
4. Locally convex topological vector spaces

Hence, Q is directed.

It is possible to show (Sheet 9, Exercise 3) that a basis of neighbourhoods
of the origin for the l.c. topology ⌧Q induced by a directed family of seminorms
Q is given by:

B
d

:= {rŮ
q

: q 2 Q, r > 0}. (4.5)

4.3 Hausdor↵ locally convex t.v.s

In Section 2.2, we gave some characterization of Hausdor↵ t.v.s. which can
of course be applied to establish whether a locally convex t.v.s. is Hausdor↵
or not. However, in this section we aim to provide necessary and su�cient
conditions bearing only on the family of seminorms generating a locally convex
topology for being a Hausdor↵ topology.

Definition 4.3.1.
A family of seminorms P := {p

i

}
i2I on a vector space X is said to be sepa-

rating if
8x 2 X \ {o}, 9 i 2 I s.t. p

i

(x) 6= 0. (4.6)

Note that the separation condition (4.6) is equivalent to

p
i

(x) = 0, 8i 2 I ) x = o

which by using Proposition 4.2.10 can be rewritten as

\

i2I,c>0

cŮ
p

i

= {o},

since p
i

(x) = 0 is equivalent to say that p
i

(x) < c, for all c > 0.

It is clear that if any of the elements in a family of seminorms is actually
a norm, then the the family is separating.

Lemma 4.3.2. Let ⌧P be the topology induced by a separating family of semi-
norms P := (p

i

)
i2I on a vector space X. Then ⌧P is a Hausdor↵ topology.

Proof. Let x, y 2 X be such that x 6= y. Since P is separating, we have
that 9 i 2 I with p

i

(x � y) 6= 0. Then 9 ✏ > 0 s.t. p
i

(x � y) = 2✏. Let us
define V

x

:= {u 2 X | p
i

(x � u) < ✏} and V
y

:= {u 2 X | p
i

(y � u) < ✏}. By
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4.3. Hausdor↵ locally convex t.v.s

Proposition 4.2.10, we get that V
x

= x+"Ů
p

i

and V
y

= y+"Ů
p

i

. Since Theorem
4.2.9 guarantees that (X, ⌧P) is a t.v.s. where the set "Ů

p

i

is a neighbourhood
of the origin, V

x

and V
y

are neighbourhoods of x and y, respectively. They
are clearly disjoint. Indeed, if there would exist u 2 V

x

\ V
y

then

p
i

(x� y) = p
i

(x� u+ u� y)  p
i

(x� u) + p
i

(u� y) < 2"

which is a contradiction.

Proposition 4.3.3. A locally convex t.v.s. is Hausdor↵ if and only if its
topology can be induced by a separating family of seminorms.

Proof. Let (X, ⌧) be a locally convex t.v.s.. Then we know that there always
exists a basis N of neighbourhoods of the origin in X consisting of open
absorbing absolutely convex sets. Moreover, in Theorem 4.2.9, we have showed
that ⌧ = ⌧P where P is the family of seminorms given by the Minkowski
functionals of sets in N , i.e. P := {p

N

: N 2 N}, and also that for each
N 2 N we have N = Ů

p

N

.
Suppose that (X, ⌧) is also Hausdor↵. Then Proposition 2.2.3 ensures that

for any x 2 X with x 6= o there exists a neighbourhood V of the origin in X
s.t. x /2 V . This implies that there exists at least N 2 N s.t. x /2 N 2. Hence,
x /2 N = Ů

p

N

means that p
N

(x) � 1 and so p
N

(x) 6= 0, i.e. P is separating.
Conversely, if ⌧ is induced by a separating family of seminorms P, i.e.

⌧ = ⌧P , then Lemma 4.3.2 ensures that X is Hausdor↵.

Examples 4.3.4.

1. Every normed space is a Hausdor↵ locally convex space, since every norm
is a seminorm satisfying the separation property. Therefore, every Ba-
nach space is a complete Hausdor↵ locally convex space.

2. Every family of seminorms on a vector space containing a norm induces
a Hausdor↵ locally convex topology.

3. Given an open subset ⌦ of Rd with the euclidean topology, the space C(⌦)
of real valued continuous functions on ⌦ with the so-called topology of
uniform convergence on compact sets is a locally convex t.v.s.. This
topology is defined by the family P of all the seminorms on C(⌦) given
by p

K

(f) := max
x2K

|f(x)|, 8K ⇢ ⌦ compact.

2Since N is a basis of neighbourhoods of the origin, 9 M 2 N s.t. M ✓ V . If x would
belong to all elements of the basis then in particular it would be x 2 M and so also x 2 V ,
contradiction.
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4. Locally convex topological vector spaces

Moreover, (C(⌦), ⌧P) is Hausdor↵, because the family P is clearly sepa-
rating. In fact, if p

K

(f) = 0, 8K compact subsets of ⌦ then in particular
p{x}(f) = |f(x)| = 0 8x 2 ⌦, which implies f ⌘ 0 on ⌦.

More generally, for any X locally compact we have that C(X) with the
topology of uniform convergence on compact subsets of X is a locally
convex Hausdor↵ t.v.s.

To introduce two other examples of l.c. Hausdor↵ t.v.s. we need to recall
some standard general notations. Let N0 be the set of all non-negative integers.
For any x = (x1, . . . , x

d

) 2 Rd and ↵ = (↵1, . . . ,↵
d

) 2 Nd

0 one defines x↵ :=
x↵1
1 · · ·x↵d

d

. For any � 2 Nd

0, the symbol D� denotes the partial derivative of

order |�| where |�| :=
P

d

i=1 �i, i.e.

D� :=
@|�|

@x�1
1 · · · @x�d

d

=
@�1

@x�1
1

· · · @�

d

@x�d

d

.

Examples 4.3.5.

1. Let ⌦ ✓ Rd open in the euclidean topology. For any k 2 N0, let Ck(⌦) be
the set of all real valued k�times continuously di↵erentiable functions
on ⌦, i.e. all the derivatives of f of order  k exist (at every point of ⌦)
and are continuous functions in ⌦. Clearly, when k = 0 we get the set
C(⌦) of all real valued continuous functions on ⌦ and when k = 1 we
get the so-called set of all infinitely di↵erentiable functions or smooth
functions on ⌦. For any k 2 N0, Ck(⌦) (with pointwise addition and
scalar multiplication) is a vector space over R. The topology given by
the following family of seminorms on Ck(⌦):

p
m,K

(f) := sup
�2Nd0
|�|m

sup
x2K

�

�

�

(D�f)(x)
�

�

�

, 8K ✓ ⌦ compact, 8m 2 {0, 1, . . . , k},

makes Ck(⌦) into a l.c. Hausdor↵ t.v.s. (see Sheet 9, Exercise 2-a) for
the proof in the case k = 1).

2. The Schwartz space or space of rapidly decreasing functions on Rd is
defined as the set S(Rd) of all real-valued functions which are defined
and infinitely di↵erentiable on Rd and which have the additional property
(regulating their growth at infinity) that all their derivatives tend to zero
at infinity faster than any inverse power of x, i.e.

S(Rd) :=

(

f 2 C1(Rd) : sup
x2Rd

�

�

�

x↵D�f(x)
�

�

�

< 1, 8↵,� 2 Nd

0

)

.
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4.4. The finest locally convex topology

(For example, any smooth function f with compact support in Rd is
in S(Rd), since any derivative of f is continuous and supported on a
compact subset of Rd, so x↵(D�f(x)) has a maximum in Rd by the
extreme value theorem.)

The Schwartz space S(Rd) is a vector space over R and the topology
given by the family Q of seminorms on S(Rd):

q
↵,�

(f) := sup
x2Rd

�

�

�

x↵D�f(x)
�

�

�

, 8↵,� 2 Nd

0

makes S(Rd) into a l.c. Hausdor↵ t.v.s. (see Sheet 9, Exercise 2-b)).

Note that S(Rd) is a linear subspace of C1(Rd), but its topology ⌧Q on
S(Rd) is finer than the subspace topology induced on it by C1(Rd) (see
Sheet 9, Exercise 2-c)).

4.4 The finest locally convex topology

In the previous sections we have seen how to generate topologies on a vector
space which makes it into a locally convex t.v.s.. Among all of them, there is
the finest one (i.e. the one having the largest number of open sets) which is
usually called the finest locally convex topology on the given vector space.

Proposition 4.4.1. The finest locally convex topology on a vector space X is
the topology induced by the family of all seminorms on X and it is a Hausdor↵
topology.

Proof.
Let us denote by S the family of all seminorms on the vector space X. By
Theorem 4.2.9, we know that the topology ⌧S induced by S makes X into a
locally convex t.v.s. We claim that ⌧S is the finest locally convex topology. In
fact, if there was a finer locally convex topology ⌧ (i.e. if ⌧S ✓ ⌧ with (X, ⌧)
locally convex t.v.s.) then Theorem 4.2.9 would give that ⌧ is also induced by
a family P of seminorms. But surely P ✓ S and so ⌧ = ⌧P ✓ ⌧S by definition
of induced topology. Hence, ⌧ = ⌧S .

It remains to show that (X, ⌧S) is Hausdor↵. By Lemma 4.3.2, it is enough
to prove that S is separating. Let x 2 X \ {o} and let B be an algebraic basis
of the vector space X containing x (its existence is guaranteed by Zorn’s
lemma). Define the linear functional L : X ! K as L(x) = 1 and L(y) = 0
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4. Locally convex topological vector spaces

for all y 2 B \{x}. Then it is easy to see that s := |L| is a seminorm, so s 2 S
and s(x) 6= 0, which proves that S is separating.3

An alternative way of describing the finest locally convex topology on a
vector space X without using the seminorms is the following:

Proposition 4.4.2. The collection of all absorbing absolutely convex sets of
a vector space X is a basis of neighbourhoods of the origin for the finest locally
convex topology on X.

Proof. Let ⌧
max

be the finest locally convex topology onX andA the collection
of all absorbing absolutely convex sets of X. Since A fulfills all the properties
required in Theorem 4.1.14, there exists a unique topology ⌧ which makes
X into a locally convex t.v.s.. Hence, by definition of finest locally convex
topology, ⌧ ✓ ⌧

max

. On the other hand, (X, ⌧
max

) is itself locally convex and
so Theorem 4.1.14 ensures that has a basis B

max

of neighbourhoods of the
origin consisting of absorbing absolutely convex subsets of X. Then clearly
B
max

is contained in A and, hence, ⌧
max

✓ ⌧ .

This result can be proved also using Proposition 4.4.1 and the correspon-
dence between Minkowski functionals and absorbing absolutely convex subsets
of X introduced in the Section 4.2 (Sheet 10, Exercise 4).

Proposition 4.4.3. Every linear functional on a vector space X is continuous
w.r.t. the finest locally convex topology on X.

Proof. Let L : X ! K be a linear functional on a vector space X. For any
" > 0, we denote by B

"

(0) the open ball in K of radius " and center 0 2 K,
i.e. B

"

(0) := {k 2 K : |k| < "}. Then we have that L�1(B
"

(0)) = {x 2 X :
|L(x)| < "}. It is easy to verify that the latter is an absorbing absolutely
convex subset of X and so, by Proposition 4.4.2, it is a neighbourhood of the
origin in the finest locally convex topology on X. Hence L is continuous at
the origin and so, by Proposition 2.1.15-3), L is continuous everywhere in X.

3Alternatively, we can show that S is separating by proving that there always exists a
norm on X. In fact, let B = (b

i

)
i2I

be an algebraic basis of X then for any x 2 X there
exist a finite subset J of I and �

j

2 K for all j 2 J s.t. x =
P

j2J

�

j

b

j

and so we can define
kxk := max

j2J

|�
j

|. Then it is easy to check that k · k is a norm on X. Hence, S always
contains the norm k · k and so it is separating.
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4.5. Finite topology on a countable dimensional t.v.s.

4.5 Finite topology on a countable dimensional t.v.s.

In this section we are going to give an important example of finest locally
convex topology on an infinite dimensional vector space, namely the finite
topology on any countable dimensional vector space. For simplicity, we are
going to focus on R�vector spaces.

Definition 4.5.1. Let X be an infinite dimensional vector space whose di-
mension is countable. The finite topology ⌧

f

on X is defined as follows:
U ✓ X is open in ⌧

f

i↵ U \W is open in the euclidean topology on W for all
finite dimensional subspaces W of X.
Equivalently, if we fix a Hamel basis {x

n

}
n2N of X and if for any n 2 N we

set X
n

:= span{x1, . . . , xn} s.t. X =
S1

i=1Xi

and X1 ✓ . . . ✓ X
n

✓ . . ., then
U ✓ X is open in ⌧

f

i↵ U \ X
i

is open in the euclidean topology on X
i

for
every i 2 N.

We actually already know a concrete example of countable dimensional
space with the finite topology:

Example 4.5.2. Let n 2 N and x = (x1, . . . , xn). Denote by R[x] the space
of polynomials in the n variables x1, . . . , xn with real coe�cients and by

R
d

[x] := {f 2 R[x]| deg f  d}, d 2 N0,

then R[x] :=
S1

d=0Rd

[x]. The finite topology ⌧
f

on R[x] is then given by:
U ✓ R[x] is open in ⌧

f

i↵ 8d 2 N0, U \ R
d

[x] is open in R
d

[x] with the
euclidean topology.

Theorem 4.5.3. Let X be an infinite dimensional vector space whose dimen-
sion is countable endowed with the finite topology ⌧

f

. Then:
a) (X, ⌧

f

) is a Hausdor↵ locally convex t.v.s.
b) ⌧

f

is the finest locally convex topology on X
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