
4.2. Connection to seminorms

Proof. Let us first show that the collection B is a basis of neighbourhoods of
the origin for the unique topology ⌧ making X into a locally convex t.v.s. by
using Theorem 4.1.14 and then let us prove that ⌧ actually coincides with the
topology induced by the family P.

For any i 2 I and any " > 0, consider the set {x 2 X : p
i

(x) < "} = "Ů
p

i

.
This is absorbing and absolutely convex, since we have already showed above
that Ů

p

i

fulfills such properties. Therefore, any element of B is an absorbing
absolutely convex subset of X as finite intersection of absorbing absolutely
convex sets. Moreover, both properties a) and b) of Theorem 4.1.14 are clearly
satisfied by B. Hence, Theorem 4.1.14 guarantees that there exists a unique
topology ⌧ on X s.t. (X, ⌧) is a locally convex t.v.s. and B is a basis of
neighbourhoods of the origin for ⌧ .

Let us consider (X, ⌧). Then for any i 2 I, the seminorm p
i

is continuous,
because for any " > 0 we have p�1

i

([0, "[) = {x 2 X : p
i

(x) < "} 2 B which
means that p�1

i

([0, "[) is a neighbourhood of the origin in (X, ⌧). Therefore,
the topology ⌧P induced by the family P is by definition coarser than ⌧ . On
the other hand, each p

i

is also continuous w.r.t. ⌧P and so B ✓ ⌧P . But B is
a basis for ⌧ , then necessarily ⌧ is coarser than ⌧P . Hence, ⌧ ⌘ ⌧P .

Viceversa, let us assume that (X, ⌧) is a locally convex t.v.s.. Then by
Theorem 4.1.14 there exists a basis N of neighbourhoods of the origin in X
consisting of absorbing absolutely convex sets s.t. the properties a) and b)
in Theorem 4.1.14 are fulfilled. W.l.o.g. we can assume that they are open.
Consider now the family S := {p

N

: N 2 N}. By Lemma 4.2.7, we know that
each p

N

is a seminorm and that Ů
p

N

✓ N . Let us show that for any N 2 N
we have actually that N = Ů

p

N

. Since any N 2 N is open and the scalar
multiplication is continuous we have that for any x 2 N there exists 0 < t < 1
s.t. x 2 tN and so p

N

(x)  t < 1, i.e. x 2 Ů
p

N

.
We want to show that the topology ⌧S induced by the family S coincides

with original topology ⌧ on X. We know from the first part of the proof how
to construct a basis for a topology induced by a family of seminorms. In fact,
a basis of neighbourhoods of the origin for ⌧S is given by

B :=

(

n

\

i=1

{x 2 X : p
N

i

(x) < "} : N1, . . . , Nn

2 N , n 2 N, " > 0, ✏ 2 R
)

.

For any N 2 N we showed that N = Ů
p

N

2 B so by Hausdor↵ criterion we
get ⌧ ✓ ⌧S . Also for any B 2 B we have B = \n

i=1"Ůp

N

i

= \n

i=1"Ni

for some
n 2 N, N1, . . . , Nn

2 N and " > 0. Then property b) of Theorem 4.1.14 for N
implies that for each i = 1, . . . , n there exists V

i

2 N s.t. V
i

✓ "N
i

and so by
the property a) of N we have that there exists V 2 N s.t. V ✓ \n

i=1Vi

✓ B.
Hence, by Hausdor↵ criterion ⌧S ✓ ⌧ .
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4. Locally convex topological vector spaces

This result justifies why several authors define a locally convex space to
be a t.v.s whose topology is induced by a family of seminorms (which is now
evidently equivalent to Definition 4.1.11)

In the previous proofs we have used some interesting properties of semiballs
in a vector space. For convenience, we collect them here together with some
further ones which we will repeatedly use in the following.

Proposition 4.2.10. Let X be a vector space and p a seminorm on X. Then:

a) Ů
p

is absorbing and absolutely convex.

b) 8 r > 0, rŮ
p

= {x 2 X : p(x) < r} = Ů 1
r

p

.

c) 8x 2 X, x+ Ů
p

= {y 2 X : p(y � x) < 1}.
d) If q is also a seminorm on X then: p  q if and only if Ů

q

✓ Ů
p

.
e) If n 2 N and s1, . . . , sn are seminorms on X, then their maximum s defined

as s(x) := max
i=1,...,n

s
i

(x), 8x 2 X is also seminorm on X and Ů
s

=
T

n

i=1 Ůs

i

.

All the previous properties also hold for closed semballs.

Proof.

a) This was already proved as part of Lemma 4.2.7.

b) For any r > 0, we have

rŮ
p

= {rx 2 X : p(x) < 1} = {y 2 X :
1

r
p(y) < 1}

| {z }

Ů 1
r

p

= {y 2 X : p(y) < r}.

c) For any x 2 X, we have

x+ Ů
p

= {x+ z 2 X : p(z) < 1} = {y 2 X : p(y � x) < 1}.

d) Suppose that p  q and take any x 2 Ů
q

. Then we have q(x) < 1 and
so p(x)  q(x) < 1, i.e. x 2 Ů

p

. Viceversa, suppose that Ů
q

✓ Ů
p

holds
and take any x 2 X. We have that either q(x) > 0 or q(x) = 0. In the
first case, for any 0 < " < 1 we get that q

�

"x

q(x)

�

= " < 1. Then "x

q(x) 2 Ů
q

which implies by our assumption that "x

q(x) 2 Ů
p

i.e. p
�

"x

q(x)

�

< 1. Hence,

"p(x) < q(x) and so when " ! 1 we get p(x)  q(x). If instead we are in
the second case that is when q(x) = 0, then we claim that also p(x) = 0.
Indeed, if p(x) > 0 then q

�

x

p(x)

�

= 0 and so x

p(x) 2 Ů
q

which implies by our

assumption that x

p(x) 2 Ů
p

, i.e. p(x) < p(x) which is a contradiction.

e) It is easy to check, using basic properties of the maximum, that the subad-
ditivity and the positive homogeneity of each s

i

imply the same properties
for s. In fact, for any x, y 2 X and for any � 2 K we get:
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4.2. Connection to seminorms

• s(x+ y) = max
i=1,...,n

s
i

(x+ y)  max
i=1,...,n

(s
i

(x) + s
i

(y))

 max
i=1,...,n

s
i

(x) + max
i=1,...,n

s
i

(y) = s(x) + s(y)

• s(�x) = max
i=1,...,n

s
i

(�x) = |�| max
i=1,...,n

s
i

(x) = |�|s(x).

Moreover, if x 2 Ů
s

then max
i=1,...,n

s
i

(x) < 1 and so for all i = 1, . . . , n we

have s
i

(x) < 1, i.e. x 2
T

n

i=1 Ůs

i

. Conversely, if x 2
T

n

i=1 Ůs

i

then for all
i = 1, . . . , n we have s

i

(x) < 1. Since s(x) is the maximum over a finite
number of terms, it will be equal to s

j

(x) for some j 2 {1, . . . , n} and
therefore s(x) = s

j

(x) < 1, i.e. x 2 Ů
s

.

Proposition 4.2.11. Let X be a t.v.s. and p a seminorm on X. Then the
following conditions are equivalent:
a) the open unit semiball Ů

p

of p is an open set.
b) p is continuous at the origin.
c) the closed unit semiball U

p

of p is a barrel neighbourhood of the origin.
d) p is continuous at every point.

Proof.
a) ) b) Suppose that Ů

p

is open in the topology on X. Then for any " > 0
we have that p�1([0, "[) = {x 2 X : p(x) < "} = "Ů

p

is an open neighbourhood
of the origin in X. This is enough to conclude that p : X ! R+ is continuous
at the origin.

b) ) c) Suppose that p is continuous at the origin, then U
p

= p�1([0, 1]) is
a closed neighbourhood of the origin. Since U

p

is also absorbing and absolutely
convex by Proposition 4.2.10-a), U

p

is a barrel.
c) ) d) Assume that c) holds and fix o 6= x 2 X. Using Proposition 4.2.10

and Proposition 4.2.3, we get that for any " > 0: p�1([�"+ p(x), p(x) + "]) =
{y 2 X : |p(y) � p(x)|  "} ◆ {y 2 X : p(y � x)  "} = x + "U

p

, which
is a closed neighbourhood of x since X is a t.v.s. and by the assumption c).
Hence, p is continuous at x.

d) ) a) If p is continuous on X then a) holds because the preimage of an
open set under a continuous function is open and Ů

p

= p�1([0, 1[).

With such properties in our hands we are able to give a criterion to compare
two locally convex topologies using their generating families of seminorms.
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4. Locally convex topological vector spaces

Theorem 4.2.12 (Comparison of l.c. topologies).
Let P = {p

i

}
i2I and Q = {q

j

}
j2J be two families of seminorms on the vector

space X inducing respectively the topologies ⌧P and ⌧Q, which both make X
into a locally convex t.v.s.. Then ⌧P is finer than ⌧Q (i.e. ⌧Q ✓ ⌧P) i↵

8q 2 Q 9n 2 N, i1, . . . , in 2 I, C > 0 s.t. Cq(x)  max
k=1,...,n

p
i

k

(x), 8x 2 X.

(4.2)

Proof.
Let us first recall that, by Theorem 4.2.9, we have that

BP :=
n

n

\

k=1

"Ů
p

i

k

: i1, . . . , in 2 I, n 2 N, " > 0, " 2 R
o

and

BQ :=
n

n

\

k=1

"Ů
q

j

k

: j1, . . . , jn 2 J, n 2 N, " > 0, " 2 R
o

.

are respectively bases of neighbourhoods of the origin for ⌧P and ⌧Q.
By using Proposition 4.2.10, the condition (4.2) can be rewritten as

8q 2 Q, 9n 2 N, i1, . . . , in 2 I, C > 0 s.t. C
n

\

k=1

Ů
p

i

k

✓ Ů
q

.

which means that

8q 2 Q, 9 B
q

2 BP s.t. B
q

✓ Ů
q

. (4.3)

since C
T

n

k=1 Ůp

i

k

2 BP .

Condition (4.3) means that for any q 2 Q the set Ů
q

2 ⌧P , which by
Proposition 4.2.11 is equivalent to say that q is continuous w.r.t. ⌧P . By
definition of ⌧Q, this gives that ⌧Q ✓ ⌧P . 1

This theorem allows us to easily see that the topology induced by a family
of seminorms on a vector space does not change if we close the family under
taking the maximum of finitely many of its elements. Indeed, the following
result holds.

1Alternate proof without using Prop 4.2.11. (Sheet 9, Exercise 1 a))
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4.2. Connection to seminorms

Proposition 4.2.13. Let P := {p
i

}
i2I be a family of seminorms on a vector

space X and Q :=
�

max
i2B

p
i

: ; 6= B ✓ I with B finite
 

. Then Q is a family

of seminorms and ⌧P = ⌧Q, where ⌧P and ⌧Q denote the topology induced on
X by P and Q, respectively.

Proof.
First of all let us note that, by Proposition 4.2.10, Q is a family of seminorms.
On the one hand, since P ✓ Q, by definition of induced topology we have
⌧P ✓ ⌧Q. On the other hand, for any q 2 Q we have q = max

i2B
p
i

for some

; 6= B ✓ I finite. Then (4.2) is fulfilled for n = |B| (where |B| denotes the
cardinality of the finite set B), i1, . . . , in being the n elements of B and for
any 0 < C  1. Hence, by Theorem 4.2.12, ⌧Q ✓ ⌧P .

This fact can be used to show the following very useful property of locally
convex t.v.s.

Proposition 4.2.14. The topology of a locally convex t.v.s. can be always
induced by a directed family of seminorms.

Definition 4.2.15. A family Q := {q
j

}
j2J of seminorms on a vector space

X is said to be directed if

8 j1, j2 2 J, 9 j 2 J,C > 0 s.t. Cq
j

(x) � max{q
j1(x), qj2(x)}, 8x 2 X (4.4)

or equivalently by induction if

8 n 2 N, j1, . . . , jn 2 J, 9 j 2 J,C > 0 s.t. Cq
j

(x) � max
k=1,...,n

q
j

k

(x), 8x 2 X.

Proof. of Proposition 4.2.14
Let (X, ⌧) be a locally convex t.v.s.. By Theorem 4.2.9, we have that there
exists a family of seminorms P := {p

i

}
i2I on X s.t. ⌧ = ⌧P . Let us define Q

as the collection obtained by forming the maximum of finitely many elements
of P, i.e. Q :=

�

max
i2B

p
i

: ; 6= B ✓ I with B finite
 

. By Proposition 4.2.13,

Q is a family of seminorms and we have that ⌧P = ⌧Q. We claim that Q is
directed.

Let q, q0 2 Q, i.e. q := max
i2B

p
i

and q0 := max
i2B0

p
i

for some non-empty finite

subsets B,B0 of I. Let us define q00 := max
i2B[B0

p
i

. Then q00 2 Q and for any

C � 1 we have that (4.4) is satisfied, because we get that for any x 2 X

Cq00(x) = Cmax

⇢

max
i2B

p
i

(x),max
i2B0

p
i

(x)

�

� max{q(x), q0(x)}.
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4. Locally convex topological vector spaces

Hence, Q is directed.

It is possible to show (Sheet 9, Exercise 3) that a basis of neighbourhoods
of the origin for the l.c. topology ⌧Q induced by a directed family of seminorms
Q is given by:

B
d

:= {rŮ
q

: q 2 Q, r > 0}. (4.5)

4.3 Hausdor↵ locally convex t.v.s

In Section 2.2, we gave some characterization of Hausdor↵ t.v.s. which can
of course be applied to establish whether a locally convex t.v.s. is Hausdor↵
or not. However, in this section we aim to provide necessary and su�cient
conditions bearing only on the family of seminorms generating a locally convex
topology for being a Hausdor↵ topology.

Definition 4.3.1.
A family of seminorms P := {p

i

}
i2I on a vector space X is said to be sepa-

rating if
8x 2 X \ {o}, 9 i 2 I s.t. p

i

(x) 6= 0. (4.6)

Note that the separation condition (4.6) is equivalent to

p
i

(x) = 0, 8i 2 I ) x = o

which by using Proposition 4.2.10 can be rewritten as

\

i2I,c>0

cŮ
p

i

= {o},

since p
i

(x) = 0 is equivalent to say that p
i

(x) < c, for all c > 0.

Lemma 4.3.2. Let ⌧P be the topology induced by a separating family of semi-
norms P := (p

i

)
i2I on a vector space X. Then ⌧P is a Hausdor↵ topology.

Proposition 4.3.3. A locally convex t.v.s. is Hausdor↵ if and only if its
topology can be induced by a separating family of seminorms.
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4.3. Hausdor↵ locally convex t.v.s

Examples 4.3.4.

1. Every normed space is a Hausdor↵ locally convex space, since every norm
is a seminorm satisfying the separation property. Therefore, every Ba-
nach space is a complete Hausdor↵ locally convex space.

2. Every family of seminorms on a vector space containing a norm induces
a Hausdor↵ locally convex topology.

3. Given an open subset ⌦ of Rd with the euclidean topology, the space C(⌦)
of real valued continuous functions on ⌦ with the so-called topology of
uniform convergence on compact sets is a locally convex t.v.s.. This
topology is defined by the family P of all the seminorms on C(⌦) given
by

p
K

(f) := max
x2K

|f(x)|, 8K ⇢ ⌦ compact .

Moreover, (C(⌦), ⌧P) is Hausdor↵, because the family P is clearly sepa-
rating. In fact, if p

K

(f) = 0, 8K compact subsets of ⌦ then in particular
p{x}(f) = |f(x)| = 0 8x 2 ⌦, which implies f ⌘ 0 on ⌦.

More generally, for any X locally compact we have that C(X) with the
topology of uniform convergence on compact subsets of X is a locally
convex Hausdor↵ t.v.s.
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