see Corollary 3.1.4 in TVS-I) there is a unique topology τde that
makes Rd[x] into a Hausdorff t.v.s. which is also complete and so Fréchet (as it
topologically isomorphic to Rdim(Rd[x]) equipped with the euclidean topology).

As R[x] :=
⋃∞
d=0 Rd[x], we can then endow it with the inductive topol-

ogy τind w.r.t. the family of F-spaces
{

(Rd[x], τde ) : d ∈ N0

}
; thus (R[x], τind)

is a LF-space and the following properties hold (proof in Exercise Sheet 3):

a) τind is the finest locally convex topology on R[x],

b) every linear map f from (R[x], τind) into any t.v.s. is continuous.

Example II: The space of test functions
Let Ω⊆Rd be open in the euclidean topology. For any integer 0≤ s≤∞, we
have defined in Section 1.2 the set Cs(Ω) of all real valued s−times continuously
differentiable functions on Ω, which is a real vector space w.r.t. pointwise
addition and scalar multiplication. We have equipped this space with the
Cs-topology (i.e. the topology of uniform convergence on compact sets of the
functions and their derivatives up to order s) and showed that this turns Cs(Ω)
into a Fréchet space.

Let K be a compact subset of Ω, which means that it is bounded and
closed in Rd and that its closure is contained in Ω. For any integer 0 ≤ s ≤ ∞,
consider the subset Ckc (K) of Cs(Ω) consisting of all the functions f ∈ Cs(Ω)
whose support lies in K, i.e.

Csc (K) := {f ∈ Cs(Ω) : supp(f) ⊆ K},

where supp(f) denotes the support of the function f on Ω, that is the closure
in Ω of the subset {x ∈ Ω : f(x) 6= 0}.

For any integer 0 ≤ s ≤ ∞, Csc (K) is always a closed linear subspace
of Cs(Ω). Indeed, for any f, g ∈ Csc (K) and any λ ∈ R, we clearly have
f + g ∈ Cs(Ω) and λf ∈ Cs(Ω) but also supp(f + g) ⊆ supp(f)∪ supp(g) ⊆ K
and supp(λf) = supp(f) ⊆ K, which gives f + g, λf ∈ Csc (K). To show
that Csc (K) is closed in Cs(Ω), it suffices to prove that it is sequentially closed
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1. Special classes of topological vector spaces

as Cs(Ω) is a F-space. Consider a sequence (fj)j∈N of functions in Csc (K)
converging to f in the Cs−topology. Then clearly f ∈ Cs(Ω) and since all the
fj vanish in the open set Ω \ K, obviously their limit f must also vanish in
Ω \ K. Thus, regarded as a subspace of Cs(Ω), Csc (K) is also complete (see
Proposition 2.5.8 in TVS-I) and so it is itself an F-space.

Let us now denote by Csc (Ω) the union of the subspaces Csc (K) asK varies in
all possible ways over the family of compact subsets of Ω, i.e. Csc (Ω) is linear
subspace of Cs(Ω) consisting of all the functions belonging to Cs(Ω) which
have a compact support (this is what is actually encoded in the subscript c).
In particular, C∞c (Ω) (smooth functions with compact support in Ω) is called
space of test functions and plays an essential role in the theory of distributions.

We will not endow Csc (Ω) with the subspace topology induced by Cs(Ω),
but we will consider a finer one, which will turn Csc (Ω) into an LF-space. Let us
consider a sequence (Kj)j∈N of compact subsets of Ω s.t. Kj ⊆ Kj+1, ∀j ∈ N
and

⋃∞
j=1Kj = Ω. (Sometimes is even more advantageous to choose the

Kj ’s to be relatively compact i.e. the closures of open subsets of Ω such that
Kj ⊆ ˚Kj+1, ∀j ∈ N and

⋃∞
j=1Kj = Ω.)

Then Csc (Ω) =
⋃∞
j=1 Csc (Kj), as an arbitrary compact subset K of Ω is

contained in Kj for some sufficiently large j. Because of our way of defining the
F-spaces Csc (Kj), we have that Csc (Kj) ⊆ Csc (Kj+1) and Csc (Kj+1) induces on
the subset Csc (Kj) the same topology as the one originally given on it, i.e. the
subspace topology induced on Csc (Kj) by Cs(Ω). Thus we can equip Csc (Ω) with
the inductive topology τind w.r.t. the sequence of F-spaces {Csc (Kj), j ∈ N},
which makes Csc (Ω) an LF-space. It is easy to check that τind does not depend
on the choice of the sequence of compact sets Kj ’s provided they fill Ω.

Note that (Csc (Ω), τind) is not metrizable since it is not Baire (proof in
Exercise Sheet 3).

Proposition 1.3.12. For any integer 0 ≤ s ≤ ∞, consider Csc (Ω) endowed
with the LF-topology τind described above. Then we have the following contin-
uous injections:

C∞c (Ω)→ Csc (Ω)→ Cs−1
c (Ω), ∀ 0 < s <∞.

Proof. Let us just prove the first inclusion i : C∞c (Ω) → Csc (Ω) as the others
follows in the same way. As C∞c (Ω) =

⋃∞
j=1 C∞c (Kj) is the inductive limit

of the sequence of F-spaces (C∞c (Kj))j∈N, where (Kj)j∈N is a sequence of

compact subsets of Ω such that Kj ⊆ Kj+1, ∀j ∈ N and
⋃∞
j=1Kj = Ω, by

Proposition 1.3.7 we know that i is continuous if and only if, for any j ∈ N,
ej := i � C∞c (Kj) is continuous. But from the definition we gave of the
topology on each Csc (Kj) and C∞c (Kj), it is clear that both the inclusions
ij : C∞c (Kj) → Csc (Kj) and sj : Csc (Kj) → Csc (Ω) are continuous. Hence, for
each j ∈ N, ej = sj ◦ ij is indeed continuous.
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1.4. Projective topologies and examples of projective limits

1.4 Projective topologies and examples of projective limits

Let {(Eα, τα) : α ∈ A} be a family of locally convex t.v.s. over the field K of
real or complex numbers (A is an arbitrary index set). Let E be a vector space
over the same field K and, for each α ∈ A, let fα : E → Eα be a linear mapping.
The projective topology τproj on E w.r.t. the family {(Eα, τα, fα) : α ∈ A} is
the locally convex topology generated by the following basis of neighbourhoods
of the origin in E:

Bproj :=

{⋂
α∈F

f−1α (Uα) : F ⊆ A finite, Uα basic nbhood of o in (Eα, τα), ∀α ∈ F

}
.

Hence, (E, τproj) is a locally convex t.v.s.. Indeed, since all (Eα, τα) are lo-
cally convex t.v.s., we can always choose the Uα’s to be convex, balanced and
absorbing and so, by the linearity of the fα’s, we get that the corresponding
Bproj is a collection of convex, balanced and absorbing subsets of E such that:

a) ∀ U, V ∈ Bproj , U ∩ V ∈ Bproj , because U =
⋂
α∈F f

−1
α (Uα) and V =⋂

α∈G f
−1
α (Uα) for some F,G ⊆ A finite and some Uα basic neighbourhoods

of the origin in (Eα, τα) and so U ∩ V =
⋂
α∈F∪G f

−1
α (Uα) ∈ Bproj .

b) ∀ ρ > 0, ∀ U ∈ Bproj , ρU ∈ Bproj , since U =
⋂
α∈F f

−1
α (Uα) for some F ⊆ A

finite and some Uα basic neighbourhoods of the origin in (Eα, τα) and so
ρU =

⋂
α∈F f

−1
α (ρUα) ∈ Bproj .

Then Theorem 4.1.14 in TVS-I ensures that τproj makes E into a l.c. t.v.s..

Note that τproj is the coarsest topology on E for which all the mappings fα
(α ∈ A) are continuous. Suppose there exists another topology τ on E such
that all the fα’s are continuous and τ ⊆ τproj . Then for any neighbourhood U
of the origin in τproj there exists F ⊆ A finite and for each α ∈ F there exists
Uα basic neighbourhood of the origin in (Eα, τα) such that

⋂
α∈F f

−1
α (Uα) ⊆ U .

Since the τ -continuity of the fα’s ensures that each f−1
α (Uα) is a neighbour-

hood of the origin in τ , we have that U is itself a neighbourhood of the origin
in τ . Hence, τ ≡ τproj .

Proposition 1.4.1. Let E be a vector space over K endowed with the projec-
tive topology τproj w.r.t. the family {(Eα, τα, fα) : α ∈ A}, where each (Eα, τα)
is a locally convex t.v.s. over K and each fα a linear mapping from E to Eα.
Then τproj is Hausdorff if and only if for each 0 6= x ∈ E, there exists an
α ∈ A and a neighbourhood Uα of the origin in (Eα, τα) such that fα(x) /∈ Uα.

Proof. Suppose that (E, τproj) is Hausdorff and let 0 6= x ∈ E. By Propo-
sition 2.2.3 in TVS-I, there exists a neighbourhood U of the origin in E not
containing x. Then, by definition of τproj there exists a finite subset F ⊆ A
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1. Special classes of topological vector spaces

and, for any α ∈ F , there exists Uα neighbourhood of the origin in (Eα, τα)
s.t.

⋂
α∈F f

−1
α (Uα) ⊆ U . Hence, as x /∈ U , there exists α ∈ F s.t. x /∈ f−1

α (Uα)
i.e. fα(x) /∈ Uα. Conversely, suppose that there exists an α ∈ A and a neigh-
bourhood of the origin in (Eα, τα) such that fα(x) /∈ Uα. Then x /∈ f−1

α (Uα),
which implies by Proposition 2.2.3 in TVS-I that τproj is a Hausdorff topology,
as f−1

α (Uα) is a neighbourhood of the origin in (E, τproj) not containing x.

Proposition 1.4.2. Let E be a vector space over K endowed with the pro-
jective topology τproj w.r.t. the family {(Eα, τα, fα) : α ∈ A}, where each
(Eα, τα) is a locally convex t.v.s. over K and each fα a linear mapping from
E to Eα. Let (F, τ) be an arbitrary t.v.s. and u a linear mapping from F into
E. The mapping u : F → E is continuous if and only if, for each α ∈ A,
fα ◦ u : F → Eα is continuous.

Proof. (Exercise Sheet 3)

Example I: The product of locally convex t.v.s
Let {(Eα, τα) : α ∈ A} be a family of locally convex t.v.s. The product
topology τprod on E =

∏
α∈AEα (see Definition 1.1.20 in TVS-I) is the coarsest

topology for which all the canonical projections pα : E → Eα (defined by
pα(x) := xα for any x = (xβ)β∈A ∈ E) are continuous. Hence, τprod coincides
with the projective topology on E w.r.t. {(Eα, τα, pα) : α ∈ A}.

Let us consider now the case when we have a directed partially ordered
index set (A,≤), a family {(Eα, τα) : α ∈ A} of locally convex t.v.s. over K
and for any α ≤ β a continuous linear mapping gαβ : Eβ → Eα. Let E be
the subspace of

∏
α∈AEα whose elements x = (xα)α∈A satisfy the relation

xα = gαβ(xβ) whenever α ≤ β. For any α ∈ A, let fα be the canonical
projection pα :

∏
β∈AEβ → Eα restricted to E. The space E endowed with

the projective topology w.r.t. the family {(Eα, τα, fα) : α ∈ A} is said to be
the projective limit of the family {(Eα, τα) : α ∈ A} w.r.t. the mappings
{gαβ : α, β ∈ A,α ≤ β} and {fα : α ∈ A}. If each fα(E) is dense in Eα then
the projective limit is said to be reduced.

Remark 1.4.3. Given a family {(Eα, τα) : α ∈ A} of locally convex t.v.s.
over K which is directed by topological embeddings (i.e. for any α, β ∈ A there
exists γ ∈ A s.t. Eγ ⊆ Eα and Eγ ⊆ Eβ with continuous embeddings) and such
that the set E :=

⋂
α∈AEα is dense in each Eα, we denote by iα the embedding

of E into Eα. The directedness of the family induces a partial order on A
making A directed, i.e. α ≤ β if and only if Eβ ⊆ Eα. For any α ≤ β, let us
denote by iαβ the continuous embedding of Eβ in Eα. Then the set E endowed
with the projective topology τproj w.r.t. the family {(Eα, τα, iα) : α ∈ A}
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1.5. Open mapping theorem

is the reduced projective limit of {(Eα, τα) : α ∈ A} w.r.t. the mappings
{iαβ : α, β ∈ A,α ≤ β} and {iα : α ∈ A}. For convenience, in such cases,
(E, τproj) is called just reduced projective limit of {(Eα, τα) : α ∈ A} (omitting
the maps as they are all natural embeddings).

Example II: The space of test functions
Let Ω⊆Rd be open in the euclidean topology. The space of test functions
C∞c (Ω), i.e. the space of all the functions belonging to C∞(Ω) which have a
compact support, can be constructed as a reduced projective limit of the kind
introduced in Remark 1.4.3. Consider the index set

T := {t := (t1, t2) : t1 ∈ N0, t2 ∈ C∞(Ω) with t2(x) ≥ 1, ∀x ∈ Ω}

and for each t ∈ T , let us introduce the following norm on C∞c (Ω):

‖ϕ‖t := sup
x∈Ω

t2(x)
∑
|α|≤t1

|(Dαϕ)(x)|

 .

For each t ∈ T , let Dt(Ω) be the completion of C∞c (Ω) w.r.t. ‖ · ‖t and denote
by τt the topology induced by the norm ‖·‖t. Then the family {(Dt(Ω), τt, it) :
t ∈ T} is directed by topological embeddings, since for any t := (t1, t2), s :=
(s1, s2) ∈ T we always have that r := (t1 + s1, t2 + s2) ∈ T is such that
Dr(Ω) ⊆ Dt(Ω) and Dr(Ω) ⊆ Ds(Ω). Moreover, we have that as sets

C∞c (Ω) =
⋂
t∈T

Dt(Ω).

Hence, the space of test functions C∞c (Ω) endowed with the projective topology
τproj w.r.t. the family {(Dt(Ω), τt, it) : t ∈ T}, where (for each t ∈ T ) it denotes
the natural embedding of C∞c (Ω) into Dt(Ω) is the reduced projective limit of
the family {(Dt(Ω), τt) : t ∈ T}.

Using Sobolev embeddings theorems, it can be showed that the space of
test functions C∞c (Ω) can be actually written as projective limit of a fam-
ily of weighted Sobolev spaces which are Hilbert spaces (see [1, Chapter I,
Section 3.10]).

1.5 Open mapping theorem

In this section we are going to come back for a moment to the general theory of
metrizable t.v.s. to give one of the most celebrated theorems in this framework,
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1. Special classes of topological vector spaces

the so-called open mapping theorem. Let us first try to motivate the question
on which such a theorem is based on.

Let X and Y be two t.v.s. over K and f : X → Y a linear map. Then
there exists a unique linear map f̄ : X/Ker(f)→ Im(f) making the following
diagram commutative, i.e.

∀x ∈ X, f(x) = f̄(φ(x)). (1.14)

X Im(f) Y

X/Ker(f)

φ

f i

f̄

where i is the natural injection of Im(f) into Y , i.e. the mapping which to
each element y of Im(f) assigns that same element y regarded as an element
of Y ; φ is the canonical map of X onto its quotient X/Ker(f) (since we are
between t.v.s. φ is continuous and open).

Note that

• f̄ is well-defined.
Indeed, if φ(x) = φ(y), i.e. x − y ∈ Ker(f), then f(x − y) = 0 that is
f(x) = f(y) and so f̄(φ(x)) = f̄(φ(y)).

• f̄ is linear.
This is an immediate consequence of the linearity of f and of the linear
structure of X/Ker(f).

• f̄ is a one-to-one map of X/Ker(f) onto Im(f).
The onto property is evident from the definition of Im(f) and of f̄ .
As for the one-to-one property, note that f̄(φ(x)) = f̄(φ(y)) means by
definition that f(x) = f(y), i.e. f(x − y) = 0. This is equivalent, by
linearity of f , to say that x−y ∈ Ker(f), which means that φ(x) = φ(y).

Proposition 1.5.1. Let f : X → Y a linear map between two t.v.s. X and Y .
The map f is continuous if and only if the map f̄ is continuous.

Proof. Suppose f continuous and let U be an open subset in Im(f) (endowed
with the subspace topology induced by the topology on Y ). Then f−1(U)
is open in X. By definition of f̄ , we have f̄−1(U) = φ(f−1(U)). Since the
quotient map φ : X → X/Ker(f) is open, φ(f−1(U)) is open in X/Ker(f).
Hence, f̄−1(U) is open in X/Ker(f) and so the map f̄ is continuous. Viceversa,
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1.5. Open mapping theorem

suppose that f̄ is continuous. Since f = f̄ ◦ φ and φ is continuous, f is also
continuous as composition of continuous maps.

In general, the inverse of f̄ , which is well defined on Im(f) since f̄ is
injective, is not continuous, i.e. f̄ is not necessarily open. However, combining
the previous proposition with the definition of f̄ , it is easy to see that

Proposition 1.5.2. Let f : X → Y a linear map between two t.v.s. X
and Y . The map f is a topological homomorphism (i.e. linear, continuous
and open) if and only if f̄ is a topological isomorphism (i.e. bijective topological
homomorphism).

Now if Y is additionally Hausdorff and Im(f) finite dimensional, then
whenever f is continuous we have that f̄ is not only continuous but also open
(see Theorem 3.1.1-c in TVS-I and recall that in this case Ker(f) is closed and
so X/Ker(f) is a Hausdorff t.v.s..). Hence, any linear continuous map from a
t.v.s. into a Hausdorff t.v.s. whose image is finite dimensional is also open.
It is then natural to ask for which classes of t.v.s. any linear continuous map
is also open. Of course, we are really interested in loosening the restriction of
the finite dimensionality of Im(f) but we do expect that in doing so we shall
give up some of the generality on the domain X of f . The open mapping
theorem exactly provides an answer to this question.

Theorem 1.5.3 (Open Mapping Theorem).
Let X and Y be two metrizable and complete t.v.s.. Every continuous linear
surjective map f : X → Y is open.

The proof consists of two rather distinct parts. In the first one, we make
use only of the fact that the mapping under consideration is onto and that
Y is metrizable and complete (and so Baire). In the second part, we take
advantage of the fact that both X and Y can be turned into metric spaces,
and that Y is also complete.

Proof. Since Y is metrizable and complete, it is a Baire t.v.s. by Proposi-
tion 1.1.9. This together with the fact that f : X → Y is linear, continuous,
onto map (and so Im(f) has non-empty interior) implies that the assumptions
of Lemma 3.7 below are satisfied and so we get that f(V ) is a neighbour-
hood of the origin in Y whenever V is a neighbourhood of the origin in X.
This provides in particular that, for any r > 0 there exists ρ > 0 such that
Bρ(o) ⊆ f(Br(o)) since X and Y are both metrizable t.v.s.. Since the met-
rics employed can be always chosen to be translation invariant (see Proposi-
tion 1.1.3), we easily obtain that the assumption (1.15) in Lemma 3.8 below
holds.
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Let U be a neighbourhood of the origin in X. Then there exists s > 0 s.t.
Bs(o) ⊆ U and so f(Bs(o)) ⊆ f(U). By applying (1.15) for r = s

2 , we obtain

that ∃ ρ := ρ s
2
> 0 s.t. Bρ(o) ⊆ f(B s

2
(o)) and so, by Lemma 3.8, we have

Bρ(o) ⊆ f(Bs(o)) ⊆ f(U) since s > s
2 . Hence, f(U) is a neighbourhood of the

origin in Y .

Lemma 1.5.4. Let X be a t.v.s., Y a Baire t.v.s. and f : X → Y a continuous
linear map. If f(X) has non-empty interior, then f(V ) is a neighbourhood of
the origin in Y whenever V is a neighbourhood of the origin in X.

Proof. (see Exercise Sheet 1)

Lemma 1.5.5. Let X be a metrizable and complete t.v.s. and Y a metrizable
(not necessarily complete) t.v.s.. If f : X → Y is a continuous linear map
such that

∀r > 0, ∃ ρr > 0 s.t. Bρr(f(x)) ⊆ f(Br(x)),∀x ∈ X, (1.15)

then for any a > r we have that Bρr(f(x)) ⊆ f(Ba(x)) for all x ∈ X.

Proof. Fixed a > r > 0, we can write a =
∑∞

n=0 rn with r0 := r and rn > 0
for all n ∈ N. By assumption (1.15), we have that

∃ ρ0 := ρr0 = ρr > 0 s.t. Bρ0(f(x)) ⊆ f(Br0(x)), ∀x ∈ X, (1.16)

and

∀n ∈ N,∃ ρn := ρrn > 0 s.t. Bρn(f(x)) ⊆ f(Brn(x)),∀x ∈ X. (1.17)

W.l.o.g. we can assume that (ρn)n∈N is strictly decreasing and convergent to
zero.

Let x ∈ X and y ∈ Bρr(f(x)). We want to show that there exists a
point x′ ∈ Ba(x) such that y = f(x′). To do that, we shall construct a
Cauchy sequence (xn)n∈N in X such that (f(xn))n∈N converges to y. Since X
is complete, this will imply that (xn)n∈N converges to a point x′ ∈ X, which
necessarily satisfies f(x′) = y as f is continuous and Y Hausdorff. Of course,
we need to define the sequence (xn)n∈N in such a way that its limit point x′

lies in Ba(x).

Since y ∈ Bρr(f(x))
(1.16)

⊆ f(Br0(x)), there exists x1 ∈ Br0(x) such that

dY (f(x1), y) < ρ1. Then y ∈ Bρ1(f(x1))
(1.17)

⊆ f(Br1(x1)) and so there exists
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x2 ∈ Br1(x1) such that dY (f(x2), y) < ρ2, i.e. y ∈ Bρ2(f(x2)). By repeatedly
applying (1.17), we get that for any n ∈ N there exists xn+1 ∈ Brn(xn) such
that dY (f(xn+1), y) < ρn+1. The sequence (xn)n∈N so obtained has all the
desired properties. Indeed, for any n ∈ N, we have dX(xn, xn+1) < rn and so
for any m ≥ l in N we get dX(xl, xm) ≤

∑m−1
j=l dX(xj , xj+1) <

∑∞
j=l rj , which

implies that (xn)n∈N is a Cauchy sequence in X. Hence, by the completeness
of X, there exists x′ ∈ X such that dX(xn, x) → 0 as n → ∞ and for any
n ∈ N we get that

dX(x, x′) ≤ dX(x, x1) + dX(x1, x2) + · · ·+ dX(xn, x
′) <

n−1∑
j=0

rj + dX(xn, x
′).

Hence, dX(x, x′) ≤
∑∞

j=0 rj = a. Furthermore, for any n ∈ N, we have
0 ≤ dY (f(xn), y) < ρn → 0, which implies the convergence of (f(xn))n∈N to y
in Y .

The Open Mapping Theorem 1.5.3 has several applications.

Corollary 1.5.6. A bijective continuous linear map between two metrizable
and complete t.v.s. is a topological isomorphism.

Proof. Let X and Y be two metrizable and complete t.v.s. and f : X → Y
bijective continuous and linear. Then, by the Open Mapping Theorem 1.5.3,
we know that f is open, i.e. for any U ∈ FX(o) we have that f(U) ∈ FY (o).
This means that the inverse f−1, whose existence is ensured by the injectivity
of f , is continuous.

Corollary 1.5.7. A bijective linear map between two metrizable and complete
t.v.s. with continuous inverse is continuous and so a topological isomorphism.

Proof. Apply Corollary 1.5.6 to the inverse.

Corollary 1.5.8. Let τ1 and τ2 be two topologies on the same vector space X,
both turning X into a metrizable complete t.v.s.. If τ1 and τ2 are comparable,
then they coincide.

Proof. Suppose that τ1 is finer than τ2. Then the identity map from (X, τ1) to
(X, τ2) is bijective continuous and linear and so a topological isomorphism by
Corollary 1.5.6. This means that also its inverse is continuous, i.e. the identity
map from (X, τ2) to (X, τ1) is continuous. Hence, τ2 is finer than τ1.
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Corollary 1.5.9. Let p and q be two norms on the same vector space X. If
both (X, p) and (X, q) are Banach spaces and there exists C > 0 such that
p(x) ≤ Cq(x) for all x ∈ X, then the norms p and q are equivalent.

Proof. Apply Corollary 1.5.8 to the topologies generated by p and by q.

A fundamental result which can be derived from the Open Mapping The-
orem 1.5.3 is the so called Closed Graph Theorem.

Theorem 1.5.10 (Closed Graph Theorem).
Let X and Y be two metrizable and complete t.v.s.. Every linear map f : X →
Y with closed graph is continuous.

Recall that the graph of a map f : X → Y is defined by

Gr(f) := {(x, y) ∈ X × Y : y = f(x)}.

The Closed Graph Theorem 1.5.10 will follow at once from the Open Map-
ping Theorem 1.5.3 and the following general result.

Proposition 1.5.11.
Let X and Y be two t.v.s. such that the following property holds.

If G is a closed linear subspace of X × Y and g : G→ X is a

continuous linear surjective map then g is open.
(1.18)

Then every linear map f : X → Y with closed graph is continuous.

Proof. Since X and Y are both t.v.s., X×Y endowed with the product topol-
ogy is a t.v.s. and so the first and the second coordinate projections are both
continuous. As f : X → Y is linear, Gr(f) is a linear subspace of X × Y .
Hence, Gr(f) endowed with subspace topology induced by the product topol-
ogy, is itself a t.v.s. and the coordinate projections restricted to Gr(f), i.e.

p : Gr(f) → X and q : Gr(f) → Y
(x, f(x)) 7→ x (x, f(x)) 7→ f(x),

are both continuous. Moreover, p is also linear and bijective, so there exists
its inverse p−1 and we have that f = q ◦ p−1. Since p is a linear bijective and
continuous map, (1.18) ensures that p is open, i.e. p−1 is continuous. Hence,
f is continuous as composition of continuous maps.
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Proof. of Closed Graph Theorem
Since X and Y are both metrizable and complete t.v.s., (1.18) immediately
follows from the Open Mapping Theorem 1.5.3. Indeed, if G is a closed linear
subspace of X×Y , then G endowed with the subspace topology induced by the
product topology is also a metrizable and complete t.v.s. and so any g : G→
X linear continuous and surjective is open by the Open Mapping Theorem
1.5.3. As (1.18) holds, we can apply Proposition 1.5.11, which ensures that
every linear map f : X → Y with Gr(f) closed is continuous.

The Closed Graph Theorem 1.5.10 and the Open Mapping Theorem 1.5.3
are actually equivalent, in the sense that we can also derive Theorem 1.5.3
from Theorem 1.5.10. To this purpose, we need to show a general topological
result.

Proposition 1.5.12. Let X and Y be two topological spaces such that Y is
Hausdorff. Every continuous map from X to Y has closed graph.

Proof. Let f : X → Y be continuous. We want to show that (X×Y )\Gr(f) :=
{(x, y) ∈ X×Y : y 6= f(x)}is open, i.e. for any (x, y) ∈ (X×Y )\Gr(f) we want
to show that there exists a neighbourhood W of x in X and a neighbourhood
U of y in Y such that (x, y) ∈W × U ⊆ (X × Y ) \Gr(f).

As Y is Hausdorff and y 6= f(x), there exist U neighbourhood of y in Y
and V neighbourhood of f(x) in Y such that U ∩ V = ∅. The continuity
of f guarantees that f−1(V ) is a neighbourhood of x in X and so we have
that (x, y) ∈ f−1(V )× U . We claim that f−1(V )× U ⊆ (X × Y ) \Gr(f). If
this was not the case, then there would exist (x̃, ỹ) ∈ f−1(V ) × U such that
(x̃, ỹ) /∈ (X×Y )\Gr(f). Hence, ỹ = f(x̃) ∈ f(f−1(V )) ⊆ V and so ỹ ∈ U ∩V
which yields a contradiction.

Proof. of Open Mapping Theorem 1.5.3 using Closed Graph Theorem 1.5.10
Let f be a linear continuous and surjective map between two metrizable and
complete t.v.s. X and Y . Then the map f̄ : X/Ker(f)→ Y defined in (1.14)
is linear bijective and continuous by Proposition 1.5.1. Then Proposition
1.5.12 implies that Gr(f̄) is closed in X/Ker(f)×Y endowed with the product
topology. This gives in turn that the graph Gr(f̄−1) of the inverse of f̄ is
closed in Y × X/Ker(f), as Gr(f̄−1) = j(Gr(f̄) where j : X/Ker(f) × Y →
Y ×X/Ker(f) is the homeomorphism given by j(a, b) = (b, a). Hence, f̄−1 is
a linear map with closed graph and so it is continuous by the Closed Graph
Theorem 1.5.10. This means that f̄ is open and so for any U neighbourhood
of the origin in X we have f(U) = f̄(φ(U)) is open, i.e. f is open.
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1. Special classes of topological vector spaces

The main advantage of the Closed Graph Theorem is that in many sit-
uations it is easier to prove that the graph of a map is closed rather than
showing its continuity directly. For instance, we have seen that the inverse of
an injective linear function with closed graph has also closed graph or that
the inverse of a linear injective continuous map with Hausdorff codomain has
closed graph. In both these cases, when we are in the realm of metrizable and
complete t.v.s., we can conclude the continuity of the inverse thanks to the
Closed Graph Theorem.
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Chapter 2

Bounded subsets of topological vector spaces

In this chapter we will study the notion of bounded set in any t.v.s. and
analyzing some properties which will be useful in the following and especially
in relation with duality theory. Since compactness plays an important role in
the theory of bounded sets, we will start this chapter by recalling some basic
definitions and properties of compact subsets of a t.v.s..

2.1 Preliminaries on compactness
Let us recall some basic definitions of compact subset of a topological space
(not necessarily a t.v.s.)

Definition 2.1.1. A topological space X is said to be compact if X is Haus-
dorff and if every open covering {Ωi}i∈I of X contains a finite subcovering,
i.e. for any collection {Ωi}i∈I of open subsets of X s.t.

⋃
i∈I Ωi = X there

exists a finite subset J ⊆ I s.t.
⋃
j∈J Ωj = X.

By going to the complements, we obtain the following equivalent definition
of compactness.

Definition 2.1.2. A topological space X is said to be compact if X is Haus-
dorff and if every family {Fi}i∈I of closed subsets of X whose intersection is
empty contains a finite subfamily whose intersection is also empty, i.e. for
any collection {Fi}i∈I of closed subsets of X s.t.

⋂
i∈I Fi = ∅ there exists a

finite subset J ⊆ I s.t.
⋂
j∈J Fj = ∅.

Definition 2.1.3. A subset K of a topological space X is said to be compact if
K endowed with the topology induced by X is Hausdorff and for any collection
{Ωi}i∈I of open subsets of X s.t.

⋃
i∈I Ωi ⊇ K there exists a finite subset

J ⊆ I s.t.
⋃
j∈J Ωj ⊇ K.

Let us state without proof a few well-known properties of compact spaces.
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2. Bounded subsets of topological vector spaces

Proposition 2.1.4.

a) A closed subset of a compact space is compact.

b) Finite unions of compact sets are compact.

c) Let f be a continuous mapping of a compact space X into a Hausdorff
topological space Y . Then f(X) is a compact subset of Y .

In the following we will almost always be concerned with compact subsets
of a Hausdorff t.v.s. X carrying the topology induced by X (and so which are
themselves Hausdorff t.v.s.). Therefore, we now introduce a useful character-
ization of compactness in Hausdorff topological spaces.

Theorem 2.1.5. Let X be a Hausdorff topological space. X is compact if
and only if every filter on X has at least one accumulation point (see Defini-
tion 1.3.8).

Proof.
Suppose that X is compact. Let F be a filter on X and C := {M : M ∈ F}. As
F is a filter, no finite intersection of elements in C can be empty. Therefore, by
compactness, the intersection of all elements in C cannot be empty. Then there
exists at least a point x ∈M for all M ∈ F , i.e. x is an accumulation point of
F . Conversely, suppose that every filter on X has at least one accumulation
point. Let φ be a family of closed subsets of X whose intersection is empty. To
show that X is compact, we need to show that there exists a finite subfamily
of φ whose intersection is empty. Suppose by contradiction that no finite
subfamily of φ has empty intersection. Then the family φ′ of all the finite
intersections of subsets belonging to φ forms a basis of a filter F on X. By
our initial assumption, F has an accumulation point, say x. Thus, x belongs
to the closure of any element of F and in particular to any set belonging to φ′

(as the elements in φ′ clearly belong to F and are closed). This means that x
belongs to the intersection of all the sets belonging to φ′, which is the same as
the intersection of all the sets belonging to φ. But we had assumed the latter
to be empty and so we have a contradiction.

Corollary 2.1.6.
Any compact subset of a Hausdorff topological space is closed.

Proof.
Let K be a compact subset of a Hausdorff topological space X and let x ∈ K.
Denote by F(x) the filter of neighbourhoods of x in X and by F(x) � K the
filter in K generated by all the sets U ∩ K where U ∈ F(x). By Theorem
2.1.5, F(x) � K has an accumulation point x1 ∈ K. We claim that x1 ≡ x,
which implies that K = K and so that K is closed. In fact, if x1 6= x then
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2.1. Preliminaries on compactness

the Hausdorffness of X implies that there exists U ∈ F(x) s.t. X \ U is a
neighbourhood of x1 and, thus, x1 /∈ U ∩K, which contradicts the fact that
x1 is an accumulation point of F(x) � K.

Corollary 2.1.7.

1) Arbitrary intersections of compact subsets of a Hausdorff topological space
are compact.

2) Any bijective continuous map from a compact space to a Hausdorff space
is a homeomorphism.

3) Let τ1, τ2 be two Hausdorff topologies on a set X. If τ1 ⊆ τ2 and (X, τ2)
is compact then τ1 ≡ τ2.

Proof.

1. Let X be a Hausdorff topological space and {Ki}i∈I be an arbitrary
family of compact subsets of X. Then each Ki is closed in X by Corol-
lary 2.1.6 and so

⋂
i∈I Ki is a closed subset of each fixed Ki. As Ki

is compact, Proposition 2.1.4-a) ensures that
⋂
i∈I Ki is compact in Ki

and so in X.

2. Let U be an open subset of a compact space X and f a continuous map
from X to a Hausdorff space Y . Since X \ U is closed in X and X is
compact, we have that X \ U is compact in X by Proposition 2.1.4-a).
Then Proposition 2.1.4-c) guarantees that f(X \ U) is compact in Y ,
which implies in turn that f(X \ U) is closed in Y by Corollary 2.1.6.
Since f is bijective, we have that Y \ f(U) = f(X \U) and so that f(U)
is open. Hence, f−1 is continuous.

3. Since τ1 ⊆ τ2, the identity map from (X, τ2) to (X, τ1) is continuous and
clearly bijective. Then the previous item implies that the identity from
(X, τ1) to (X, τ2) is also continuous. Hence, τ1 ≡ τ2.

Last but not least, let us recall the following two definitions.

Definition 2.1.8. A subset A of a topological space X is said to be relatively
compact if the closure A of A is compact in X.

Definition 2.1.9. A subset A of a Hausdorff t.v.s. E is said to be precompact
if A is relatively compact when viewed as a subset of the completion Ê of E.
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2. Bounded subsets of topological vector spaces

2.2 Bounded subsets: definition and general properties

Definition 2.2.1. A subset B of a t.v.s. E is said to be bounded if for every
U neighbourhood of the origin in E there exists λ > 0 such that B ⊆ λU .

In rough words this means that a subset B of E is bounded if B can be
swallowed by any neighbourhood of the origin.

Proposition 2.2.2.

1. If every element in some basis of neighbourhoods of the origin of a t.v.s.
swallows a subset, then such a subset is bounded.

2. The closure of a bounded set is bounded.

3. Finite unions of bounded sets are bounded sets.

4. Any subset of a bounded set is a bounded set.

Proof. Let E be a t.v.s. and B ⊂ E.

1. Suppose that N is a basis of neighbourhoods of the origin o in E such
that for every N ∈ N there exists λN > 0 with B ⊆ λNN . Then, by
definition of basis of neighbourhoods of o, for every U neighbourhood of
o in E there exists M ∈ N s.t. M ⊆ U . Hence, there exists λM > 0 s.t.
B ⊆ λMM ⊆ λMU , i.e. B is bounded.

2. Suppose that B is bounded in E. Then, as there always exists a basis
C of neighbourhoods of the origin in E consisting of closed sets (see
Corollary 2.1.14-a) in TVS-I), we have that for any C ∈ C there exists
λ > 0 s.t. B ⊆ λC and thus B ⊆ λC = λC = λC. By Proposition 2.2.2-
1, this is enough to conclude that B is bounded in E.

3. Let n ∈ N and B1, . . . , Bn bounded subsets of E. As there always
exists a basis B of balanced neighbourhoods of the origin in E (see
Corollary 2.1.14-b) in TVS-I), we have that for any V ∈ B there exist
λ1, . . . , λn > 0 s.t. Bi ⊆ λiV for all i = 1, . . . , n. Then

⋃n
i=1Bi ⊆⋃n

i=1 λiV ⊆
(

max
i=1,...,n

λi

)
V , which implies the boundedness of

⋃n
i=1Bi

by Proposition 2.2.2-1.

4. Let B be bounded in E and let A be a subset of B. The boundedness
of B guarantees that for any neighbourhood U of the origin in E there
exists λ > 0 s.t. λU contains B and so A. Hence, A is bounded.

The properties in Proposition 2.2.2 lead to the following definition which
is dually corresponding to the notion of basis of neighbourhoods.
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Definition 2.2.3. Let E be a t.v.s.. A family {Bα}α∈I of bounded subsets
of E is called a basis of bounded subsets of E if for every bounded subset B
of E there is α ∈ I s.t. B ⊆ Bα.

This duality between neighbourhoods and bounded subsets will play an
important role in the study of the strong topology on the dual of a t.v.s.

Which sets do we know to be bounded in any t.v.s.?

• Singletons are bounded in any t.v.s., as every neighbourhood of the
origin is absorbing.

• Finite subsets in any t.v.s. are bounded as finite union of singletons.

Proposition 2.2.4. Compact subsets of a t.v.s. are bounded.

Proof. Let E be a t.v.s. and K be a compact subset of E. For any neigh-
bourhood U of the origin in E we can always find an open and balanced
neighbourhood V of the origin s.t. V ⊆ U . Then we have

K ⊆ E =
∞⋃
n=0

nV.

From the compactness of K, it follows that there exist finitely many integers
n1, . . . , nr ∈ N0 s.t.

K ⊆
r⋃
i=1

niV ⊆
(

max
i=1,...,r

ni

)
V ⊆

(
max
i=1,...,r

ni

)
U.

Hence, K is bounded in E.

This together with Corollary 2.1.6 gives that in any Hausdorff t.v.s. a
compact subset is always bounded and closed. In finite dimensional Hausdorff
t.v.s. we know that also the converse holds (because of Theorem 3.1.1 in
TVS-I) and thus the Heine-Borel property always holds, i.e.

K compact⇔ K bounded and closed.

This is not true, in general, in infinite dimensional t.v.s.

Example 2.2.5.
Let E be an infinite dimensional normed space. If every bounded and closed
subset in E were compact, then in particular all the balls centered at the origin
would be compact. Then the space E would be locally compact and so finite
dimensional as proved in Theorem 3.2.1 in TVS-I, which gives a contradiction.
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There is however an important class of infinite dimensional t.v.s., the so-
called Montel spaces, in which the Heine-Borel property holds. Note that
C∞(Rd), C∞c (Rd),S(Rd) are all Montel spaces.

Proposition 2.2.4 provides some further interesting classes of bounded sub-
sets in a Hausdorff t.v.s..

Corollary 2.2.6. Precompact subsets of a Hausdorff t.v.s. are bounded.

Proof.
Let K be a precompact subset of a Hausdorff t.v.s. E and i the canonical
embedding of E in its completion Ê. By Definition 2.1.9, the closure of i(K)
in Ê is compact. Let U be any neighbourhood of the origin in E. Since i is
a topological embedding, there is a neighbourhood Û of the origin in Ê such
that U = Û ∩ E. Then, by Proposition 2.2.4, there is a number λ > 0 such
that i(K) ⊆ λÛ . Hence, we get

K ⊆ i(K) ∩ E ⊆ λÛ ∩ E = λÛ ∩ λE = λ(Û ∩ E) = λU.

Corollary 2.2.7. Let E be a Hausdorff t.v.s.. The union of a converging
sequence in E and of its limit is a compact and so bounded closed subset in E.

Proof. (Christmas assignment)

Corollary 2.2.8. Let E be a Hausdorff t.v.s.. Any Cauchy sequence in E is
bounded.

Proof. By using Corollary 2.2.7, one can show that any Cauchy sequence S in
E is a precompact subset of E. Then it follows by Corollary 2.2.6 that S is
bounded in E.

Note that a Cauchy sequence S in a Hausdorff t.v.s. E is not necessarily
relatively compact in E. Indeed, if this were the case, then its closure in
E would be compact and so, by Theorem 2.1.5, the filter associated to S
would have an accumulation point x ∈ E. Hence, by Proposition 1.3.10 and
Proposition 1.1.31 in TVS-I, we get S → x ∈ E which is not necessarily true
unless E is complete.

Proposition 2.2.9. The image of a bounded set under a continuous linear
map between t.v.s. is a bounded set.
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Proof. Let E and F be two t.v.s., f : E → F be linear and continuous, and
B ⊆ E be bounded. Then for any neighbourhood V of the origin in F , f−1(V )
is a neighbourhood of the origin in E. By the boundedness of B in E, it follows
that there exists λ > 0 s.t. B ⊆ λf−1(V ) and, thus, f(B) ⊆ λV . Hence, f(B)
is a bounded subset of F .

Corollary 2.2.10. Let L be a continuous linear functional on a t.v.s. E. If
B is a bounded subset of E, then sup

x∈B
|L(x)| <∞.

Proof. By Proposition 2.2.9, we have that L(B) is bounded in K. Hence,
there exists λ > 0 such that L(B) is contained in the closed ball of radius λ
centered at the origin, i.e. for all x ∈ B we have |L(x)| ≤ λ, which yields the
conclusion.

Let us now introduce a general characterization of bounded sets in terms
of sequences.

Proposition 2.2.11. Let E be any t.v.s.. A subset B of E is bounded if and
only if every sequence contained in B is bounded in E.

Proof. The necessity of the condition is obvious from Proposition 2.2.2-4.
Let us prove its sufficiency. Suppose that every sequence contained in B
is bounded in E. If B is unbounded, then there exists a neighbourhood U of
the origin in E s.t. for all λ > 0 we have B 6⊆ λU . W.l.o.g. we can assume U
balanced. Then

∀n ∈ N, ∃xn ∈ B s.t. xn /∈ nU. (2.1)

By assumption the sequence {xn}n∈N is bounded and so there exists µ > 0
s.t. {xn}n∈N ⊆ µU . Hence, there exists m ∈ N with m ≥ µ such that
{xn}n∈N ⊆ mU and in particular xm ∈ mU , which contradicts (2.1). Hence,
B must necessarily be bounded in E.

2.3 Bounded subsets of special classes of t.v.s.

In this section we are going to study bounded sets in some of the special classes
of t.v.s. which we have encountered so far. First of all, let us notice that any
ball in a normed space is a bounded set and thus that in normed spaces there
exist sets which are at the same time bounded and neighbourhoods of the
origin. This property is actually a characteristic of all normable Hausdorff
locally convex t.v.s.. Recall that a t.v.s. E is said to be normable if its
topology can be defined by a norm, i.e. if there exists a norm ‖ · ‖ on E such
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that the collection {Br : r > 0} with Br := {x ∈ E : ‖x‖ < r} is a basis of
neighbourhoods of the origin in E.

Proposition 2.3.1. Let E be a Hausdorff locally convex t.v.s.. If there is a
neighbourhood of the origin in E which is also bounded, then E is normable.

Proof. Let U be a bounded neighbourhood of the origin in E. As E is locally
convex, by Proposition 4.1.12 in TVS-I, we may always assume that U is
open and absolutely convex, i.e. convex and balanced. The boundedness of
U implies that for any balanced neighbourhood V of the origin in E there
exists λ > 0 s.t. U ⊆ λV . Hence, U ⊆ nV for all n ∈ N such that n ≥ λ,
i.e. 1

nU ⊆ V . Then the collection
{

1
nU
}
n∈N is a basis of neighbourhoods of

the origin o in E and, since E is a Hausdorff t.v.s., Corollary 2.2.4 in TVS-I
guarantees that ⋂

n∈N

1

n
U = {o}. (2.2)

Since E is locally convex and U is an open absolutely convex neighbourhood
of the origin, there exists a generating seminorm p on E s.t. U = {x ∈ E :
p(x) < 1} (see second part of proof of Theorem 4.2.9 in TVS-I). Then p must
be a norm, because p(x) = 0 implies x ∈ 1

nU for all n ∈ N and so x = 0 by
(2.2). Hence, E is normable.

An interesting consequence of this result is the following one.

Corollary 2.3.2. Let E be a locally convex metrizable space. If E is not
normable, then E cannot have a countable basis of bounded sets in E.

Proof. (Exercise Sheet 5)

The notion of boundedness can be extended to linear maps between t.v.s..

Definition 2.3.3. Let E, F be two t.v.s. and f a linear map of E into F . f
is said to be bounded if for every bounded subset B of E, f(B) is a bounded
subset of F .

We have already showed in Proposition 2.2.9 that any continuous linear
map between two t.v.s. is a bounded map. The converse is not true in general
but it holds for two special classes of t.v.s.: metrizable t.v.s. and LF-spaces.

Proposition 2.3.4. Let E be a metrizable t.v.s. and let f be a linear map of
E into a t.v.s. F . If f is bounded, then f is continuous.
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Proof. Let f : E → F be a bounded linear map. Suppose that f is not
continuous. Then there exists a neighbourhood V of the origin in F whose
preimage f−1(V ) is not a neighbourhood of the origin in E. W.l.o.g. we
can always assume that V is balanced. As E is metrizable, we can take a
countable basis {Un}n∈N of neighbourhood of the origin in E s.t. Un ⊇ Un+1

for all n ∈ N. Then for all m ∈ N we have 1
mUm 6⊆ f

−1(V ) i.e.

∀m ∈ N, ∃xm ∈
1

m
Um s.t. f(xm) /∈ V. (2.3)

As for all m ∈ N we have mxm ∈ Um we get that the sequence {mxm}m∈N
converges to the origin o in E. In fact, for any neighbourhood U of the
origin o in E there exists n̄ ∈ N s.t. Un̄ ⊆ U . Then for all n ≥ n̄ we have
nxn ∈ Un ⊆ Un̄ ⊆ U , i.e. {mxm}m∈N converges to o.

Hence, Proposition 2.2.7 implies that {mxm}m∈N0 is bounded in E and so,
since f is bounded, also {mf(xm)}m∈N0 is bounded in F . This means that
there exists ρ > 0 s.t. {mf(xm)}m∈N0 ⊆ ρV . Then for all n ∈ N with n ≥ ρ
we have f(xn) ∈ ρ

nV ⊆ V which contradicts (2.3).

To show that the previous proposition also hold for LF-spaces, we need to
introduce the following characterization of bounded sets in LF-spaces.

Proposition 2.3.5.
Let (E, τind) be an LF-space with defining sequence {(En, τn)}n∈N. A subset
B of E is bounded in E if and only if there exists n ∈ N s.t. B is contained
in En and B is bounded in En.

To prove this result we will need the following refined version of Lemma 1.3.4.

Lemma 2.3.6. Let Y be a locally convex space, Y0 a closed linear subspace of
Y equipped with the subspace topology, U a convex neighbourhood of the origin
in Y0, and x0 ∈ Y with x0 /∈ U . Then there exists a convex neighbourhood V
of the origin in Y such that x0 /∈ V and V ∩ Y0 = U .

Proof.
By Lemma 1.3.4 we have that there exists a convex neighbourhood W of the
origin in Y such that W ∩ Y0 = U . Now we need to distinguish two cases:
-If x0 ∈ Y0 then necessarily x0 /∈ W since by assumption x0 /∈ U . Hence, we
are done by taking V := W .
-If x0 /∈ Y0, then let us consider the quotient Y/Y0 and the canonical map
φ : Y → Y/Y0. As Y0 is a closed linear subspace of Y and Y is locally convex,

41



2. Bounded subsets of topological vector spaces

we have that Y/Y0 is Hausdorff and locally convex. Then, since φ(x0) 6= o,
there exists a convex neighbourhood N of the origin o in Y/Y0 such that
φ(x0) /∈ N . Set Ω := φ−1(N). Then Ω is a convex neighbourhood of the origin
in Y such that x0 /∈ Ω and clearly Y0 ⊆ Ω (as φ(Y0) = o ∈ N). Therefore,
if we consider V := Ω ∩W then we have that: V is a convex neighbourhood
of the origin in Y , V ∩ Y0 = Ω ∩W ∩ Y0 = W ∩ Y0 = U and x0 /∈ V since
x0 /∈ Ω.

Proof. of Proposition 2.3.5
Suppose first that B is contained and bounded in some En. Let U be an

arbitrary neighbourhood of the origin in E. Then by Proposition 1.3.5 we
have that Un := U ∩ En is a neighbourhood of the origin in En. Since B is
bounded in En, there is a number λ > 0 such that B ⊆ λUn ⊆ λU , i.e. B is
bounded in E.

Conversely, assume that B is bounded in E. Suppose that B is not con-
tained in any of the En’s, i.e. ∀n ∈ N, ∃xn ∈ B s.t. xn /∈ En. We will show
that the sequence {xn}n∈N is not bounded in E and so a fortiori B cannot be
bounded in E.
Since x1 /∈ E1 but x1 ∈ B ⊆ E and E1 is a closed linear subspace of (E, τind),
given an arbitrary convex neighbourhood U1 of the origin in E1 we can ap-
ply Lemma 2.3.6 and get that there exists V2 convex neighbourhood of the
origin in E s.t. x1 /∈ V2 and V2 ∩ E1 = U1. As τind � E2 = τ2, we have that
U2 := V2 ∩E2 is a convex neighbourhood of the origin in E2 s.t. x1 /∈ U2 and
U2 ∩ E1 = V2 ∩ E2 ∩ E1 = V2 ∩ E1 = U1.
Since x1 /∈ U2, we can once again apply Lemma 2.3.6 and proceed as above
to get that there exists U ′3 convex neighbourhood of the origin in E3 s.t.
x1 /∈ U ′3 and U ′3 ∩ E2 = U2. Since x2 /∈ E2 we also have that 1

2x2 /∈ E2 and so
1
2x2 /∈ U2. By applying again Lemma 2.3.6 and proceeding as above, we get
that there exists U ′′3 convex neighbourhood of the origin in E3 s.t. 1

2x2 /∈ U ′′3
and U ′′3 ∩ E2 = U2. Taking U3 := U ′3 ∩ U ′′3 we have that U3 ∩ E2 = U2 and
x1,

1
2x2 /∈ U2.

By induction on n, we get a sequence {Un}n∈N such that for any n ∈ N:

• Un is a convex neighbourhood of the origin in En

• Un = Un+1 ∩ En (and so Un ⊆ Un+1)

• x1,
1
2x2, . . . ,

1
nxn /∈ Un+1.

Note that:

Un = Un+1∩En = Un+2∩En+1∩En = Un+2∩En = · · · = Un+k∩En, ∀k ∈ N.
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Consider U :=
⋃∞
j=1 Uj , then for each n ∈ N we have

U ∩En =

 n⋃
j=1

Uj ∩ En

∪
 ∞⋃
j=n+1

Uj ∩ En

 = Un∪

( ∞⋃
k=1

Un+k ∩ En

)
= Un,

i.e. U is a neighbourhood of the origin in (E, τind).
Suppose that {xj}j∈N is bounded in E and take a balanced neighbour-

hood V of the origin in E s.t. V ⊆ U . Then there exists λ > 0 s.t.
{xj}j∈N ⊆ λV and so {xj}j∈N ⊆ nV for all n ∈ N with n ≥ λ. In particular,
we have xn ∈ nV and so 1n

x n
∈ V ⊆ U , which contradicts the third property

of the Uj ’s (i.e. 1nxn /∈=
⋃∞
j=1 Un+j .

⋃∞
j=n+1 Uj = U since Uj ⊆ Uj+1 for all

j ∈ N). Hence, {xj}j∈N is not bounded in E and so B is not bounded in E.
This contradicts our original assumption and so proves that B ⊆ En for some
n ∈ N.

It remains to show that B is bounded in En. Let Wn be a neighbourhood
of the origin in En. By Proposition 1.3.5, there exists a neighbourhood W of
the origin in E such that W ∩En = Wn. Since B is bounded in E, there exists
µ > 0 s.t. B ⊆ µW and hence

B = B ∩ En ⊆ µW ∩ En = µ(W ∩ En) = µWn.

Corollary 2.3.7. A bounded linear map from an LF- space into an arbitrary
t.v.s. is always continuous.

Proof. (Exercise Sheet 5)
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Chapter 3

Topologies on the dual space of a t.v.s.

In this chapter we are going to describe a general method to construct a whole
class of topologies on the topological dual of a t.v.s. using the notion of polar
of a subset. Among these topologies, usually called polar topologies, there
are: the weak topology, the topology of compact convergence and the strong
topology. In this chapter we will denote by:

• E a t.v.s. over the field K of real or complex numbers.

• E∗ the algebraic dual of E, i.e. the vector space of all linear functionals
on E.

• E′ its topological dual of E, i.e. the vector space of all continuous linear
functionals on E.

Moreover, given x′ ∈ E′, we denote by 〈x′, x〉 its value at the point x of E, i.e.
〈x′, x〉 = x′(x). The bracket 〈·, ·〉 is often called pairing between E and E′.

3.1 The polar of a subset of a t.v.s.
Definition 3.1.1. Let A be a subset of E. We define the polar of A to be the
subset A◦ of E′ given by:

A◦ :=

{
x′ ∈ E′ : sup

x∈A
|〈x′, x〉| ≤ 1

}
.

Let us list some properties of polars:

a) The polar A◦ of a subset A of E is a convex balanced subset of E′.

b) If A ⊆ B ⊆ E, then B◦ ⊆ A◦.
c) (ρA)◦ = (1

ρ)A◦, ∀ ρ > 0,∀A ⊆ E.

d) (A ∪B)◦ = A◦ ∩B◦, ∀A,B ⊆ E.

e) If A is a cone in E, then A◦ ≡ {x′ ∈ E′ : 〈x′, x〉 = 0, ∀x ∈ A} and A◦ is a
linear subspace of E′. In particular, this property holds when A is a linear
subspace of E and, in this case, A◦ is called the orthogonal of A.
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3. Topologies on the dual space of a t.v.s.

Proof.
Let us show just property e) while the proof of a), b), c) and d) is left as an
exercise for the reader. Suppose that A is a cone, i.e. ∀λ > 0, ∀x ∈ A, λx ∈ A.
Then x′ ∈ A◦ implies that |〈x′, x〉| ≤ 1 for all x ∈ A. Since A is a cone, we
must also have |〈x′, λx〉| ≤ 1 for all x ∈ A and all λ > 0. This means that
|〈x′, x〉| ≤ 1

λ for all x ∈ A and all λ > 0, which clearly gives 〈x′, x〉 = 0 for all
x ∈ A. Hence, A◦ ⊆ {x′ ∈ E′ : 〈x′, x〉 = 0, ∀x ∈ A}. The other inclusion is
trivial. In this case, it is easy to see that A◦ is a linear subspace of E′. Indeed:
∀x′, y′ ∈ A◦, ∀x ∈ A, ∀λ, µ ∈ K we have

〈λx′ + µy′, x〉 = λ〈x′, x〉+ µ〈y′, x〉 = λ · 0 + µ · 0 = 0.

Proposition 3.1.2. Let E be a t.v.s.. If B is a bounded subset of E, then the
polar B◦ of B is an absorbing subset of E′.

Proof.
Let x′ ∈ E′. As B is bounded in E, Corollary 2.2.10 guarantees that any
continuous linear functional x′ on E is bounded on B, i.e. there exists a
constant M(x′) > 0 such that supx∈B |〈x′, x〉| ≤ M(x′). This implies that for
any λ ∈ K with |λ| ≤ 1

M(x′) we have λx′ ∈ B◦, since

sup
x∈B
|〈λx′, x〉| = |λ| sup

x∈B
|〈x′, x〉| ≤ 1

M(x′)
·M(x′) = 1.

3.2 Polar topologies on the topological dual of a t.v.s.

We are ready to define an entire class of topologies on the dual E′ of E,
called polar topologies. Consider a family Σ of bounded subsets of E with the
following two properties:
(P1) If A,B ∈ Σ, then ∃C ∈ Σ s.t. A ∪B ⊆ C.
(P2) If A ∈ Σ and λ ∈ K, then ∃B ∈ Σ s.t. λA ⊆ B.
Let us denote by Σ◦ the family of the polars of the sets belonging to Σ, i.e.

Σ◦ := {A◦ : A ∈ Σ} .

Claim: Σ◦ is a basis of neighbourhoods of the origin for a locally convex
topology on E′ compatible with the linear structure.

Proof. of Claim.
By Property a) of polars and by Proposition 3.1.2, all elements of Σ◦ are
convex balanced absorbing susbsets of E′. Also:
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3.2. Polar topologies on the topological dual of a t.v.s.

1. ∀ A◦, B◦ ∈ Σ◦, ∃C◦ ∈ Σ◦ s.t. C◦ ⊆ A◦ ∩B◦.
Indeed, if A◦ and B◦ in Σ◦ are respectively the polars of A and B in Σ,
then by (P1) there exists C ∈ Σ s.t. A ∪ B ⊆ C and so, by properties
b) and d) of polars, we get: C◦ ⊆ (A ∪B)◦ = A◦ ∩B◦.

2. ∀ A◦ ∈ Σ◦, ∀ ρ > 0, ∃B◦ ∈ Σ◦ s.t. B◦ ⊆ ρA◦.
Indeed, if A◦ in Σ◦ is the polar of A, then by (P2) there exists B ∈ Σ
s.t. 1

ρA ⊆ B and so, by properties b) and c) of polars, we get that

B◦ ⊆
(

1
ρA
)◦

= ρA◦.

By Theorem 4.1.14 in TVS-I, there exists a unique locally convex topology on
E′ compatible with the linear structure and having Σ◦ as a basis of neighbor-
hoods of the origin.

Definition 3.2.1. Given a family Σ of bounded subsets of a t.v.s. E s.t. (P1)
and (P2) hold, we call Σ−topology on E′ the locally convex topology defined
by taking, as a basis of neighborhoods of the origin in E′, the family Σ◦ of the
polars of the subsets that belong to Σ. We denote by E′Σ the space E′ endowed
with the Σ-topology.

It is easy to see from the definition that (Exercise Sheet 6):

• The Σ−topology on E′ is generated by the following family of semi-
norms:

{pA : A ∈ Σ} , where pA(x′) := sup
x∈A
|〈x′, x〉|,∀x′ ∈ E′. (3.1)

• Define for any A ∈ Σ and ε > 0 the following subset of E′:

Wε(A) :=

{
x′ ∈ E′ : sup

x∈A
|〈x′, x〉| ≤ ε

}
.

The family B := {Wε(A) : A ∈ Σ, ε > 0} is a basis of neighbourhoods of
the origin for the Σ−topology on E′.

Let us introduce now some important examples of polar topologies.

The weak topology on E ′

The weak topology on E′ is the Σ−topology corresponding to the family Σ of
all finite subsets of E and it is usually denoted by σ(E′, E) (this topology is
often also referred with the name of weak*-topology or weak dual topology).
We denote by E′σ the space E′ endowed with the topology σ(E′, E).
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3. Topologies on the dual space of a t.v.s.

A basis of neighborhoods of σ(E′, E) is given by the family

Bσ := {Wε(x1, . . . , xr) : r ∈ N, x1, . . . , xr ∈ E, ε > 0}

where

Wε(x1, . . . , xr) :=
{
x′ ∈ E′ : |〈x′, xj〉| ≤ ε, j = 1, . . . , r

}
. (3.2)

The topology of compact convergence on E ′

The topology of compact convergence on E′ is the Σ−topology corresponding
to the family Σ of all compact subsets of E and it is usually denoted by
c(E′, E). We denote by E′c the space E′ endowed with the topology c(E′, E).

The strong topology on E’
The strong topology on E′ is the Σ−topology corresponding to the family Σ of
all bounded subsets of E and it is usually denoted by b(E′, E). As a filter in
E′ converges to the origin in the strong topology if and only if it converges to
the origin uniformly on every bounded subset of E (see Proposition 3.2.2), the
strong topology on E′ is sometimes also referred as the topology of bounded
convergence. When E′ carries the strong topology, it is usually called the
strong dual of E and denoted by E′b.

Let us look now at some general properties of polar topologies and how they
relate to the above examples.

Proposition 3.2.2. A filter F ′ on E′ converges to an element x′ ∈ E′ in the
Σ-topology on E′ if and only if F ′ converges uniformly to x′ on each subset A
belonging to Σ, i.e. the following holds:

∀ε > 0,∀A ∈ Σ, ∃ M ′ ∈ F ′ s.t. sup
x∈A
|〈x′, x〉 − 〈y′, x〉| ≤ ε, ∀ y′ ∈M ′. (3.3)

This proposition explains why the Σ−topology on E′ is often referred as
topology of the uniform converge over the sets of Σ.

Proof.
Suppose that (3.3) holds and let U be a neighbourhood of the origin in

the Σ−topology on E′. Then there exists ε > 0 and A ∈ Σ s.t. Wε(A) ⊆ U
and so

x′ +Wε(A) ⊆ x′ + U. (3.4)
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3.2. Polar topologies on the topological dual of a t.v.s.

On the other hand, since we have that

x′ +Wε(A) =

{
x′ + y′ ∈ E′ : sup

x∈A
|〈y′, x〉| ≤ ε

}
=

{
z′ ∈ E′ : sup

x∈A
|〈z′ − x′, x〉| ≤ ε

}
, (3.5)

the condition (3.3) together with (3.4) gives that

∃ M ′ ∈ F ′ s.t. M ′ ⊆ x′ +Wε(A) ⊆ x′ + U.

The latter implies that x′+U ∈ F ′ since F ′ is a filter and so the family of all
neighbourhoods of x′ in the Σ−topology on E′ is contained in F ′, i.e. F ′ → x′.

Conversely, if F ′ → x′, then for any neighbourhood V of x′ in the Σ−topology
on E′ we have V ∈ F ′. In particular, for all A ∈ Σ and for all ε > 0 we have
x′+Wε(A) ∈ F ′. Then by taking M ′ := x′+Wε(A) and using (3.5), we easily
get (3.3).

Remark 3.2.3. Using the previous result, one can easily show that sequence
{x′n}n∈N of elements in E′ converges to the origin in the weak topology if and
only if at each point x ∈ E the sequence of their values {〈x′n, x〉}n∈N converges
to zero in K (see Exercise Sheet 6). In other words, the weak topology on E′

is nothing else but the topology of pointwise convergence in E, when we look
at continuous linear functionals on E simply as functions on E.

In general we can compare two polar topologies by using the following
criterion: If Σ1 and Σ2 are two families of bounded subsets of a t.v.s. E such
that (P1) and (P2) hold and Σ1 ⊇ Σ2, then the Σ1-topology is finer than
the Σ2-topology. In particular, this gives the following comparison relations
between the three polar topologies on E′ introduced above:

σ(E′, E) ⊆ c(E′, E) ⊆ b(E′, E).

Proposition 3.2.4. Let Σ be a family of bounded subsets of a t.v.s. E s.t.
(P1) and (P2) hold. If the union of all subsets in Σ is dense in E, then E′Σ
is Hausdorff.

Proof. Assume that the union of all subsets in Σ is dense in E. As the
Σ−topology is locally convex, to show that E′Σ is Hausdorff is enough to
check that the family of seminorms in (3.1) is separating (see Proposition 4.3.3
in TVS-I). Suppose that pA(x′) = 0 for all A ∈ Σ, then

sup
x∈ A

|〈x′, x〉| = 0, ∀A ∈ Σ,
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3. Topologies on the dual space of a t.v.s.

which gives

〈x′, x〉 = 0, ∀x ∈
⋃
A∈Σ

A.

As the continuous functional x′ is zero on a dense subset of E, it has to be
identically zero on the whole E. Hence, the family {pA : A ∈ Σ} is a separating
family of seminorms which generates the Σ−topology on E′.

Corollary 3.2.5. The topology of compact convergence, the weak and the
strong topologies on E′ are all Hausdorff.

Let us consider now for any x ∈ E the linear functional vx on E′ which
associates to each element of the dual E′ its “value at the point x”, i.e.

vx : E′ → K
x′ 7→ 〈x′, x〉.

Clearly, each vx ∈ (E′)∗ but when can we say that vx ∈ (E′Σ)′? Can we find
conditions on Σ which guarantee the continuity of vx w.r.t. the Σ−topology?

Fixed an arbitrary x ∈ E, vx is continuous on E′Σ if and only if for any
ε > 0, v−1

x (B̄ε(0)) is a neighbourhood of the origin in E′ w.r.t. the Σ−topology
(B̄ε(0) denotes the closed ball of radius ε and center 0 in K). This means that

∀ ε > 0, ∃A ∈ Σ : A◦ ⊆ v−1
x (B̄ε(0)) = {x′ ∈ E′ : |〈x′, x〉| ≤ ε}

i.e.

∀ ε > 0, ∃A ∈ Σ :

∣∣∣∣〈x′, 1

ε
x〉
∣∣∣∣ ≤ 1, ∀x′ ∈ A◦. (3.6)

Then it is easy to see that the following holds:

Proposition 3.2.6. Let Σ be a family of bounded subsets of a t.v.s. E s.t.
(P1) and (P2) hold. If Σ covers E then for every x ∈ E the value at x is a
continuous linear functional on E′Σ, i.e. vx ∈ (E′Σ)′.

Proof. If E ⊆
⋃
A∈ΣA then for any x ∈ E and any ε > 0 we have 1

ε ∈ A for
some A ∈ Σ and so |〈x′, 1

εx〉| ≤ 1 for all x′ ∈ A◦. This means that (3.6) holds,
which is equivalent to vx being continuous w.r.t. the Σ−topology on E′.

The previous proposition is useful to get the following characterization of
the weak topology on E′, which is often taken as a definition for this topology.

Proposition 3.2.7. Let E be a t.v.s.. The weak topology on E′ is the coarsest
topology on E′ such that, for all x ∈ E, vx is continuous.
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3.2. Polar topologies on the topological dual of a t.v.s.

Proof.
Since the weak topology σ(E′, E) is by definition the Σ−topology on E′ cor-
responding to the family Σ of all finite subsets of E which clearly covers E,
Proposition 3.2.6 ensures that all vx are continuous on E′σ.1 Moreover, if there
would exist a topology τ on E′ strictly coarser that σ(E′, E) and such that all
vx were continuous, then in particular ∀ ε > 0, ∀ r ∈ N, ∀x1, . . . , xr ∈ E, each
v−1
xi (B̄ε(0)) would be a neighbourhood of the origin in (E′, τ) for i = 1, . . . , r.

Hence, each Wε(x1, . . . , xr) would be a neighbourhood of the origin in (E′, τ),
since Wε(x1, . . . , xr) =

⋂r
i=1 v

−1
xi (B̄ε(0)) (cf. (3.2)). Therefore, any element of

a basis of neighborhoods of the origin in E′σ is also a neighbourhood of the
origin in (E′, τ). This implies that the two topologies τ and σ(E′, E) must
necessarily coincide.

Proposition 3.2.6 means that, if Σ covers E then the image of E under the
canonical map

ϕ : E → (E′Σ)∗

x 7→ vx.

is contained in the topological dual of E′Σ, i.e. ϕ(E) ⊆ (E′Σ)′. In general, the
canonical map ϕ : E → (E′Σ)′ is neither injective or surjective. However, when
we restrict our attention to locally convex Hausdorff t.v.s., the following con-
sequence of Hahn-Banach theorem guarantees the injectivity of the canonical
map.

Lemma 3.2.8. If E is a locally convex Hausdorff t.v.s with E 6= {o}, then
for every o 6= x0 ∈ E there exists x′ ∈ E′ s.t. 〈x′, x0〉 6= 0, i.e. E′ 6= {o}.

Proof. (see Interactive Sheet 3)

Corollary 3.2.9. Let E be a non-trivial locally convex Hausdorff t.v.s and Σ
a family of bounded subsets of E s.t. (P1) and (P2) hold and Σ covers E.
Then the canonical map ϕ : E → (E′Σ)′ is injective.

Proof. Let o 6= x0 ∈ E. By Proposition 3.2.8, we know that there exists
x′ ∈ E′ s.t. vx(x′) 6= 0 which proves that vx is not identically zero on E′ and
so that Ker(ϕ) = {o}. Hence, ϕ is injective.

1Fixed x ∈ E, one could also show the continuity of vx w.r.t. σ(E′, E) by simply noticing
that |vx(x′)| = p{x}(x

′) for any x′ ∈ E′ and using Corollary 4.6.2. in TVS-I about continuity
of functionals on locally convex t.v.s.
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3. Topologies on the dual space of a t.v.s.

In the particular case of the weak topology on E′ the canonical map ϕ :
E → (E′σ)′ is also surjective, and so E can be regarded as the dual of its weak
dual E′σ. To show this result we will need to use the following consequence of
Hahn-Banach theorem:

Lemma 3.2.10. Let Y be a closed linear subspace of a locally convex t.v.s.
X. If Y 6= X, then there exists f ∈ X ′ s.t. f is not identically zero on X but
identically vanishes on Y .

Proof. (see Exercise Sheet 6)

Proposition 3.2.11. Let E be a locally convex Hausdorff t.v.s. with E 6= {o}.
Then the canonical map ϕ : E → (E′σ)′ is an isomorphism.

Proof. Let L ∈ (E′σ)′. By the definition of σ(E′, E) and Proposition 4.6.1 in
TVS-I, we have that there exist F ⊂ E with |F | <∞ and C > 0 s.t.

|L(x′)| ≤ CpF (x′) = C sup
x∈F
|〈x′, x〉|. (3.7)

Take M := span(F ) and d := dim(M). Consider an algebraic basis B :=
{e1, . . . , ed} of M and for each j ∈ {1, . . . , d} apply Lemma 3.2.10 to Y :=
span{B \ {ej}} and X := M . Then for each j ∈ {1, . . . , d} there exists
fj : M → K linear and continuous such that 〈fj , ek〉 = 0 if k 6= j and
〈fj , ej〉 6= 0. W.l.o.g. we can assume 〈fj , ej〉 = 1. By applying the Hahn-
Banach theorem (see Theorem 5.1.1 in TVS-I), we get that for each j ∈
{1, . . . , d} there exists e′j : E → K linear and continuous such that e′j �M= fj ,
in particular 〈e′j , ek〉 = 0 for k 6= j and 〈e′j , ej〉 = 1.

Let M ′ := span{e′1, . . . , e′d} ⊂ E′, xL :=
∑d

j=1 L(e′j)ej ∈ M and for any

x′ ∈ E′ define p(x′) :=
∑d

j=1〈x′, ej〉e′j ∈ M ′. Then for any x′ ∈ E′ we get
that:

〈x′, xL〉 =
d∑
j=1

L(e′j)〈x′, ej〉 = L(p(x′)) (3.8)

and also

〈x′ − p(x′), ek〉 = 〈x′, ek〉 −
d∑
j=1

〈x′, ej〉〈e′j , ek〉 = 〈x′, ek〉 − 〈x′, ek〉〈ek, ek〉 = 0

which gives

〈x′ − p(x′),m〉 = 0,∀m ∈M. (3.9)
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Then for all x′ ∈ E′ we have:

|L(x′ − p(x′))|
(3.7)

≤ C sup
x∈F
|〈x′ − p(x′), x〉| (3.9)

= 0

which give that L(x′) = L(p(x′))
(3.8)
= 〈x′, xL〉 = vxL(x′). Hence, we have

proved that for every L ∈ (E′σ)′ there exists xL ∈ E s.t. ϕ(xL) ≡ vxL ≡ L,
i.e. ϕ : E → (E′σ)′ is surjective. Then we are done because the injectivity of
ϕ : E → (E′σ)′ follows by applying Corollary 3.2.9 to this special case.

Remark 3.2.12. The previous result suggests that it is indeed more conve-
nient to restrict our attention to locally convex Hausdorff t.v.s. when dealing
with weak duals. Moreover, as showed in Proposition 3.2.8, considering locally
convex Hausdorff t.v.s has the advantage of avoiding the pathological situation
in which the topological dual of a non-trivial t.v.s. is reduced to the only zero
functional (for an example of a t.v.s. on which there are no continuous linear
functional than the trivial one, see Exercise Sheet 6).

3.3 The polar of a neighbourhood in a locally convex t.v.s.

Let us come back now to the study of the weak topology and prove one of
the milestones of the t.v.s. theory: the Banach-Alaoglu-Bourbaki theorem. To
prove this important result we need to look for a moment at the algebraic
dual E∗ of a t.v.s. E. In analogy to what we did in the previous section, we
can define the weak topology on the algebraic dual E∗ (which we will denote
by σ(E∗, E)) as the coarsest topology such that for any x ∈ E the linear
functional wx is continuous, where

wx : E∗ → K
x∗ 7→ 〈x∗, x〉 := x∗(x).

(3.10)

(Note that wx � E′ = vx). Equivalently, the weak topology on the algebraic
dual E∗ is the locally convex topology on E∗ generated by the family {qF :
F ⊆ E, |F | < ∞} of seminorms qF (x∗) := supx∈F |〈x∗, x〉| on E∗. It is then
easy to see that σ(E′, E) = σ(E∗, E) � E′.

An interesting property of the weak topology on the algebraic dual of a
t.v.s. is the following one:

Proposition 3.3.1. If E is a t.v.s. over K, then its algebraic dual E∗ endowed
with the weak topology σ(E∗, E) is topologically isomorphic to the product of
dim(E) copies of the field K endowed with the product topology.
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3. Topologies on the dual space of a t.v.s.

Proof.
Let {ei}i∈I be an algebraic basis of E, i.e. ∀x ∈ E, ∃ {xi}i∈I ∈ Kdim(E) s.t.
x =

∑
i∈I xiei. For any linear functions L : E → K and any x ∈ E we then

have L(x) =
∑

i∈I xiL(ei). Hence, L is completely determined by the sequence

{L(ei)}i∈I∈Kdim(E). Conversely, every element u :={ui}i∈I ∈Kdim(E) uniquely
defines the linear functional Lu on E via Lu(ei) := ui for all i ∈ I. This
completes the proof that E∗ is algebraically isomorphic to Kdim(E). Moreover,
the collection {Wε(ei1 , . . . , eir) : ε > 0, r ∈ N, i1, . . . , ir ∈ I}, where

Wε(ei1 , . . . , eir) := {x∗ ∈ E∗ : |〈x∗, eij 〉| ≤ ε, for j = 1, . . . , r},

is a basis of neighbourhoods of the origin in (E∗, σ(E∗, E)). Via the isomor-
phism described above, we have that for any ε > 0, r ∈ N, and i1, . . . , ir ∈ I:

Wε(ei1 , . . . , eir) ≈
{
{ui}i∈I ∈ Kdim(E) : |uij | ≤ ε, for j = 1, . . . , r

}
=

r∏
j=1

B̄ε(0)×
∏

I\{i1,...,ir}

K

and so Wε(ei1 , . . . , eir) is a neighbourhood of the product topology τprod on
Kdim(E) (recall that we always consider the euclidean topology on K). There-
fore, (E∗, σ(E∗, E)) is topological isomorphic to

(
Kdim(E), τprod

)
.

Let us now focus our attention on the polar of a neighbourhood U of the
origin in a non-trivial locally convex Hausdorff t.v.s. E. We are considering
here only non-trivial locally convex Hausdorff t.v.s. in order to be sure to
have non-trivial continuous linear functionals (see Remark 3.2.12) and so to
make a meaningful analysis on the topological dual.

First of all let us observe that:

{x∗ ∈ E∗ : sup
x∈U
|〈x∗, x〉| ≤ 1} ≡ U◦ := {x′ ∈ E′ : sup

x∈U
|〈x′, x〉| ≤ 1}. (3.11)

Indeed, since E′ ⊆ E∗, we clearly have U◦ ⊆ {x∗ ∈ E∗ : supx∈U |〈x∗, x〉| ≤ 1}.
Moreover, any linear functional x∗ ∈ E∗ s.t. supx∈U |〈x∗, x〉| ≤ 1 is continuous
on E and it is therefore an element of E′.

It is then quite straightforward to show that:

Proposition 3.3.2. The polar of a neighbourhood U of the origin in E is
closed w.r.t. σ(E∗, E).
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3.3. The polar of a neighbourhood in a locally convex t.v.s.

Proof. By (3.11) and (3.10), it is clear that U◦ =
⋂
x∈U w

−1
x ([−1, 1]). On

the other hand, by definition of σ(E∗, E) we have that wx is continuous on
(E∗, σ(E∗, E)) for all x ∈ E and so each w−1

x ([−1, 1]) is closed in (E∗, σ(E∗, E)).
Hence, U◦ is closed in (E∗, σ(E∗, E)) as the intersection of closed subsets of
(E∗, σ(E∗, E)).

We are ready now to prove the famous Banach-Alaoglu-Bourbaki Theorem

Theorem 3.3.3 (Banach-Alaoglu-Bourbaki Theorem).
The polar of a neighbourhood U of the origin in a locally convex Hausdorff
t.v.s. E 6= {o} is compact in E′σ.

Proof.
Since U is a neighbourhood of the origin in E, U is absorbing in E, i.e.
∀x ∈ E, ∃Mx > 0 s.t.Mxx ∈ U . Hence, for all x ∈ E and all x′ ∈ U◦ we have
|〈x′,Mxx〉| ≤ 1, which is equivalent to:

∀x ∈ E, ∀x′ ∈ U◦, |〈x′, x〉| ≤ 1

Mx
. (3.12)

Moreover, for any x ∈ E, the subset

Dx :=

{
α ∈ K : |α| ≤ 1

Mx

}
is compact in K w.r.t. to the euclidean topology.

Consider an algebraic basis B of E, then by Tychnoff’s theorem2 the subset
P :=

∏
x∈BDx is compact in

(
Kdim(E), τprod

)
.

Using the isomorphism introduced in Proposition 3.3.1 and (3.11), we get
that

U◦ ≈ {(〈x∗, x〉)x∈B : x∗ ∈ U◦}

and so by (3.12) we have that U◦ ⊂ P . Since Corollary 3.3.2 and Proposi-
tion 3.3.1 ensure that U◦ is closed in

(
Kdim(E), τprod

)
, we get that U◦ is a closed

subset of P . Hence, by Proposition 2.1.4–1, U◦ is compact
(
Kdim(E), τprod

)
and so in (E∗, σ(E∗, E)). As U◦ = E′ ∩ U◦ we easily see that U◦ is compact
in (E′, σ(E′, E)).

2Tychnoff’s theorem: The product of an arbitrary family of compact spaces endowed
with the product topology is also compact.
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3. Topologies on the dual space of a t.v.s.

We briefly introduce now a nice consequence of Banach-Alaoglu-Bourbaki
theorem. Let us start by introducing a norm on the topological dual space E′

of a seminormed space (E, ρ):

ρ′(x′) := sup
x∈E:ρ(x)≤1

|〈x′, x〉|.

ρ′ is usually called the operator norm on E′.

Corollary 3.3.4. Let (E, ρ) be a non-trivial normed space. The closed unit
ball in E′ w.r.t. the operator norm ρ′ is compact in E′σ.

Proof. First of all, let us note that a normed space it is indeed a locally convex
Hausdorff t.v.s.. Then, by applying Banach-Alaoglu-Borubaki theorem to
the closed unit ball B̄1(o) in (E, ρ), we get that

(
B̄1(o)

)◦
is compact in E′σ.

The conclusion then easily follow by the observation that
(
B̄1(o)

)◦
actually

coincides with the closed unit ball in (E′, ρ′):(
B̄1(o)

)◦
= {x′ ∈ E′ : sup

x∈B̄1(o)

|〈x′, x〉| ≤ 1}

= {x′ ∈ E′ : sup
x∈E′,ρ(x)≤1

|〈x′, x〉| ≤ 1}

= {x′ ∈ E′ : ρ′(x′) ≤ 1}.
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Chapter 4

Tensor products of t.v.s.

4.1 Tensor product of vector spaces

As usual, we consider only vector spaces over the field K of real numbers or
of complex numbers.

Definition 4.1.1.
Let E,F,M be three vector spaces over K and φ : E × F → M be a bilinear
map. E and F are said to be φ-linearly disjoint if:

(LD) For any r ∈ N, any {x1, . . . , xr} finite subset of E and any {y1, . . . , yr}
finite subset of F s.t.

∑r
i=1 φ(xi, yj) = 0, we have that both the following

conditions hold:

• if x1, . . . , xr are linearly independent in E, then y1 = · · · = yr = 0

• if y1, . . . , yr are linearly independent in F , then x1 = · · · = xr = 0

Recall that, given three vector spaces over K, a map φ : E × F → M is
said to be bilinear if:

∀x0 ∈ E, φx0 : F → M is linear
y → φ(x0, y)

and
∀ y0 ∈ F, φy0 : E → M is linear.

x → φ(x, y0)

Let us give a useful characterization of φ−linear disjointness.

Proposition 4.1.2. Let E,F,M be three vector spaces, and φ : E × F →M
be a bilinear map. Then E and F are φ−linearly disjoint if and only if:

(LD’) For any r, s ∈ N, x1, . . . , xr linearly independent in E and y1, . . . , ys
linearly independent in F , the set {φ(xi, yj) : i = 1, . . . , r, j = 1, . . . , s}
consists of linearly independent vectors in M .
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4. Tensor products of t.v.s.

Proof.
(⇒) Let x1, . . . , xr be linearly independent in E and y1, . . . , ys be linearly

independent in F . Suppose that
∑r

i=1

∑s
j=1 λijφ(xi, yj) = 0 for some λij ∈ K.

Then, using the bilinearity of φ and setting zi :=
∑s

j=1 λijyj , we easily get∑r
i=1 φ(xi, zi) = 0. As the xi’s are linearly independent in E, we derive from

(LD) that all zi’s have to be zero. This means that for each i ∈ {1, . . . , r} we
have

∑s
j=1 λijyj = 0, which implies by the linearly independence of the yj ’s

that λij = 0 for all i ∈ {1, . . . , r} and all j ∈ {1, . . . , s}.
(⇐) Let r ∈ N, {x1, . . . , xr} ⊆ E and {y1, . . . , yr} ⊆ F be such that∑r
i=1 φ(xi, yi) = 0. Suppose that the xis are linearly independent and let

{z1, . . . , zs} be a basis of span{y1, . . . , yr}. Then for each i ∈ {1, . . . , r} there
exist λij ∈ K s.t. yi =

∑s
j=1 λijzj and so by the bilinearity of φ we get:

0 =

r∑
i=1

φ(xi, yj) =

r∑
i=1

s∑
j=1

λijφ(xi, zj). (4.1)

By applying (LD’) to the xi’s and z′js, we get that all φ(xi, zj)’s are linearly
independent. Therefore, (4.1) gives that λij = 0 for all i ∈ {1, . . . , r} and all
j ∈ {1, . . . , s} and so yi = 0 for all i ∈ {1, . . . , r}. Exchanging the roles of the
xi’s and the yi’s we get that (LD) holds.

Definition 4.1.3. A tensor product of two vector spaces E and F over K is
a pair (M,φ) consisting of a vector space M over K and of a bilinear map
φ : E × F →M (canonical map) s.t. the following conditions are satisfied:
(TP1) The image of E × F spans the whole space M .
(TP2) E and F are φ−linearly disjoint.

We now show that the tensor product of any two vector spaces always
exists, satisfies the “universal property” and it is unique up to isomorphisms.
For this reason, the tensor product of E and F is usually denoted by E ⊗ F
and the canonical map by (x, y) 7→ x⊗ y.

Theorem 4.1.4. Let E, F be two vector spaces over K.
(a) There exists a tensor product of E and F .
(b) Let (M,φ) be a tensor product of E and F . Let G be any vector space over

K, and b any bilinear mapping of E × F into G. There exists a unique
linear map b̃ : M → G such that the following diagram is commutative.

E × F G

M

φ

b

b̃
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4.1. Tensor product of vector spaces

(c) If (M1, φ1) and (M2, φ2) are two tensor products of E and F , then there is
a bijective linear map u such that the following diagram is commutative.

E × F M2

M1

φ1

φ2

u

Proof.

(a) Let H be the vector space of all functions from E×F into K which vanish
outside a finite set (H is often called the free space of E × F ). For any
(x, y) ∈ E × F , let us define the function e(x,y) : E × F → K as follows:

e(x,y)(z, w) :=

{
1 if (z, w) = (x, y)
0 otherwise

.

Then BH := {e(x,y) : (x, y) ∈ E × F} forms a basis of H and so ∀h ∈ H,
∃! λxy ∈ K s.t. h =

∑
x∈E

∑
y∈F λxye(x,y) with λxy = 0 for all but finitely

many x’s in E and y’s in Y . Let us consider now the following linear
subspace of H:

N := span

e( n∑
i=1

aixi,
m∑

j=1
bjyj

) −
n∑
i=1

m∑
j=1

aibje(xi,yj) : n,m ∈ N, ai, bj ∈ K, (xi, yj) ∈ E × F

 .

We then denote by M the quotient vector space H/N , by π the quotient
map from H onto M and by

φ : E × F → M
(x, y) → φ(x, y) := π

(
e(x,y)

)
.

It is easy to see that the map φ is bilinear. Let us just show the linearity
in the first variable as the proof in the second variable is just symmetric.
Fixed y ∈ F , for any a, b ∈ K and any x1, x2 ∈ E, we get that:

φ(ax1 + bx2, y)− aφ(x1, y)− bφ(x2, y) = π
(
e(ax1+bx2,y)

)
− aπ

(
e(x1,y)

)
− bπ

(
ex2,y)

)
= π

(
e(ax1+bx2,y) − ae(x1,y) − be(x2,y)

)
= 0,

where the last equality holds since e(ax1+bx2,y) − ae(x1,y) − be(x2,y) ∈ N .
We aim to show that (M,φ) is a tensor product of E and F . It is clear

from the definition of φ that

span(φ(E × F )) = span(π(BH)) = π(H) = M,
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4. Tensor products of t.v.s.

i.e. (TP1) holds. It remains to prove that E and F are φ−linearly dis-
joint. Let r ∈ N, {x1, . . . , xr} ⊆ E and {y1, . . . , yr} ⊆ F be such that∑r

i=1 φ(xi, yi) = 0. Suppose that the yi’s are linearly independent. For
any ϕ ∈ E∗, let us define the linear mapping Aϕ : H → F by setting
Aϕ(e(x,y)) := ϕ(x)y. Then it is easy to check that Aϕ vanishes on N , so it

induces a map Ãϕ : M → F s.t. Ãϕ(π(f)) = A(f), ∀ f ∈ H. Hence, since∑r
i=1 φ(xi, yi) = 0 can be rewritten as π

(∑r
i=1 e(xi,yi)

)
= 0, we get that

0 = Ãϕ

(
π

(
r∑
i=1

e(xi,yi)

))
= Aϕ

(
r∑
i=1

e(xi,yi)

)
=

r∑
i=1

Aϕ(e(xi,yi)) =

r∑
i=1

ϕ(xi)yi.

This together with the linear independence of the yi’s implies ϕ(xi) = 0
for all i ∈ {1, . . . , r}. Since the latter holds for all ϕ ∈ E∗, we have that
xi = 0 for all i ∈ {1, . . . , r}. Exchanging the roles of the xi’s and the yi’s
we get that (LD) holds, and so does (TP2) .

(b) Let (M,φ) be a tensor product of E and F , G a vector space and b :
E × F → G a bilinear map. Consider {xα}α∈A and {yβ}β∈B bases of E
and F , respectively. We know that {φ(xα, yβ) : α ∈ A, β ∈ B} forms a
basis of M , as span(φ(E×F )) = M and, by Proposition 4.1.2, (LD’) holds
so the φ(xα, yβ)’s for all α ∈ A and all β ∈ B are linearly independent.
The linear mapping b̃ will therefore be the unique linear map of M into
G such that

∀α ∈ A, ∀β ∈ B, b̃(φ(xα, yβ)) = b(xα, yβ).

Hence, the diagram in (b) commutes.
(c) Let (M1, φ1) and (M2, φ2) be two tensor products of E and F . Then using

twice the universal property (b) we get that there exist unique linear maps
u : M1 → M2 and v : M2 → M1 such that the following diagrams both
commute:

E × F M2

M1

φ1

φ2

u

E × F M1

M2

φ2

φ1

v

Then combining u ◦ φ1 = φ2 with v ◦ φ2 = φ1, we get that u and v are
one the inverse of the other. Hence, there is an algebraic isomorphism
between M1 and M2.
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4.1. Tensor product of vector spaces

It is now natural to introduce the concept of tensor product of linear maps.

Proposition 4.1.5. Let E,F,E1, F1 be four vector spaces over K, and let
u : E → E1 and v : F → F1 be linear mappings. There is a unique linear map
of E ⊗ F into E1 ⊗ F1 , called the tensor product of u and v and denoted by
u⊗ v, such that

(u⊗ v)(x⊗ y) = u(x)⊗ v(y), ∀x ∈ E, ∀ y ∈ F.

Proof.
Let us define the mapping

b : E × F → E1 ⊗ F1

(x, y) 7→ b(x, y) := u(x)⊗ v(y),

which is clearly bilinear because of the linearity of u and v and the bilinearity
of the canonical map of the tensor product E1 ⊗ F1. Then by the universal
property there is a unique linear map b̃ : E ⊗ F → E1 ⊗ F1 s.t. the following
diagram commutes:

E × F E1 ⊗ F1

E ⊗ F

⊗

b

b̃

i.e. b̃(x ⊗ y) = b(x, y), ∀ (x, y) ∈ E × F. Hence, using the definition of b, we
get that b̃ ≡ u⊗ v.

Examples 4.1.6.

1. Let n,m ∈ N, E = Kn and F = Km. Then E ⊗ F = Kn×m is a tensor
product of E and F whose canonical bilinear map φ is given by:

φ : E × F → Kn×m(
(xi)

n
i=1, (yj)

m
j=1

)
7→ (xiyj)1≤i≤n,1≤j≤m.

2. Let X and Y be two sets. For any functions f : X → K and g : Y → K,
we define:

f ⊗ g : X × Y → K
(x, y) 7→ f(x)g(y).

Let E (resp. F ) be the linear space of all functions from X (resp. Y )
to K endowed with the usual addition and multiplication by scalars. We

61



4. Tensor products of t.v.s.

denote by M the linear subspace of the space of all functions from X×Y
to K spanned by the elements of the form f ⊗g for all f ∈ E and g ∈ F .
Then M is actually a tensor product of E and F (see Exercise Sheet 7).

Given X and Y open subsets of Rn and Rm respectively, we can use the
definitions in Example 2 above to construct the tensors Ck(X)⊗Cl(Y ) for any
1 ≤ k, l ≤ ∞. Then it is possible to show the following result (see e.g. [5,
Theorem 39.2] for a proof).

Theorem 4.1.7. Let X and Y open subsets of Rn and Rm respectively.
Then C∞c (X)⊗ C∞c (Y ) is sequentially dense in C∞c (X × Y ) endowed with the
C∞−topology.

4.2 Topologies on the tensor product of locally convex t.v.s.

Given two locally convex t.v.s. E and F , there various ways to construct a
topology on the tensor product E ⊗ F which makes the vector space E ⊗ F
in a t.v.s.. Indeed, starting from the topologies on E and F , one can define a
topology on E ⊗ F either relying directly on the seminorms on E and F , or
using an embedding of E ⊗ F in some space related to E and F over which
a natural topology already exists. The first method leads to the so-called
π−topology. The second method may lead instead to a variety of topologies,
the most important of which is the so-called ε−topology that is based on the
isomorphism between E ⊗ F and B(E′σ, F

′
σ) (see Proposition 4.2.9).

4.2.1 π−topology

Let us define the first main topology on E ⊗ F which we will see can be
directly characterized by mean of the seminorms generating the topologies on
the starting locally convex t.v.s. E and F .

Definition 4.2.1 (π−topology).
Given two locally convex t.v.s. E and F , we define the π−topology (or pro-
jective topology) on E ⊗ F to be the finest locally convex topology on this
vector space for which the canonical mapping E × F → E ⊗ F is continuous.
The space E ⊗ F equipped with the π−topology will be denoted by E ⊗π F .

A basis of neighbourhoods of the origin in E ⊗π F is given by the family:

Bπ := {convb(Uα ⊗ Vβ) : Uα ∈ BE , Vβ ∈ BF } ,

where BE (resp. BF ) is a basis of neighbourhoods of the origin in E (resp.
in F ), Uα ⊗ Vβ := {x⊗ y ∈ E ⊗ F : x ∈ Uα, y ∈ Vβ} and convb(Uα ⊗ Vβ) de-
notes the smallest convex balanced subset of E⊗F containing Uα⊗Vβ. Indeed,
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4.2. Topologies on the tensor product of locally convex t.v.s.

by Theorem 4.1.14 in TVS-I, the topology generated by Bπ is a locally convex
topology E ⊗ F and it makes continuous the canonical map ⊗, since for any
Uα ∈ BE and Vβ ∈ BF we have that ⊗−1(convb(Uα ⊗ Vβ)) ⊇ ⊗−1(Uα ⊗ Vβ) =
Uα×Vβ which is a neighbourhood of the origin in E×F . Hence, the topology
generated by Bπ is coarser than the π−topology. Moreover, the π−topology
is by definition locally convex and so it has a basis B of convex balanced
neighbourhoods of the origin in E ⊗ F . Then, as the canonical mapping ⊗
is continuous w.r.t. the π−topology, we have that for any C ∈ B there exist
Uα ∈ BE and Vβ ∈ BF s.t. Uα × Vβ ⊆ ⊗−1(C). Hence, Uα ⊗ Vβ ⊆ C and so
convb(Uα⊗Vβ) ⊆ convb(C) = C, which yields that the topology generated by
Bπ is finer than the π−topology.

The π−topology on E ⊗ F can be described by means of the seminorms
defining the locally convex topologies on E and F . Indeed, we have the fol-
lowing characterization of the π−topology.

Proposition 4.2.2. Let E and F be two locally convex t.v.s. and let P
(resp.Q) be a family of seminorms generating the topology on E (resp.on F ).
The π−topology on E ⊗ F is generated by the family of seminorms

{p⊗ q : p ∈ P, q ∈ Q},

where for any p ∈ P, q ∈ Q, θ ∈ E ⊗ F we define:

(p⊗ q)(θ) := inf{ρ > 0 : θ ∈ ρ convb(Up ⊗ Vq)}
with Up := {x ∈ E : p(x) ≤ 1} and Vq := {y ∈ F : q(y) ≤ 1}.

Proof. (Exercise Sheet 7)

The seminorm p⊗ q on E⊗F defined in the previous proposition is called
tensor product of the seminorms p and q (or projective cross seminorm) and
it can be represented in a more practical way that shows even more directly
its relation to the seminorms defining the topologies on E and F .

Theorem 4.2.3.
Let E and F be two locally convex t.v.s. and let P (resp. Q) be a family of
seminorms generating the topology on E (resp. on F ). Then for any p ∈ P
and any q ∈ Q we have that the following hold.
a) For all θ ∈ E ⊗ F ,

(p⊗q)(θ) = inf

{
r∑

k=1

p(xk)q(yk) : θ =
r∑

k=1

xk ⊗ yk, , xk ∈ E, yk ∈ F, r ∈ N

}
.

b) For all x ∈ E and y ∈ F , (p⊗ q)(x⊗ y) = p(x)q(y).
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4. Tensor products of t.v.s.

Proof.
a) As above, we set Up := {x ∈ E : p(x) ≤ 1}, Vq := {y ∈ F : q(y) ≤ 1} and
Wpq := convb(Up ⊗ Vq). Let θ ∈ E ⊗ F and ρ > 0 such that θ ∈ ρWpq.

Let us preliminarily observe that the condition “θ ∈ ρWpq for some ρ > 0”
is equivalent to:

θ =
N∑
k=1

tkxk ⊗ yk with N ∈ N, tk ∈ K, xk ∈ E and yk ∈ F s.t.

N∑
k=1

|tk| ≤ ρ, p(xk) ≤ 1, q(yk) ≤ 1, ∀k ∈ {1, . . . , N}.
(4.2)

If we set ξk := tkxk and ηk := yk, then we can rewrite the condition (4.2) as

θ =
N∑
k=1

ξk ⊗ ηk with
N∑
k=1

p(ξk)q(ηk) ≤ ρ.

Then inf
{∑N

k=1 p(ξk)q(ηk) : θ =
∑N

k=1 ξk ⊗ ηk, , ξk ∈ E, ηk ∈ F,N ∈ N
}
≤ ρ.

Since this is true for any ρ > 0 s.t. θ ∈ ρWpq, we get:

inf

{
r∑
i=1

p(xi)q(yi) : θ =

r∑
i=1

xi ⊗ yi, xi ∈ E, yi ∈ F, r ∈ N

}
≤ (p⊗ q)(θ).

Conversely, let us consider an arbitrary representation of θ, i.e.

θ =

N∑
k=1

ξk ⊗ ηk with ξk ∈ E, ηk ∈ F, N ∈ N.

Let ρ > 0 s.t.
∑N

k=1 p(ξk)q(ηk) ≤ ρ and ε > 0. Define

• I1 := {k ∈ {1, . . . , N} : p(ξk)q(ηk) 6= 0}
• I2 := {k ∈ {1, . . . , N} : p(ξk) 6= 0 and q(ηk) = 0}
• I3 := {k ∈ {1, . . . , N} : p(ξk) = 0 and q(ηk) 6= 0}
• I4 := {k ∈ {1, . . . , N} : p(ξk) = 0 and q(ηk) = 0}

and set

• ∀k ∈ I1, xk := ξk
p(ξk) , yk := ηk

q(ηk) , tk := p(ξk)q(ηk)

• ∀k ∈ I2, xk := ξk
p(ξk) , yk := N

ε p(ξk)ηk, tk := ε
N

• ∀k ∈ I3, xk := N
ε q(ηk)ξk, yk := ηk

q(ηk) , tk := ε
N

• ∀k ∈ I4, xk := N
ε ξk, yk := ηk, tk := ε

N
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Then ∀k ∈ {1, . . . , N} we have that p(xk) ≤ 1 and q(yk) ≤ 1. Also we get:

N∑
k=1

tkxk ⊗ yk =
∑
k∈I1

p(ξk)q(ηk)
ξk
p(ξk)

⊗ ηk
q(ηk)

+
∑
k∈I2

ε

N

ξk
p(ξk)

⊗ N

ε
p(ξk)ηk

+
∑
k∈I3

ε

N

N

ε
q(ηk)ξk ⊗

ηk
q(ηk)

+
∑
k∈I4

ε

N

N

ε
ξk ⊗ ηk

=
N∑
k=1

ξk ⊗ ηk = θ

and

N∑
k=1

|tk| =
∑
k∈I1

p(ξk)q(ηk) +
∑

k∈(I2∪I3∪I4)

ε

N

=
∑
k∈I1

p(ξk)q(ηk) + |I2 ∪ I3 ∪ I4|
ε

N

≤
N∑
k=1

p(ξk)q(ηk) + ε ≤ ρ+ ε.

Hence, by (4.2) we get that θ ∈ (ρ + ε)Wpq. As this holds for any ε > 0, we
have θ ∈ ρWpq. Therefore, we obtain that (p ⊗ q)(θ) ≤ ρ and in particular

(p⊗ q)(θ) ≤
∑N

k=1 p(ξk)q(ηk). This yields that

(p⊗ q)(θ) ≤ inf

{
N∑
k=1

p(ξk)q(ηk) : θ =
N∑
k=1

ξk ⊗ ηk, , ξk ∈ E, ηk ∈ F,N ∈ N

}
.

b) Let x ∈ E and y ∈ F . By using a), we immediately get that

(p⊗ q)(x⊗ y) ≤ p(x)q(y).

Conversely, consider M := span{x} and define L : M → K as L(λx) := λp(x)
for all λ ∈ K. Then clearly L is a linear functional on M and for any m ∈M ,
i.e. m = λx for some λ ∈ K, we have |L(m)| = |λ|p(x) = p(λx) = p(m).
Therefore, Hahn-Banach theorem can be applied and provides that:

∃x′ ∈ E′ s.t. 〈x′, x〉 = p(x) and |〈x′, x1〉| ≤ p(x1), ∀x1 ∈ E. (4.3)

Repeating this reasoning for y we get that:

∃ y′ ∈ F ′ s.t. 〈y′, y〉 = q(y) and |〈y′, y1〉| ≤ q(y1), ∀ y1 ∈ F. (4.4)
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Let us consider now any representation of x⊗y, namely x⊗y =
∑N

k=1 xk⊗yk
with xk ∈ E, yk ∈ F and N ∈ N. Then, combining Proposition 4.1.5 and the
second part of both (4.3) and (4.4), we obtain:

∣∣〈x′ ⊗ y′, x⊗ y〉∣∣ ≤
N∑
k=1

|〈x′ ⊗ y′, xk ⊗ yk〉|

Prop 4.1.5
=

N∑
k=1

|〈x′, xk〉| · |〈y′, yk〉|

(4.3) and (4.4)

≤
N∑
k=1

p(xk)q(xk).

Since this is true for any representation of x⊗ y, we deduce by a) that:∣∣〈x′ ⊗ y′, x⊗ y〉∣∣ ≤ (p⊗ q)(x⊗ y).

The latter together with the first part of (4.3) and (4.4) gives:

p(x)q(y) = |p(x)|·|q(y)| = |〈x′, x〉|·|〈y′, y〉| =
∣∣〈x′ ⊗ y′, x⊗ y〉∣∣ ≤ (p⊗q)(x⊗y).

Proposition 4.2.4. Let E and F be two locally convex t.v.s.. E ⊗π F is
Hausdorff if and only if E and F are both Hausdorff.

Proof. (Exercise Sheet 7)

Corollary 4.2.5. Let (E, p) and (F, q) be seminormed spaces. Then p⊗ q is
a norm on E ⊗ F if and only if p and q are both norms.

Proof.
Under our assumptions, the π−topology on E ⊗ F is generated by the single
seminorm p ⊗ q. Then, recalling that a seminormed space is normed iff it is
Hausdorff and using Proposition 4.2.4, we get: (E ⊗ F, p ⊗ q) is normed ⇔
E ⊗π F is Hausdorff ⇔ E and F are both Hausdorff ⇔ (E, p) and (F, q) are
both normed.

Definition 4.2.6. Let (E, p) and (F, q) be normed spaces. The normed space
(E ⊗F, p⊗ q) is called the projective tensor product of E and F and p⊗ q is
said to be the corresponding projective tensor norm.

In analogy with the algebraic case (see Theorem 4.1.4-b), we also have a
universal property for the space E ⊗π F .66
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Proposition 4.2.7.
Let E,F be locally convex spaces. The π−topology on E ⊗π F is the unique
locally convex topology on E ⊗ F such that the following property holds:
(UP) For every locally convex space G, the algebraic isomorphism between

the space of bilinear mappings from E × F into G and the space of all
linear mappings from E ⊗F into G (given by Theorem 4.1.4-b) induces
an algebraic isomorphism between B(E,F ;G) and L(E ⊗ F ;G), where
B(E,F ;G) denotes the space of all continuous bilinear mappings from
E×F into G and L(E⊗F ;G) the space of all continuous linear mappings
from E ⊗ F into G.

Proof. We first show that the π−topology fulfills (UP). Let (G,ω) be a locally
convex space and b ∈ B(E,F ;G), then Theorem 4.1.4-b) ensures that there
exists a unique b̃ : E ⊗ F → G linear s.t. b̃ ◦ φ = b, where φ : E × F → E ⊗ F
is the canonical mapping. Let U basic neighbourhood of the origin in G,
so w.l.o.g. we can assume U convex and balanced. Then the continuity of b
implies that there exist V basic neighbourhood of the origin in E and W basic
neighbourhood of the origin in E s.t. b̃(φ(V ×W )) = b(V ×W ) ⊆ U . Hence,
φ(V × W ) ⊆ b̃−1(U) and so convb(φ(V × W )) ⊆ convb(b̃

−1(U)) = b̃−1(U),
which shows the continuity of b̃ : E ⊗π F → (G,ω) as convb(φ(V ×W )) ∈ Bπ.

Let τ be a locally convex topology on E ⊗ F such that the property (UP)
holds. Then (UP) holds in particular for G = (E ⊗ F, τ). Therefore, since in
the algebraic isomorphism given by Theorem 4.1.4-b) in this case the canonical
mapping φ : E×F → E⊗F corresponds to the identity id : E⊗F → E⊗F ,
we get that φ : E × F → E ⊗τ F has to be continuous.

E × F E ⊗τ F

E ⊗τ F

φ

φ

id

This implies that τ is coarser than the π−topology. On the other hand, (UP)
also holds for G = (E ⊗ F, π). Hence,

E × F E ⊗π F

E ⊗τ F

φ

φ

id

since by definition of π−topology φ : E × F → E ⊗π F is continuous, the
id : E ⊗τ F → E ⊗π F has to be also continuous. This means that the
π−topology is coarser than τ , which completes the proof. 67
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Corollary 4.2.8. (E ⊗π F )′ ∼= B(E,F ), where B(E,F ) := B(E,F ;K).

Proof. By taking G = K in Proposition 4.2.7, we get the conclusion.

4.2.2 ε−topology

The definition of ε−topology strongly relies strongly relies on the algebraic
isomorphism between E ⊗ F and the space B(E′σ, F

′
σ) of continuous bilinear

forms on the product E′σ × F ′σ of the weak duals of E and F (see Section 3.2
for the definition of weak topology). More precisely, the following hold.

Proposition 4.2.9. Let E and F be non-trivial locally convex t.v.s. over K
with non-trivial topological duals. The space B(E′σ, F

′
σ) is a tensor product of

E and F .

Proof.
Let us consider the bilinear mapping:

φ : E × F → B(E′σ, F
′
σ)

(x, y) 7→ φ(x, y) : E′σ × F ′σ → K
(x′, y′) 7→ 〈x′, x〉〈y′, y〉.

(4.5)

We first show that E and F are φ-linearly disjoint. Let r, s ∈ N, x1, . . . , xr
be linearly independent in E and y1, . . . , ys be linearly independent in F . In
their correspondence, select1 x′1, . . . , x

′
r ∈ E′ and y′1, . . . , y

′
s ∈ F ′ such that

〈x′m, xj〉 = δmj , ∀m, j ∈ {1, . . . , r} and 〈y′n, yk〉 = δnk ∀n, k ∈ {1, . . . , s}.

Then we have that:

φ(xj , yk)(x
′
m, y

′
n) = 〈x′m, xj〉〈y′n, yk〉 =

{
1 if m = j and n = k
0 otherwise.

(4.6)

This implies that the set {φ(xj , yk) : j = 1, . . . , r, k = 1, . . . , s} consists of
linearly independent elements. Indeed, if there exists λjk ∈ K s.t.

r∑
j=1

s∑
k=1

λjkφ(xj , yk) = 0

then for all m ∈ {1, . . . , r} and all n ∈ {1, . . . , r} we have that:

r∑
j=1

s∑
k=1

λjkφ(xj , yk)(x
′
m, y

′
n) = 0

1This can be done using Lemma 3.2.10 together with the assumption that E′ and F ′ are
not trivial.68
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and so by using (4.6) that all λmn = 0.

We have therefore showed that (LD’) holds and so, by Proposition 4.1.2,
E and F are φ-linearly disjoint. Let us briefly sketch the main steps of the
proof that span(φ(E × F )) = B(E′σ, F

′
σ).

a) Take any ϕ ∈ B(E′σ, F
′
σ). By the continuity of ϕ, it follows that there exist

finite subsets A ⊂ E and B ⊂ F s.t. |ϕ(x′, y′)| ≤ 1, ∀x′ ∈ A◦, ∀ y′ ∈ B◦.
b) Set EA := span(A) and FB := span(B). Since EA and EB are finite

dimensional, their orthogonals (EA)◦ and (FB)◦ have finite codimension
and so

E′×F ′ = (M ′⊕(EA)◦)×(N ′⊕(FB)◦) = (M ′×N ′)⊕((EA)◦×F ′)⊕(E′×(FB)◦),

where M ′ and N ′ finite dimensional subspaces of E′ and F ′, respectively.

c) Using a) and b) one can prove that ϕ vanishes on the direct sum ((EA)◦×
F ′)⊕(E′×(FB)◦) and so that ϕ is completely determined by its restriction
to a finite dimensional subspace M ′ ×N ′ of E′ × F ′.

d) Let r := dim(EA) and s := dim(FB). Then there exist x1, . . . , xr ∈ EA
and y1, . . . , ys ∈ FB s.t. the restriction of ϕ to M ′ ×N ′ is given by

(x′, y′) 7→
r∑
i=1

s∑
j=1

〈x′, xi〉〈y′, yj〉.

Hence, by c), we can conclude that φ ∈ span(φ(E × F )).

The ε−topology on E ⊗ F will be then naturally defined by the so-called
topology of bi-equicontinuous convergence on the space B(E′σ, F

′
σ). As the

name suggests this topology is intimately related to the notion equicontinuous
sets of linear mappings between t.v.s..

Definition 4.2.10. Let X and Y be two t.v.s.. A set S of linear mappings
of X into Y is said to be equicontinuous if for any neighbourhood V of the
origin in Y there exists a neighbourhood U of the origin in X such that

∀ f ∈ S, x ∈ U ⇒ f(x) ∈ V

i.e. ∀ f ∈ S, f(U) ⊆ V (or U ⊆ f−1(V )).

The equicontinuity condition can be also rewritten as follows: S is equicon-
tinuous if for any neighbourhood V of the origin in Y there exists a neighbour-
hood U of the origin in X such that

⋃
f∈S f(U) ⊆ V or, equivalently, if for any

neighbourhood V of the origin in Y the set
⋂
f∈S f

−1(V ) is a neighbourhood
of the origin in X. 69
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Note that if S is equicontinuous then each mapping f ∈ S is continuous
but clearly the converse does not hold.

A first property of equicontinuous sets which is clear from the definition
is that any subset of an equicontinuous set is itself equicontinuous. We are
going to introduce now few more properties of equicontinuous sets of linear
functionals on a t.v.s. which will be useful in the following.

Proposition 4.2.11. A set of continuous linear functionals on a t.v.s. X is
equicontinuous if and only if it is contained in the polar of some neighbourhood
of the origin in X.

Proof.
For any ρ > 0, let us denote by Dρ := {k ∈ K : |k| ≤ ρ}. Let H be an
equicontinuous set of linear forms on X. Then there exists a neighbourhood
U of the origin in X s.t.

⋃
f∈H f(U) ⊆ D1, i.e. ∀f ∈ H, |〈f, x〉| ≤ 1,∀x ∈ U ,

which means exactly that H ⊆ U◦.
Conversely, let U be an arbitrary neighbourhood of the origin in X and

let us consider the polar U◦ := {f ∈ X ′ : supx∈U |〈f, x〉| ≤ 1}. Then for any
ρ > 0

∀ f ∈ U◦, |〈f, y〉| ≤ ρ, ∀ y ∈ ρU,

which is equivalent to ⋃
f∈U◦

f(ρU) ⊆ Dρ.

This means that U◦ is equicontinuous and so any subset H of U◦ is also
equicontinuous, which yields the conclusion.

Proposition 4.2.12. Let X be a non-trivial locally convex Hausdorff t.v.s.2.
Any equicontinuous subset of X ′ is bounded in X ′σ.

Proof. Let H be an equicontinuous subset of X ′. Then, by Proposition 4.2.11,
we get that there exists a neighbourhood U of the origin in X such that
H ⊆ U◦. By Banach-Alaoglu theorem (see Theorem 3.3.3), we know that
U◦is compact in X ′σ and so bounded by Proposition 2.2.4. Hence, by Propo-
sition 2.2.2-4, H is also bounded in X ′σ.

It is also possible to show, but we are not going to prove this here, that
the following holds.

Proposition 4.2.13. Let X be a non-trivial locally convex Hausdorff t.v.s..
The union of all equicontinuous subsets of X ′ is dense in X ′σ.

2Recall that non-trivial locally convex Hausdorff t.v.s. have non-trivial topological dual
by Proposition 3.2.870
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Now let us come back to the space B(X,Y ;Z) of continuous bilinear map-
pings from X×Y to Z, where X,Y and Z are non-trivial locally convex t.v.s..
The following is a very natural way of introducing a topology on B(X,Y ;Z)
and is a kind of generalization of the method we have used to define polar
topologies in Chapter 3.

Consider a family Σ (resp. Γ) of bounded subsets of X (resp. Y ) satisfying
the following properties:
(P1) If A1, A2 ∈ Σ, then ∃A3 ∈ Σ s.t. A1 ∪A2 ⊆ A3.
(P2) If A1 ∈ Σ and λ ∈ K, then ∃A2 ∈ Σ s.t. λA1 ⊆ A2.
(resp. satisfying (P1) and (P2) replacing Σ by Γ). The Σ-Γ-topology on
B(X,Y ;Z), or topology of uniform convergence on subsets of the form A×B
with A ∈ Σ and B ∈ Γ, is defined by taking as a basis of neighbourhoods of
the origin in B(X,Y ;Z) the following family:

U := {U(A,B;W ) : A ∈ Σ, B ∈ Γ,W ∈ BZ(o)} ,

where
U(A,B;W ) := {ϕ ∈ B(X,Y ;Z) : ϕ(A,B) ⊆W}

and BZ(o) is a basis of neighbourhoods of the origin in Z. It is not difficult
to verify that (c.f. [5, Chapter 32]):
a) each U(A,B;W ) is an absorbing, convex, balanced subset of B(X,Y ;Z);
b) the Σ-Γ-topology makes B(X,Y ;Z) into a locally convex t.v.s. (by Theo-

rem 4.1.14 of TVS-I);
c) If Z is Hausdorff, the union of all subsets in Σ is dense in X and the union

of all subsets in Γ is dense in Y , then the Σ-Γ-topology on B(X,Y ;Z) is
Hausdorff.

In particular, given two non-trivial locally convex Hausdorff t.v.s. E and F , we
call topology of bi-equicontinuous convergence on B(E′σ, F

′
σ) the Σ-Γ-topology

when Σ is the family of all equicontinuous subsets of E′ and Γ is the family
of all equicontinuous subsets of F ′. Note that we can make this choice of Σ
and Γ, because by Proposition 4.2.12 all equicontinuous subsets of E′ (resp.
F ′) are bounded in E′σ (resp. F ′σ) and satisfy the properties (P1) and (P2).
A basis for the topology of bi-equicontinuous convergence B(E′σ, F

′
σ) is then

given by:
U := {U(A,B; ε) : A ∈ Σ, B ∈ Γ, ε > 0}

where

U(A,B; ε) := {ϕ ∈ B(E′σ, F
′
σ) : ϕ(A,B) ⊆ Dε}

= {ϕ ∈ B(E′σ, F
′
σ) : |ϕ(x′, y′)| ≤ ε,∀x′ ∈ A,∀y′ ∈ B}

71



4. Tensor products of t.v.s.

and Dε := {k ∈ K : |k| ≤ ε}. By using a) and b), we get that B(E′σ, F
′
σ)

endowed with the topology of bi-equicontinuous convergence is a locally convex
t.v.s.. Also, by using Proposition 4.2.13 together with c), we can prove that
the topology of bi-equicontinuous convergence on B(E′σ, F

′
σ) is Hausdorff (as

E and F are both assumed to be Hausdorff).
We can then use the isomorphism between E⊗F and B(E′σ, F

′
σ) provided

by Proposition 4.2.9 to carry the topology of bi-equicontinuous convergence
on B(E′σ, F

′
σ) over E ⊗ F .

Definition 4.2.14 (ε−topology).
Given two non-trivial locally convex Hausdorff t.v.s. E and F , we define
the ε−topology on E ⊗ F to be the topology carried over from B(E′σ, F

′
σ)

endowed with the topology of bi-equicontinuous convergence, i.e. topology of
uniform convergence on the products of an equicontinuous subset of E′ and an
equicontinuous subset of F ′. The space E ⊗ F equipped with the ε−topology
will be denoted by E ⊗ε F .

It is clear then E ⊗ε F is a locally convex Hausdorff t.v.s.. Moreover, we
have that:

Proposition 4.2.15. Given two non-trivial locally convex Hausdorff t.v.s. E
and F , the canonical mapping from E ×F into E ⊗ε F is continuous. Hence,
the π−topology is finer than the ε−topology on E ⊗ F .

Proof.
By definition of π−topology and ε−topology, it is enough to show that the
canonical mapping φ from E×F into B(E′σ, F

′
σ) defined in (4.5) is continuous

w.r.t. the topology of bi-equicontinuous convergence on B(E′σ, F
′
σ). Let ε > 0,

A any equicontinuous subset of E′ and B any equicontinuous subset of F ′,
then by Proposition 4.2.11 we get that there exist a neighbourhood NA of the
origin in E and a neighbourhood NB of the origin in F s.t. A ⊆ (NA)◦ and
B ⊆ (NB)◦. Hence, we obtain that

φ−1(U(A,B; ε)) = {(x, y) ∈ E × F : φ(x, y) ∈ U(A,B; ε)}
=

{
(x, y) ∈ E × F : |φ(x, y)(x′, y′)| ≤ ε, ∀x′ ∈ A,∀ y′ ∈ B

}
=

{
(x, y) ∈ E × F : |〈x′, x〉〈y′, y〉| ≤ ε, ∀x′ ∈ A,∀ y′ ∈ B

}
⊇

{
(x, y) ∈ E × F : |〈x′, x〉〈y′, y〉| ≤ ε, ∀x′ ∈ (NA)◦, ∀ y′ ∈ (NB)◦

}
⊇ εNA ×NB,

which proves the continuity of φ as εNA×NB is a neighbourhood of the origin
in E × F .
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[5] F. Tréves, Topological vector spaces, distributions, and kernels, Academic
Press, 1967.

73

http://www.math.uni-konstanz.de/~infusino/TVS-WS18-19/Note2018.pdf
http://www.math.uni-konstanz.de/~infusino/TVS-WS18-19/Note2018.pdf

	Special classes of topological vector spaces
	Metrizable topological vector spaces
	Fréchet spaces
	Inductive topologies and LF-spaces
	Projective topologies and examples of projective limits
	Open mapping theorem

	Bounded subsets of topological vector spaces
	Preliminaries on compactness
	Bounded subsets: definition and general properties
	Bounded subsets of special classes of t.v.s.

	Topologies on the dual space of a t.v.s.
	The polar of a subset of a t.v.s.
	Polar topologies on the topological dual of a t.v.s.
	The polar of a neighbourhood in a locally convex t.v.s.

	Tensor products of t.v.s.
	Tensor product of vector spaces
	Topologies on the tensor product of locally convex t.v.s.
	-topology
	-topology


	Bibliography

