
Introduction

The theory of topological vector spaces (TVS), as the name suggests, is a
beautiful connection between topological and algebraic structures. The first
systematic treatment of these spaces appeared in “Livre V: Espaces vectoriels
topologiques (1953)” in the series “Éléments de mathématique” by Nicolas
Bourbaki. Actually, there was no person called Nicolas Bourbaki but this was
just a pseudonym under which a group of mathematicians wrote the above
mentioned series of books between 1935 and 1983 with the aim of reformulat-
ing the whole mathematics on an extremely formal, rigourous and general ba-
sis grounded on set theory. The work of the Bourbaki group (o�cially known
as the “Association of collaborators of Nicolas Bourbaki”) greatly influenced
the mathematic world and led to the discovery of concepts and terminologies
still used today (e.g. the symbol ;, the notions of injective, surjective, bijec-
tive, etc.) The Bourbaki group included several mathematicians connected to
the École Normale Supérieure in Paris such as Henri Cartan, Jean Coulomb,
Jean Dieudonné, André Weil, Laurent Schwartz, Jean-Pierre Serre, Alexander
Grothendieck. The latter is surely the name which is most associated to the
theory of TVS. Of course great contributions to this theory were already given
before him (e.g. the Banach and Hilbert spaces are examples of TVS), but
Alexander Grothendieck was engaged in a completely general approach to the
study of these spaces and collected some among the deepest results on TVS in
his Phd thesis (1950-1953) written under the supervision of Jean Dieudonné
and Laurent Schwartz. After his dissertation he said: “There is nothing more
to do, the subject is dead”. Despite this sentence come out of the mouth of
a genius, the theory of TVS is far from being dead. Many aspects are in fact
still unknown and the theory lively interacts with several interesting problems
which are still currently unsolved!
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Chapter 1

Preliminaries

1.1 Topological spaces

1.1.1 The notion of topological space

The topology on a set X is usually defined by specifying its open subsets of X.
However, in dealing with topological vector spaces, it is often more convenient
to define a topology by specifying what the neighbourhoods of each point are.

Definition 1.1.1. A topology ⌧ on a set X is a family of subsets of X which
satisfies the following conditions:
(O1) the empty set ; and the whole X are both in ⌧
(O2) ⌧ is closed under finite intersections
(O3) ⌧ is closed under arbitrary unions
The pair (X, ⌧) is called a topological space.

The sets O 2 ⌧ are called open sets of X and their complements C = X \O
are called closed sets of X. A subset of X may be neither closed nor open,
either closed or open, or both. A set that is both closed and open is called a
clopen set.

Definition 1.1.2. Let (X, ⌧) be a topological space.
• A subfamily B of ⌧ is called a basis if every open set can be written as

a union (possibly empty) of sets in B.
• A subfamily X of ⌧ is called a subbasis if the finite intersections of its

sets form a basis, i.e. every open set can be written as a union of finite
intersections of sets in X .

Therefore, a topology ⌧ on X is completely determined by a basis or a
subbasis.
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Examples 1.1.3.

a) The family B := {(a, b) : a, b 2 Q with a < b} is a basis of the euclidean
(or standard) topology on R.

b) The collection S of all semi-infinite intervals of the real line of the forms
(�1, a) and (a,+1), where a 2 R is not a base for any topology on R. To
show this, suppose it were. Then, for example, (�1, 1) and (0,1) would
be in the topology generated by S, being unions of a single base element,
and so their intersection (0, 1) would be by the axiom (O2) of topology.
But (0, 1) clearly cannot be written as a union of elements in S.
However, S is a subbasis of the euclidean topology on R.

Proposition 1.1.4. Let X be a set and let B be a collection of subsets of X.
B is a basis for a topology ⌧ on X i↵ the following hold:

1. B covers X, i.e. 8x 2 X, 9B 2 B s.t. x 2 B.
2. If x 2 B1\B2 for some B1, B2 2 B, then 9B3 2 B s.t. x 2 B3 ✓ B1\B2.

Proof. (Sheet 1, Exercise 1 a))

Definition 1.1.5. Let (X, ⌧) be a topological space and x 2 X. A subset U
of X is called a neighbourhood of x if it contains an open set containing the
point x, i.e. 9O 2 ⌧ s.t. x 2 O ✓ U . The family of all neighbourhoods of a
point x 2 X is denoted by F(x).

In order to define a topology on a set by the family of neighbourhoods of
each of its points, it is convenient to introduce the notion of filter. Note that
the notion of filter is given on a set which does not need to carry any other
structure. Thus this notion is perfectly independent of the topology.

Definition 1.1.6. A filter on a set X is a family F of subsets of X which
fulfills the following conditions:
(F1) the empty set ; does not belong to F
(F2) F is closed under finite intersections
(F3) any subset of X containing a set in F belongs to F

Definition 1.1.7. A family B of subsets of X is called a basis of a filter F if
1. B ✓ F
2. 8A 2 F , 9B 2 B s.t. B ✓ A

Examples 1.1.8.

a) The family G of all subsets of a set X containing a fixed non-empty sub-
set A is a filter and B = {A} is its base. G is called the principle filter
generated by A.

b) Given a topological space X and x 2 X, the family F(x) is a filter.
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c) Let S := {x
n

}
n2N be a sequence of points in a set X. Then the family

F := {A ⇢ X : |S \ A| < 1} is a filter and it is known as the filter
associated to S. For each m 2 N, set S

m

:= {x
n

2 S : n � m}. Then
B := {S

m

: m 2 N} is a basis for F .

Proof. (Sheet 1, Exercise 2).

Theorem 1.1.9. Given a topological space X and a point x 2 X, the filter of
neighbourhoods F(x) satisfies the following properties.
(N1) For any A 2 F(x), x 2 A.
(N2) For any A 2 F(x), 9B 2 F(x): 8 y 2 B, A 2 F(y).
Viceversa, if for each point x in a set X we are given a filter F

x

fulfilling the
properties (N1) and (N2) then there exists a unique topology ⌧ s.t. for each
x 2 X, F

x

is the family of neighbourhoods of x, i.e. F
x

⌘ F(x), 8x 2 X.

This means that a topology on a set is uniquely determined by the family
of neighbourhoods of each of its points.

Proof.
) Let (X, ⌧) be a topological space, x 2 X and F(x) the filter of neighbour-
hoods of x. Then (N1) trivially holds by definition of neighbourhood of x. To
show (N2), let us take A 2 F(x). Since A is a neighbourhood of x, there exists
B 2 ⌧ s.t. x 2 B ✓ A. Then clearly B 2 F(x). Moreover, since for any y 2 B
we have that y 2 B ✓ A and B is open, we can conclude that A 2 F(y).
( Assume that for any x 2 X we have a filter F

x

fulfilling (N1) and (N2).
Let us define ⌧ := {O ✓ X : if x 2 O then O 2 F

x

}. Since each F
x

is a filter,
⌧ is a topology. Indeed:

• ; 2 ⌧ by definition of ⌧ . Also X 2 ⌧ , because for any x 2 X and any
A 2 F

x

we clearly have X ◆ A and so by (F3) X 2 F
x

.
• By (F2) we have that ⌧ is closed under finite intersection.
• Let U be an arbitrary union of sets U

i

2 ⌧ and let x 2 U . Then there
exists at least one i s.t. x 2 U

i

and so U
i

2 F
x

because U
i

2 ⌧ . But
U ◆ U

i

, then by (F3) we get that U 2 F
x

and so U 2 ⌧ .
It remains to show that ⌧ on X is actually s.t. F

x

⌘ F(x), 8x 2 X.
• Any U 2 F(x) is a neighbourhood of x and so there exists O 2 ⌧ s.t.

x 2 O ✓ U . Then, by definition of ⌧ , we have O 2 F
x

and so (F3)
implies that U 2 F

x

. Hence, F(x) ✓ F
x

.
• Let U 2 F

x

and set W := {y 2 U : U 2 F
y

} ✓ U . Since x 2 U by
(N1), we also have x 2 W . Moreover, if y 2 W then by (N2) there exists
V 2 F

y

s.t. 8z 2 V we have U 2 F
z

. This means that z 2 W and so
V ✓ W . Then W 2 F

y

by (F3). Hence, we have showed that if y 2 W
then W 2 F

y

, i.e. W 2 ⌧ . Summing up, we have just constructed an
open set W s.t. x 2 W ✓ U , i.e. U 2 F(x), and so F

x

✓ F(x).
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Note that the non-empty open subsets of any other topology ⌧ 0 on X such
that F

x

⌘ F(x), 8x 2 X must be identical to the subsets O of X for which
O 2 F

x

whenever x 2 O. Hence, ⌧ 0 ⌘ ⌧ .

Remark 1.1.10. The previous proof in particular shows that a subset is open
if and only if it contains a neighbourhood of each of its points.

Definition 1.1.11. Given a topological space X, a basis B(x) of the filter of
neighbourhoods F(x) of x 2 X is called a base of neighbourhoods of x, i.e.B(x)
is a subset of F(x) s.t. every set in F(x) contains one in B(x). The elements
of B(x) are called basic neighbourhoods of x. If a base of neighbourhoods is
given for any x 2 X, we speak of base of neighbourhoods of X.

Example 1.1.12. The open sets of a topological space other than the empty
set always form a base of neighbourhoods.

Theorem 1.1.13. Given a topological space X and a point x 2 X, a base of
open neighbourhoods B(x) satisfies the following properties.
(B1) For any U 2 B(x), x 2 U .
(B2) For any U1, U2 2 B(x), 9U3 2 B(x) s.t. U3 ✓ U1 \ U2.
(B3) If y 2 U 2 B(x), then 9W 2 B(y) s.t. W ✓ U .
Viceversa, if for each point x in a set X we are given a collection of subsets
B
x

fulfilling the properties (B1), (B2) and (B3) then there exists a unique
topology ⌧ s.t. for each x 2 X, B

x

is a base of neighbourhoods of x, i.e.
B
x

⌘ B(x), 8x 2 X.

Proof. The proof easily follows by using Theorem 1.1.9.

The previous theorem gives a further way of introducing a topology on a
set. Indeed, starting from a base of neighbourhoods of X, we can define a
topology on X by setting that a set is open i↵ whenever it contains a point
it also contains a basic neighbourhood of the point. Thus a topology on a set
X is uniquely determined by a base of neighbourhoods of each of its points.

1.1.2 Comparison of topologies
Any set X may carry several di↵erent topologies. When we deal with topo-
logical vector spaces, we will very often encounter this situation of a set, in
fact a vector space, carrying several topologies (all compatible with the linear
structure, in a sense that is going to be specified soon). In this case, it is
convenient being able to compare topologies.

Definition 1.1.14. Let ⌧ , ⌧ 0 be two topologies on the same set X. We say
that ⌧ is coarser (or weaker) than ⌧ 0, in symbols ⌧ ✓ ⌧ 0, if every subset of X
which is open for ⌧ is also open for ⌧ 0, or equivalently, if every neighborhood
of a point in X w.r.t. ⌧ is also a neighborhood of that same point in the
topology ⌧ 0. In this case ⌧ 0 is said to be finer (or stronger) than ⌧ 0.
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Denote by F(x) and F 0(x) the filter of neighbourhoods of a point x 2 X
w.r.t. ⌧ and w.r.t. ⌧ 0, respectively. Then: ⌧ is coarser than ⌧ 0 i↵ for any
point x 2 X we have F(x) ✓ F 0(x) (this means that every subset of X which
belongs to F(x) also belongs to F 0(x)).

Two topologies ⌧ and ⌧ 0 on the same set X coincide when they give the
same open sets or the same closed sets or the same neighbourhoods of each
point; equivalently, when ⌧ is both coarser and finer than ⌧ 0. Two basis of
neighbourhoods of a set are equivalent when they define the same topology.

Remark 1.1.15. Given two topologies on the same set, it may very well
happen that none is finer than the other. If it is possible to establish which
one is finer, then we say that the two topologies are comparable.

Example 1.1.16.
The cofinite topology ⌧

c

on R, i.e. ⌧
c

:= {U ✓ R : U = ; or R \ U is finite},
and the topology ⌧

i

having {(�1, a) : a 2 R} as a basis are incomparable. In
fact, it is easy to see that ⌧

i

= {(�1, a) : a 2 R} [ {;,R} as these are the
unions of sets in the given basis. In particular, we have that R� {0} is in ⌧

c

but not ⌧
i

. Moreover, we have that (�1, 0) is in ⌧
i

but not ⌧
c

. Hence, ⌧
c

and
⌧
i

are incomparable.
It is always possible to construct at least two topologies on every set X by

choosing the collection of open sets to be as large or as small as possible:
• the trivial topology : every point of X has only one neighbourhood which

is X itself. Equivalently, the only open subsets are ; and X. The only
possible basis for the trivial topology is {X}.

• the discrete topology : given any point x 2 X, every subset of X contain-
ing x is a neighbourhood of x. Equivalently, every subset of X is open
(actually clopen). In particular, the singleton {x} is a neighbourhood
of x and actually is a basis of neighbourhoods of x. The collection of all
singletons is a basis for the discrete topology.

The discrete topology on a set X is finer than any other topology on X, while
the trivial topology is coarser than all the others. Topologies on a set form
thus a partially ordered set, having a maximal and a minimal element, respec-
tively the discrete and the trivial topology.

A useful criterion to compare topologies on the same set is the following:

Theorem 1.1.17 (Hausdor↵’s criterion).
For each x 2 X, let B(x) a base of neighbourhoods of x for a topology ⌧ on X
and B0(x) a base of neighbourhoods of x for a topology ⌧ 0 on X.
⌧ ✓ ⌧ 0 i↵ 8x 2 X, 8U 2 B(x) 9V 2 B0(x) s.t. x 2 V ✓ U .
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