Universität Konstanz Fachbereich Mathematik und Statistik Dr. Maria Infusino Patrick Michalski

TOPOLOGICAL VECTOR SPACES II–WS 2019/2020 Recap Sheet 0

This recap sheet aims at refreshing your knowledge about the basic theory of topological vector spaces. You do **not** need to hand in solutions, however if you should have any problem, please take advantage of the Fragestunde on Wednesday, November 6th, 10:00–11:30 in room F410 or on Thursday, November 7th, 11:45–13:15 in room F408.

- 1) Let (X, τ) be a topological space.
 - a) Show that the family of neighbourhoods $\mathcal{F}_{\tau}(x)$ of a point $x \in X$ is a filter.
 - b) Let $S := (x_n)_{n \in \mathbb{N}} \subseteq X$ be a sequence. Show that $\mathcal{F}_S := \{A \subseteq X : |S \setminus A| < \infty\}$ is a filter and $\mathcal{B} := \{S_m : m \in \mathbb{N}\}$ is a basis for \mathcal{F}_S , where $S_m := \{x_n \in S : n \ge m\}$ for all $m \in \mathbb{N}$.
- 2) Use Theorem 2.1.10 (TVS-I) to show that
 - a) Every normed space $(X, \|\cdot\|)$ endowed with the topology τ induced by $\|\cdot\|$, i.e. the family $\mathcal{B} := \{\{x \in X : \|x_0 x\| < \varepsilon\} : x_0 \in X, \varepsilon > 0\}$ is a basis of τ , is a t.v.s..
 - b) \mathbb{R} endowed with the lower limit topology τ , i.e. the family $\mathcal{B} := \{[a, b) : a < b \text{ in } \mathbb{R}\}$ is a basis of τ , is not a t.v.s..
- 3) Show that a t.v.s. (X, τ) is Hausdorff if and only if it is (T1), i.e. for each $x \in X \setminus \{o\}$ there exists $U \in \mathcal{F}_{\tau}(o)$ such that $x \notin U$. Conclude that (X, τ) is Hausdorff if and only if $\bigcap_{U \in \mathcal{F}_{\tau}(o)} U = \{o\}$ is closed.
- 4) Let (X, τ) be a t.v.s. and show that
 - a) For each $x \in X$ the filter of neighbourhoods $\mathcal{F}_{\tau}(x)$ is a Cauchy filter.
 - b) A filter finer than a Cauchy filter is a Cauchy filter.
 - c) Every converging filter is a Cauchy filter.
- 5) Let X be a vector space and \mathcal{P} a family of seminorms on X. Show that the topology $\tau_{\mathcal{P}}$ induced by \mathcal{P} , i.e. $\tau_{\mathcal{P}}$ has

$$\mathcal{B} := \{ \{ x \in X : p_1(x) < \varepsilon, \dots, p_n(x) < \varepsilon \} : n \in \mathbb{N}, p_1, \dots, p_n \in \mathcal{P}, \varepsilon > 0 \}$$

as a basis of neighbourhoods of the origin o in X, makes $(X, \tau_{\mathcal{P}})$ into a locally convex t.v.s. Recall that for any locally convex t.v.s. the topology is induced by a family of seminorms.