Hence, \mathcal{Q} is directed.

It is possible to show (Sheet 9, Exercise 3) that a basis of neighbourhoods of the origin for the l.c. topology $\tau_{\mathcal{Q}}$ induced by a directed family of seminorms \mathcal{Q} is given by:

$$\mathcal{B}_d := \{ r \tilde{U}_q : q \in \mathcal{Q}, r > 0 \}.$$

$$(4.5)$$

4.3 Hausdorff locally convex t.v.s

In Section 2.2, we gave some characterization of Hausdorff t.v.s. which can of course be applied to establish whether a locally convex t.v.s. is Hausdorff or not. However, in this section we aim to provide necessary and sufficient conditions bearing only on the family of seminorms generating a locally convex topology for being a Hausdorff topology.

Definition 4.3.1.

A family of seminorms $\mathcal{P} := \{p_i\}_{i \in I}$ on a vector space X is said to be separating if

$$\forall x \in X \setminus \{o\}, \exists i \in I \text{ s.t. } p_i(x) \neq 0.$$

$$(4.6)$$

Note that the separation condition (4.6) is equivalent to

$$p_i(x) = 0, \forall i \in I \Rightarrow x = o$$

which by using Proposition 4.2.10 can be rewritten as

$$\bigcap_{i \in I, c > 0} c \mathring{U}_{p_i} = \{o\},$$

since $p_i(x) = 0$ is equivalent to say that $p_i(x) < c$, for all c > 0.

It is clear that if any of the elements in a family of seminorms is actually a norm, then the the family is separating.

Lemma 4.3.2. Let $\tau_{\mathcal{P}}$ be the topology induced by a separating family of seminorms $\mathcal{P} := (p_i)_{i \in I}$ on a vector space X. Then $\tau_{\mathcal{P}}$ is a Hausdorff topology.

Proof. Let $x, y \in X$ be such that $x \neq y$. Since \mathcal{P} is separating, we have that $\exists i \in I$ with $p_i(x-y) \neq 0$. Then $\exists \epsilon > 0$ s.t. $p_i(x-y) = 2\epsilon$. Let us define $V_x := \{u \in X \mid p_i(x-u) < \epsilon\}$ and $V_y := \{u \in X \mid p_i(y-u) < \epsilon\}$. By

Proposition 4.2.10, we get that $V_x = x + \varepsilon \mathring{U}_{p_i}$ and $V_y = y + \varepsilon \mathring{U}_{p_i}$. Since Theorem 4.2.9 guarantees that $(X, \tau_{\mathcal{P}})$ is a t.v.s. where the set $\varepsilon \mathring{U}_{p_i}$ is a neighbourhood of the origin, V_x and V_y are neighbourhoods of x and y, respectively. They are clearly disjoint. Indeed, if there would exist $u \in V_x \cap V_y$ then

$$p_i(x-y) = p_i(x-u+u-y) \le p_i(x-u) + p_i(u-y) < 2\varepsilon$$

which is a contradiction.

Proposition 4.3.3. A locally convex t.v.s. is Hausdorff if and only if its topology can be induced by a separating family of seminorms.

Proof. Let (X, τ) be a locally convex t.v.s.. Then we know that there always exists a basis \mathcal{N} of neighbourhoods of the origin in X consisting of open absorbing absolutely convex sets. Moreover, in Theorem 4.2.9, we have showed that $\tau = \tau_{\mathcal{P}}$ where \mathcal{P} is the family of seminorms given by the Minkowski functionals of sets in \mathcal{N} , i.e. $\mathcal{P} := \{p_N : N \in \mathcal{N}\}$, and also that for each $N \in \mathcal{N}$ we have $N = \mathring{U}_{p_N}$.

Suppose that (X, τ) is also Hausdorff. Then Proposition 2.2.3 ensures that for any $x \in X$ with $x \neq o$ there exists a neighbourhood V of the origin in Xs.t. $x \notin V$. This implies that there exists at least $N \in \mathcal{N}$ s.t. $x \notin N^2$. Hence, $x \notin N = \mathring{U}_{p_N}$ means that $p_N(x) \geq 1$ and so $p_N(x) \neq 0$, i.e. \mathcal{P} is separating.

Conversely, if τ is induced by a separating family of seminorms \mathcal{P} , i.e. $\tau = \tau_{\mathcal{P}}$, then Lemma 4.3.2 ensures that X is Hausdorff.

Examples 4.3.4.

- 1. Every normed space is a Hausdorff locally convex space, since every norm is a seminorm satisfying the separation property. Therefore, every Banach space is a complete Hausdorff locally convex space.
- 2. Every family of seminorms on a vector space containing a norm induces a Hausdorff locally convex topology.
- 3. Given an open subset Ω of \mathbb{R}^d with the euclidean topology, the space $\mathcal{C}(\Omega)$ of real valued continuous functions on Ω with the so-called topology of uniform convergence on compact sets is a locally convex t.v.s.. This topology is defined by the family \mathcal{P} of all the seminorms on $\mathcal{C}(\Omega)$ given by $\mathcal{P}(\Omega) = \mathcal{P}(\Omega) = \mathcal{P}(\Omega)$

$$p_K(f) := \max_{x \in K} |f(x)|, \, \forall K \subset \Omega \ compact.$$

²Since \mathcal{N} is a basis of neighbourhoods of the origin, $\exists M \in \mathcal{N}$ s.t. $M \subseteq V$. If x would belong to all elements of the basis then in particular it would be $x \in M$ and so also $x \in V$, contradiction.

Moreover, $(\mathcal{C}(\Omega), \tau_{\mathcal{P}})$ is Hausdorff, because the family \mathcal{P} is clearly separating. In fact, if $p_K(f) = 0$, $\forall K$ compact subsets of Ω then in particular $p_{\{x\}}(f) = |f(x)| = 0 \ \forall x \in \Omega$, which implies $f \equiv 0$ on Ω .

More generally, for any X locally compact we have that C(X) with the topology of uniform convergence on compact subsets of X is a locally convex Hausdorff t.v.s.

To introduce two other examples of l.c. Hausdorff t.v.s. we need to recall some standard general notations. Let \mathbb{N}_0 be the set of all non-negative integers. For any $x = (x_1, \ldots, x_d) \in \mathbb{R}^d$ and $\alpha = (\alpha_1, \ldots, \alpha_d) \in \mathbb{N}_0^d$ one defines $x^{\alpha} := x_1^{\alpha_1} \cdots x_d^{\alpha_d}$. For any $\beta \in \mathbb{N}_0^d$, the symbol D^{β} denotes the partial derivative of order $|\beta|$ where $|\beta| := \sum_{i=1}^d \beta_i$, i.e.

$$D^{\beta} := \frac{\partial^{|\beta|}}{\partial x_1^{\beta_1} \cdots \partial x_d^{\beta_d}} = \frac{\partial^{\beta_1}}{\partial x_1^{\beta_1}} \cdots \frac{\partial^{\beta_d}}{\partial x_d^{\beta_d}}$$

Examples 4.3.5.

1. Let $\Omega \subseteq \mathbb{R}^d$ open in the euclidean topology. For any $k \in \mathbb{N}_0$, let $\mathcal{C}^k(\Omega)$ be the set of all real valued k-times continuously differentiable functions on Ω , i.e. all the derivatives of f of order $\leq k$ exist (at every point of Ω) and are continuous functions in Ω . Clearly, when k = 0 we get the set $\mathcal{C}(\Omega)$ of all real valued continuous functions on Ω and when $k = \infty$ we get the so-called set of all infinitely differentiable functions or smooth functions on Ω . For any $k \in \mathbb{N}_0$, $\mathcal{C}^k(\Omega)$ (with pointwise addition and scalar multiplication) is a vector space over \mathbb{R} . The topology given by the following family of seminorms on $\mathcal{C}^k(\Omega)$:

$$p_{m,K}(f) := \sup_{\substack{\beta \in \mathbb{N}_0^d \\ |\beta| \le m}} \sup_{x \in K} \left| (D^\beta f)(x) \right|, \forall K \subseteq \Omega \ compact, \forall m \in \{0, 1, \dots, k\},$$

makes $\mathcal{C}^k(\Omega)$ into a l.c. Hausdorff t.v.s. (see Sheet 9, Exercise 2-a) for the proof in the case $k = \infty$).

2. The Schwartz space or space of rapidly decreasing functions on \mathbb{R}^d is defined as the set $\mathcal{S}(\mathbb{R}^d)$ of all real-valued functions which are defined and infinitely differentiable on \mathbb{R}^d and which have the additional property (regulating their growth at infinity) that all their derivatives tend to zero at infinity faster than any inverse power of x, i.e.

$$\mathcal{S}(\mathbb{R}^d) := \left\{ f \in \mathcal{C}^{\infty}(\mathbb{R}^d) : \sup_{x \in \mathbb{R}^d} \left| x^{\alpha} D^{\beta} f(x) \right| < \infty, \ \forall \alpha, \beta \in \mathbb{N}_0^d \right\}.$$

(For example, any smooth function f with compact support in \mathbb{R}^d is in $\mathcal{S}(\mathbb{R}^d)$, since any derivative of f is continuous and supported on a compact subset of \mathbb{R}^d , so $x^{\alpha}(D^{\beta}f(x))$ has a maximum in \mathbb{R}^d by the extreme value theorem.)

The Schwartz space $\mathcal{S}(\mathbb{R}^d)$ is a vector space over \mathbb{R} and the topology given by the family \mathcal{Q} of seminorms on $\mathcal{S}(\mathbb{R}^d)$:

$$q_{\alpha,\beta}(f) := \sup_{x \in \mathbb{R}^d} \left| x^{\alpha} D^{\beta} f(x) \right|, \ \forall \alpha, \beta \in \mathbb{N}_0^d$$

makes $\mathcal{S}(\mathbb{R}^d)$ into a l.c. Hausdorff t.v.s. (see Sheet 9, Exercise 2-b)). Note that $\mathcal{S}(\mathbb{R}^d)$ is a linear subspace of $\mathcal{C}^{\infty}(\mathbb{R}^d)$, but its topology $\tau_{\mathcal{Q}}$ on $\mathcal{S}(\mathbb{R}^d)$ is finer than the subspace topology induced on it by $\mathcal{C}^{\infty}(\mathbb{R}^d)$ (see Sheet 9, Exercise 2-c)).

4.4 The finest locally convex topology

In the previous sections we have seen how to generate topologies on a vector space which makes it into a locally convex t.v.s.. Among all of them, there is the finest one (i.e. the one having the largest number of open sets) which is usually called the *finest locally convex topology* on the given vector space.

Proposition 4.4.1. The finest locally convex topology on a vector space X is the topology induced by the family of all seminorms on X and it is a Hausdorff topology.

Proof.

Let us denote by S the family of all seminorms on the vector space X. By Theorem 4.2.9, we know that the topology τ_S induced by S makes X into a locally convex t.v.s. We claim that τ_S is the finest locally convex topology. In fact, if there was a finer locally convex topology τ (i.e. if $\tau_S \subseteq \tau$ with (X, τ) locally convex t.v.s.) then Theorem 4.2.9 would give that τ is also induced by a family \mathcal{P} of seminorms. But surely $\mathcal{P} \subseteq S$ and so $\tau = \tau_{\mathcal{P}} \subseteq \tau_S$ by definition of induced topology. Hence, $\tau = \tau_S$.

It remains to show that (X, τ_S) is Hausdorff. By Lemma 4.3.2, it is enough to prove that S is separating. Let $x \in X \setminus \{o\}$ and let \mathcal{B} be an algebraic basis of the vector space X containing x (its existence is guaranteed by Zorn's lemma). Define the linear functional $L: X \to \mathbb{K}$ as L(x) = 1 and L(y) = 0 for all $y \in \mathcal{B} \setminus \{x\}$. Then it is easy to see that s := |L| is a seminorm, so $s \in \mathcal{S}$ and $s(x) \neq 0$, which proves that \mathcal{S} is separating.³

An alternative way of describing the finest locally convex topology on a vector space X without using the seminorms is the following:

Proposition 4.4.2. The collection of all absorbing absolutely convex sets of a vector space X is a basis of neighbourhoods of the origin for the finest locally convex topology on X.

Proof. Let τ_{max} be the finest locally convex topology on X and \mathcal{A} the collection of all absorbing absolutely convex sets of X. Since \mathcal{A} fulfills all the properties required in Theorem 4.1.14, there exists a unique topology τ which makes X into a locally convex t.v.s.. Hence, by definition of finest locally convex topology, $\tau \subseteq \tau_{max}$. On the other hand, (X, τ_{max}) is itself locally convex and so Theorem 4.1.14 ensures that has a basis \mathcal{B}_{max} of neighbourhoods of the origin consisting of absorbing absolutely convex subsets of X. Then clearly \mathcal{B}_{max} is contained in \mathcal{A} and, hence, $\tau_{max} \subseteq \tau$.

This result can be proved also using Proposition 4.4.1 and the correspondence between Minkowski functionals and absorbing absolutely convex subsets of X introduced in the Section 4.2 (Sheet 10, Exercise 4).

Proposition 4.4.3. Every linear functional on a vector space X is continuous w.r.t. the finest locally convex topology on X.

Proof. Let $L : X \to \mathbb{K}$ be a linear functional on a vector space X. For any $\varepsilon > 0$, we denote by $B_{\varepsilon}(0)$ the open ball in \mathbb{K} of radius ε and center $0 \in \mathbb{K}$, i.e. $B_{\varepsilon}(0) := \{k \in \mathbb{K} : |k| < \varepsilon\}$. Then we have that $L^{-1}(B_{\varepsilon}(0)) = \{x \in X : |L(x)| < \varepsilon\}$. It is easy to verify that the latter is an absorbing absolutely convex subset of X and so, by Proposition 4.4.2, it is a neighbourhood of the origin in the finest locally convex topology on X. Hence L is continuous at the origin and so, by Proposition 2.1.15-3), L is continuous everywhere in X.

³Alternatively, we can show that S is separating by proving that there always exists a norm on X. In fact, let $\mathcal{B} = (b_i)_{i \in I}$ be an algebraic basis of X then for any $x \in X$ there exist a finite subset J of I and $\lambda_j \in \mathbb{K}$ for all $j \in J$ s.t. $x = \sum_{j \in J} \lambda_j b_j$ and so we can define $||x|| := \max_{j \in J} |\lambda_j|$. Then it is easy to check that $|| \cdot ||$ is a norm on X. Hence, S always contains the norm $|| \cdot ||$ and so it is separating.

4.5 Finite topology on a countable dimensional t.v.s.

In this section we are going to give an important example of finest locally convex topology on an infinite dimensional vector space, namely the *finite* topology on any countable dimensional vector space. For simplicity, we are going to focus on \mathbb{R} -vector spaces.

Definition 4.5.1. Let X be an infinite dimensional vector space whose dimension is countable. The finite topology τ_f on X is defined as follows:

 $U \subseteq X$ is open in τ_f iff $U \cap W$ is open in the euclidean topology on W for all finite dimensional subspaces W of X.

Equivalently, if we fix a Hamel basis $\{x_n\}_{n\in\mathbb{N}}$ of X and if for any $n\in\mathbb{N}$ we set $X_n := span\{x_1, \ldots, x_n\}$ s.t. $X = \bigcup_{i=1}^{\infty} X_i$ and $X_1 \subseteq \ldots \subseteq X_n \subseteq \ldots$, then $U \subseteq X$ is open in τ_f iff $U \cap X_i$ is open in the euclidean topology on X_i for every $i \in \mathbb{N}$.

We actually already know a concrete example of countable dimensional space with the finite topology:

Example 4.5.2. Let $n \in \mathbb{N}$ and $\underline{x} = (x_1, \ldots, x_n)$. Denote by $\mathbb{R}[\underline{x}]$ the space of polynomials in the *n* variables x_1, \ldots, x_n with real coefficients and by

 $\mathbb{R}_d[\underline{x}] := \{ f \in \mathbb{R}[\underline{x}] | \deg f \le d \}, d \in \mathbb{N}_0,$

then $\mathbb{R}[\underline{x}] := \bigcup_{d=0}^{\infty} \mathbb{R}_d[\underline{x}]$. The finite topology τ_f on $\mathbb{R}[\underline{x}]$ is then given by: $U \subseteq \mathbb{R}[\underline{x}]$ is open in τ_f iff $\forall d \in \mathbb{N}_0, U \cap \mathbb{R}_d[\underline{x}]$ is open in $\mathbb{R}_d[\underline{x}]$ with the euclidean topology.

Theorem 4.5.3. Let X be an infinite dimensional vector space whose dimension is countable endowed with the finite topology τ_f . Then: a) (X, τ_f) is a Hausdorff locally convex t.v.s.

b) τ_f is the finest locally convex topology on X