Universität Konstanz
Fachbereich Mathematik und Statistik
Dr. Maria Infusino
Patrick Michalski

TOPOLOGICAL VECTOR SPACES II-WS 2019/2020

Bonus Sheet - Solution

1) Given two sets X and Y, let E (resp. F) be the linear space of all functions from X (resp. Y) to \mathbb{K} endowed with the usual addition and multiplication by scalars. For any $f \in E$ and $g \in F$, define:

$$
\begin{array}{llll}
f \otimes g: & X \times Y & \rightarrow \mathbb{K} \\
& (x, y) & \mapsto & f(x) g(y) .
\end{array}
$$

Show that $M:=\operatorname{span}\{f \otimes g: f \in E, g \in F\}$ is a tensor product of E and F.

Proof. Define the map $\phi: E \times F \rightarrow M$ as $\phi(f, g):=f \otimes g$. Since $M=\operatorname{span}\{\phi(E \times F)\}$, to prove that (M, ϕ) is a tensor product of E and F we only need to show that ϕ is bilinear and that E and F are ϕ-linearly disjoint.

Let $\lambda \in \mathbb{K}, f, g \in E$ and $h \in F$. Then, for all $(x, y) \in X \times Y$ we have

$$
\begin{aligned}
((f+\lambda g) \otimes h)(x, y) & =(f+\lambda g)(x) h(y) \\
& =f(x) h(y)+\lambda g(x) h(y) \\
& =(f \otimes h)(x, y)+\lambda(g \otimes h)(x, y)
\end{aligned}
$$

i.e. $\phi(f+\lambda g, h)=\phi(f, h)+\lambda \phi(g, h)$. This proves the linearity of ϕ in its first argument. The linearity in the second argument can be analogously proved.

Let $r \in \mathbb{N}$ and $\left\{f_{1}, \ldots, f_{r}\right\} \subseteq E$ and $\left\{g_{1}, \ldots, g_{r}\right\} \subseteq F$ be such that $\sum_{i=1}^{r} \phi\left(f_{i}, g_{i}\right)=0$, i.e.

$$
\begin{equation*}
0=\sum_{i=1}^{r}\left(f_{i} \otimes g_{i}\right)(x, y)=\sum_{i=1}^{r} f_{i}(x) g_{i}(y) \text { for all } x \in X, y \in Y \tag{1}
\end{equation*}
$$

If $\left\{f_{1}, \ldots, f_{r}\right\}$ is linearly independent, then (1) yields $g_{1}(y)=\cdots=g_{r}(y)=0$ for all $y \in Y$. Thus, $g_{1}=\cdots=g_{r}=0$ on Y. If $\left\{g_{1}, \ldots, g_{r}\right\}$ is linearly independent, then (1) yields $f_{1}=\cdots=f_{r}=0$ on X.

Hence, E and F are ϕ-linearly disjoint.

Let E and F be two locally convex t.v.s. over \mathbb{K}. Denote by $E \otimes_{\pi} F$ the tensor product $E \otimes F$ endowed with the π-topology. Prove the following statements:
2) If \mathcal{P} (resp. $\mathcal{Q})$ is a family of seminorms generating the topology on E (resp. on F), then the π-topology on $E \otimes F$ is generated by the family

$$
\{p \otimes q: p \in \mathcal{P}, q \in \mathcal{Q}\}
$$

where for any $p \in \mathcal{P}, q \in \mathcal{Q}, \theta \in E \otimes F$ we define:

$$
(p \otimes q)(\theta):=\inf \left\{\rho>0: \theta \in \rho \operatorname{conv}_{b}\left(U_{p} \otimes V_{q}\right)\right\}
$$

with $U_{p}:=\{x \in E: p(x) \leq 1\}$ and $U_{q}:=\{y \in F: q(y) \leq 1\}$.
Proof. W.l.o.g. we may assume that the families \mathcal{P} and \mathcal{Q} are directed. Therefore, $\mathcal{B}_{\mathcal{P}}=$ $\left\{\varepsilon U_{p}: p \in \mathcal{P}, \varepsilon>0\right\}$ resp. $\mathcal{B}_{\mathcal{Q}}=\left\{\varepsilon U_{q}: q \in \mathcal{Q}, \varepsilon>0\right\}$ are bases of neighbourhoods of the origin in E resp. in F (see TVS-I, Section 4.2). Then

$$
\mathcal{B}_{\pi}:=\left\{\operatorname{conv}_{b}\left(\delta U_{p} \otimes \varepsilon U_{q}\right): p \in \mathcal{P}, q \in \mathcal{Q}, \delta>0, \varepsilon>0\right\}
$$

is a basis of neighbourhoods of the origin in the π-topology on $E \otimes F$ (see Section 4.2.1). Since \mathcal{P} and \mathcal{Q} are directed, the family $\mathcal{P} \otimes \mathcal{Q}:=\{p \otimes q: p \in \mathcal{P}, q \in \mathcal{Q}\}$ is also directed, because

$$
\max \left\{p_{1} \otimes q_{1}, p_{2} \otimes q_{2}\right\} \leq\left(\max \left\{p_{1}, p_{2}\right\}\right) \otimes\left(\max \left\{q_{1}, q_{2}\right\}\right)
$$

holds for all $p_{1}, p_{2} \in \mathcal{P}, q_{1}, q_{2} \in \mathcal{Q}$. Thus,

$$
\mathcal{B}_{\mathcal{P} \otimes \mathcal{Q}}:=\left\{\lambda U_{p \otimes q}: p \in \mathcal{P}, q \in \mathcal{Q}, \lambda>0\right\}
$$

is a basis of neighbourhoods of the origin on $E \otimes F$ endowed with the topology generated by $\mathcal{P} \otimes \mathcal{Q}$. Hence, it suffices to show that $\operatorname{conv}_{b}\left(\delta U_{p} \otimes \varepsilon U_{q}\right)=(\delta \varepsilon) U_{p \otimes q}$ for all $p \in \mathcal{P}, q \in \mathcal{Q}$ and all $\delta>0, \varepsilon>0$ as this implies that $\mathcal{B}_{\pi}=\mathcal{B}_{\mathcal{P} \otimes \mathcal{Q}}$.

Let us first show that for any seminorms p on E and q on F we have

$$
\begin{equation*}
U_{p \otimes q}=\operatorname{conv}_{b}\left(U_{p} \otimes U_{q}\right) . \tag{2}
\end{equation*}
$$

Set $W_{p q}:=\operatorname{conv}_{b}\left(U_{p} \otimes U_{q}\right)$. If $\theta \in U_{p \otimes q}$, then $(p \otimes q)(\theta) \leq 1$, i.e. for any $\varepsilon>0$ there is $\rho>0$ such that

$$
\theta \in \rho W_{p q} \quad \text { and } \quad \rho<(p \otimes q)(\theta)+\varepsilon \leq 1+\varepsilon
$$

Since $W_{p q}$ is balanced by definition, we have that $\theta \in \rho W_{p q} \subseteq(1+\varepsilon) W_{p q}$. Hence, by the arbitrarity of ε, we get $\theta \in W_{p q}$. Conversely, if $\theta \in W_{p q}=1 \cdot W_{p q}$, then $(p \otimes q)(\theta) \leq 1$ and so $\theta \in U_{p \otimes q}$.
Now, for any $p \in \mathcal{P}, q \in Q, \delta>0, \varepsilon>0$ we have that $\delta^{-1} p$ and $\varepsilon^{-1} q$ are seminorms. Thus,

$$
\operatorname{conv}_{b}\left(\delta U_{p} \otimes \varepsilon U_{q}\right)=\operatorname{conv}_{b}\left(U_{\delta^{-1} p} \otimes U_{\varepsilon^{-1} q}\right) \stackrel{\text { 2 }}{=} U_{\left(\delta^{-1} p\right) \otimes\left(\varepsilon^{-1} q\right)}=U_{(\delta \varepsilon)^{-1} p \otimes q}=(\delta \varepsilon) U_{p \otimes q}
$$

which proves the claim.
3) $E \otimes_{\pi} F$ is Hausdorff if and only if E and F are both Hausdorff.

Proof. Let \mathcal{P} (resp. \mathcal{Q}) be a family of seminorms generating the topology on E (resp. F) and let $\mathcal{P} \otimes \mathcal{Q}$ be defined as in Exercise 2). Then, by Proposition 4.3.3 from TVS-I, the spaces E, F and $E \otimes_{\pi} F$ are Hausdorff if and only if \mathcal{P}, \mathcal{Q} and $\mathcal{P} \otimes \mathcal{Q}$ are separating.

Assume that $E \otimes_{\pi} F$ is Hausdorff and so that $\mathcal{P} \otimes \mathcal{Q}$ is separating. Let $x \in E \backslash\{0\}, y \in F \backslash\{0\}$. Then $x \otimes y \neq 0 \in E \otimes F$ and, hence, there are $p \in \mathcal{P}$ and $q \in \mathcal{Q}$ such that

$$
0 \neq(p \otimes q)(x \otimes y)=p(x) q(y)
$$

where the last equality is due to Theorem 4.2.3. Thus, $p(x) \neq 0$ and $q(y) \neq 0$, which imply that the families \mathcal{P} and \mathcal{Q} are both separating and so E and F are both Hausdorff.

Conversely, assume that E and F are Hausdorff. Let $0 \neq \theta \in E \otimes F$, say

$$
\theta=\sum_{k=1}^{r} x_{k} \otimes y_{k}
$$

where $x_{1}, \ldots, x_{r} \in E$ (resp. $y_{1}, \ldots, y_{r} \in F$) can be assumed to be linearly independent. Since E and F are Hausdorff, by Lemma 3.2.10 (a consequence of the Hahn-Banach Theorem), there are $x^{\prime} \in E^{\prime}$ and $y^{\prime} \in F^{\prime}$ such that

$$
\left\langle x^{\prime}, x_{1}\right\rangle=\left\langle y^{\prime}, y_{1}\right\rangle=1 \quad \text { and } \quad\left\langle x^{\prime}, x_{k}\right\rangle=\left\langle y^{\prime}, y_{k}\right\rangle=0 \text { for } k \geq 2
$$

Then the linear map

$$
\begin{array}{rll}
\theta^{\prime}: & E \otimes F & \rightarrow \mathbb{K} \\
& \sum_{l=1}^{s} \xi_{l} \otimes \eta_{l} & \mapsto \sum_{l=1}^{r}\left\langle x^{\prime}, \xi_{l}\right\rangle\left\langle y^{\prime}, \eta_{l}\right\rangle
\end{array}
$$

is continuous w.r.t. π-topology and satisfies $\left\langle\theta^{\prime}, \theta\right\rangle=1$ by construction. In particular, θ^{\prime} is $(p \otimes q)$-continuous for some $p \in \mathcal{P}$ and $q \in \mathcal{Q}$, i.e. there is some $C>0$ such that

$$
0<1=\left|\left\langle\theta^{\prime}, \theta\right\rangle\right| \leq C(p \otimes q)(\theta)
$$

This yields $(p \otimes q)(\theta) \neq 0$. Thus, the family $\mathcal{P} \otimes \mathcal{Q}$ is separating and the claim follows.

