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4.5 Finite topology on a countable dimensional t.v.s.

In this section we are going to give an important example of finest locally
convex topology on an infinite dimensional vector space, namely the finite
topology on any countable dimensional vector space. For simplicity, we are
going to focus on R�vector spaces.

Definition 4.5.1. Let X be an infinite dimensional vector space whose di-
mension is countable. The finite topology ⌧

f

on X is defined as follows:
U ✓ X is open in ⌧

f

i↵ U \W is open in the euclidean topology on W for all
finite dimensional subspaces W of X.
Equivalently, if we fix a Hamel basis {x

n

}
n2N of X and if for any n 2 N we

set X
n

:= span{x1, . . . , xn} s.t. X =
S1

i=1Xi

and X1 ✓ . . . ✓ X
n

✓ . . ., then
U ✓ X is open in ⌧

f

i↵ U \ X
i

is open in the euclidean topology on X
i

for
every i 2 N.

We actually already know a concrete example of countable dimensional
space with the finite topology:

Example 4.5.2. Let n 2 N and x = (x1, . . . , xn). Denote by R[x] the space
of polynomials in the n variables x1, . . . , xn with real coe�cients and by

R
d

[x] := {f 2 R[x]| deg f  d}, d 2 N0,

then R[x] :=
S1

d=0Rd

[x]. The finite topology ⌧
f

on R[x] is then given by:
U ✓ R[x] is open in ⌧

f

i↵ 8d 2 N0, U \ R
d

[x] is open in R
d

[x] with the
euclidean topology.

Theorem 4.5.3. Let X be an infinite dimensional vector space whose dimen-
sion is countable endowed with the finite topology ⌧

f

. Then:
a) (X, ⌧

f

) is a Hausdor↵ locally convex t.v.s.
b) ⌧

f

is the finest locally convex topology on X

Proof.
a) We leave to the reader the proof of the fact that ⌧

f

is compatible with the
linear structure of X (Sheet 10, Exercise 3) and we focus instead on proving
that ⌧

f

is a locally convex topology. To this aim we are going to show that
for any open neighbourhood U of the origin in (X, ⌧

f

) there exists an open
convex neighbourhood U 0 ✓ U .

Let {x
i

}
i2N be an R-basis for X and set X

n

:= span{x1, . . . , xn} for any
n 2 N. We proceed (by induction on n 2 N) to construct an increasing
sequence C

n

✓ U \X
n

of convex subsets as follows:
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4. Locally convex topological vector spaces

• For n = 1: Since U \X1 is open in X1 = Rx1, we have that there exists
a1 2 R+ such that C1 :=

�

�1x1 | � a1  �1  a1
 

✓ U \X1.
• Inductive assumption on n: We assume we have found a1, . . . , an 2 R+

such that C
n

:=
�

�1x1 + . . .+ �
n

x
n

|� a
i

 �
i

 a
i

; i 2 {1, . . . , n}
 

✓
U \X

n

. Note that C
n

is closed in X
n

as well as in X
n+1.

• For n+ 1: We claim 9 a
n+1 2 R+ such that

C
n+1 :=

�

�1x1+. . .+�
n

x
n

+�
n+1xn+1|�a

i

 �
i

 a
i

; i 2 {1, . . . , n+
1}
 

✓ U \X
n+1.

Proof of claim: If the claim does not hold, then 8 N 2 N 9 xN 2 X
n+1

s.t.
xN = �N

1 x1 + . . .�N

n

x
n

+ �N

n+1xn+1

with �a
i

 �N

i

 a
i

for i 2 {1, . . . , n}, � 1

N
 �N

n+1 
1

N
and xN /2 U .

But xN has form xN = �N

1 x1 + . . .+ �N

n

x
n

| {z }

2 C

n

+�N

n+1xn+1, so {xN}
N2N

is a bounded sequence in X
n+1\U . Therefore, we can find a subsequence

{xNj}
j2N which is convergent as j ! 1 to x 2 C

n

✓ U (since C
n

is
closed in X

n+1 and the (n + 1)�th component of xNj tends to 0 as
j ! 1). Hence, the sequence {xNj}

j2N ✓ X
n+1 \U converges to x 2 U

but this contradicts the fact that X
n+1 \ U is closed in X

n+1. This
establishes the claim.

Now for any n 2 N consider

D
n

:=
�

�1x1 + . . .+ �
n

x
n

|� a
i

< �
i

< a
i

; i 2 {1, . . . , n}
 

,

then D
n

⇢ C
n

✓ U \X
n

is open and convex in X
n

. Then U 0 := [
n2NDn

is
an open and convex neighbourhood of the origin in (X, ⌧

f

) and U 0 ✓ U .

b) Let us finally show that ⌧
f

is actually the finest locally convex topology
⌧
max

on X which gives in turn also that (X, ⌧
f

) is Hausdor↵. Since we have
already showed that ⌧

f

is a l.c. topology on X, clearly we have ⌧
f

✓ ⌧
max

by
definition of finest l.c. topology on X.

Conversely, let us consider U ✓ X open in ⌧
max

. We want to show that
U is open in ⌧

f

, i.e. W \ U is open in the euclidean topology on W for any
finite dimensional subspace W of X. Now each W inherits ⌧

max

from X.
Let us denote by ⌧W

max

the subspace topology induced by (X, ⌧
max

) on W . By
definition of subspace topology, we have thatW\U is open in ⌧W

max

. Moreover,
by Proposition 4.4.1, we know that (X, ⌧

max

) is a Hausdor↵ t.v.s. and so
(W, ⌧W

max

) is a finite dimensional Hausdor↵ t.v.s. (see by Proposition 2.1.15-
1). Therefore, ⌧W

max

has to coincide with the euclidean topology by Theorem
3.1.1 and, consequently, W\U is open w.r.t. the euclidean topology onW .
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4.6. Continuity of linear mappings on locally convex spaces

4.6 Continuity of linear mappings on locally convex spaces

Since locally convex spaces are a particular class of topological vector spaces,
the natural functions to be considered on this spaces are continuous linear
maps. In this section, we present a necessary and su�cient condition for
the continuity of a linear map between two l.c. spaces, bearing only on the
seminorms inducing the two topologies.

For simplicity, let us start with linear functionals on a l.c. space. Recall
that for us K = R or K = C endowed with the euclidean topology given by
the absolute value | · |. In this section, for any " > 0 we denote by B

"

(0) the
open ball in K of radius " and center 0 2 K i.e. B

"

(0) := {k 2 K : |k| < "}.

Proposition 4.6.1. Let ⌧ be a locally convex topology on a vector space X
generated by a directed family Q of seminorms on X. Then L : X ! K is a ⌧ -
continuous linear functional i↵ there exists q 2 Q such that L is q-continuous,
i.e.

9q 2 Q, 9C > 0 s.t. |L(x)|  Cq(x), 8x 2 X. (4.7)

Proof.
Let us first observe that since X and K are both t.v.s. by Proposition 2.1.15-3)
the continuity of L is equivalent to its continuity at the origin. Therefore, it
is enough to prove the criterion for the continuity of L at the origin.

The ⌧ -continuity of L at the origin in X means that for any " > 0
L�1(B

"

(0)) = {x 2 X : |L(x)| < "} is an open neighbourhood of the origin in
(X, ⌧). Since the family Q inducing ⌧ is directed, a basis of neighbourhood of
the origin in (X, ⌧) is given by B

d

as in (4.5). Therefore, L is ⌧ -continuous at
the origin in X if and only if 8 " > 0, 9B 2 B

d

s.t. B ✓ L�1(B
"

(0)), i.e.

8 " > 0, 9 q 2 Q, 9 r > 0 s.t. rŮ
q

✓ L�1(B
"

(0)). (4.8)

4 ()) Suppose L is ⌧ -continuous at the origin in X then (4.8) implies that L
is q�continuous at the origin, because rŮ

q

is clearly an open neighbourhood
of the origin in X w.r.t. the topology generated by the single seminorm q.

(() Suppose that there exists q 2 Q s.t. L is q-continuous in X. Then,
since ⌧ is the topology induced by the whole family Q which is finer than
the one induced by the single seminorm q, we clearly have that L is also
⌧�continuous.

4Alternative proof: By simply observing that |L| is a seminorm and by using Proposi-
tion 4.2.10, one can get that (4.7) is equivalent to (4.8) and so to the q-continuity of L at
the origin.
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4. Locally convex topological vector spaces

By using this result together with Proposition 4.2.14 we get the following.

Corollary 4.6.2. Let ⌧ be a locally convex topology on a vector space X
generated by a family P := {p

i

}
i2I of seminorms on X. Then L : X ! K is

a ⌧ -continuous linear functional i↵ there exist n 2 N, i1, . . . , in 2 I such that
L is

�

max
k=1,...,n

p
i

k

�

-continuous, i.e.

9n 2 N, 9 i1, . . . , in 2 I, 9C > 0 s.t. |L(x)|  C max
k=1,...,n

p
i

k

(x), 8x 2 X.

The proof of Proposition 4.6.1 can be easily modified to get the following
more general criterion for the continuity of any linear map between two locally
convex spaces.

Theorem 4.6.3. Let X and Y be two locally convex t.v.s. whose topologies
are respectively generated by the families P and Q of seminorms on X. Then
f : X ! Y linear is continuous i↵

8 q 2 Q, 9n 2 N, 9 p1, . . . , pn 2 P, 9C > 0 : q(f(x))  C max
i=1,...,n

p
i

(x), 8x 2 X.

Proof. (Sheet 11, Exercise 2)
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Chapter 5

The Hahn-Banach Theorem
and its applications

5.1 The Hahn-Banach Theorem

One of the most important results in the theory of t.v.s. is the Hahn-Banach
theorem (HBT). It is named for Hans Hahn and Stefan Banach who proved
this theorem independently in the late 1920s, dealing with the problem of ex-
tending continuous linear functionals defined on a subspace of a seminormed
vector space to the whole space. We will see that actually this extension
problem can be reduced to the problem of separating by a closed hyperplane
a convex open set and an a�ne submanifold (the image by a translation of a
linear subspace) which do not intersect. Indeed, there are several versions of
HBT in literature, but we are going to present just two of them as represen-
tatives of the analytic and the geometric side of this result.

Before stating these two versions of HBT, let us recall the notion of hy-
perplane in a vector space (we always consider vector spaces over the field
K which is either R or C). A hyperplane H in a vector space X over K is
a maximal proper linear subspace of X or, equivalently, a linear subspace of
codimension one, i.e. dimX/H = 1. Another equivalent formulation is that a
hyperplane is a set of the form '�1({0}) for some linear functional ' : X ! K
not identically zero. The translation by a non-null vector of a hyperplane will
be called a�ne hyperplane.

Theorem 5.1.1 (Analytic form of Hahn-Banach thm (for seminormed spaces)).
Let p be a seminorm on a vector space X over K, M a linear subspace of X,
and f a linear functional on M such that

|f(x)|  p(x), 8x 2 M. (5.1)

There exists a linear functional f̃ on X such that f̃(x) = f(x), 8x 2 M and

|f̃(x)|  p(x), 8x 2 X. (5.2)
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5. The Hahn-Banach Theorem and its applications

Theorem 5.1.2 (Geometric form of Hahn-Banach theorem ).
Let X be a topological vector space over K, N a linear subspace of X, and ⌦
a convex open subset of X such that N \ ⌦ = ;. Then there exists a closed
hyperplane H of X such that

N ✓ H and H \ ⌦ = ;. (5.3)

It should be remarked that the vector space X does not apparently carry
any topology in Theorem 5.1.1, but actually the datum of a seminorm on X
is equivalent to the datum of the topology induced by this seminorm. It is
then clear that the conditions (5.1) and (5.2) imply the p�continuity of the
functions f and f̃ , respectively.

Let us also stress the fact that in Theorem 5.1.2 neither local convexity nor
the Hausdor↵ separation property are assumed on the t.v.s. X. Moreover, it is
easy to see that the geometric form of HBT could have been stated also in an
a�ne setting, namely starting with any a�ne submanifold N of X which does
not intersect the open convex subset ⌦ and getting a closed a�ne hyperplane
fulfilling (5.3).

We will first show how to derive Theorem 5.1.1 from Theorem 5.1.2 and
then give a proof of Theorem 5.1.2.

Before starting the proofs, let us fix one more definition. A convex cone
C in a vector space X over R is a subset of X which is closed under addition
and multiplication by positive scalars.

Proof. Theorem 5.1.2 ) Theorem 5.1.1
Let p be a seminorm on the vector space X, M a linear subspace of X, and f
a linear functional defined on M fulfilling (5.1). As already remarked before,
this means that f is continuous on M w.r.t. the topology induced by p on X
(which makes X a l.c. t.v.s.).

Consider the subset N := {x 2 M : f(x) = 1}. Taking any vector
x0 2 N , it is easy to see that N � x0 = Ker(f) (i.e. the kernel of f in
M), which is a hyperplane of M and so a linear subspace of X. Therefore,
setting M0 := N � x0, we have the following decomposition of M :

M = M0 �Kx0,

where Kx0 is the one-dimensional linear subspace through x0. In other words

8x 2 M, 9!� 2 K, y 2 M0 : x = y + �x0.

Then
8x 2 M, f(x) = f(y) + �f(x0) = �f(x0) = �,
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5.1. The Hahn-Banach Theorem

which means that the values of f on M are completely determined by the ones
on N . Consider now the open unit semiball of p:

U := Ů
p

= {x 2 X : p(x) < 1},

which we know being an open convex subset of X endowed with the topology
induced by p. Then N \U = ; because if there was x 2 N \U then p(x) < 1
and f(x) = 1, which contradict (5.1).

By Theorem 5.1.2 (a�ne version), there exists a closed a�ne hyperplane
H of X with the property that N ✓ H and H \ U = ;. Then H � x0
is a hyperplane and so the kernel of a continuous linear functional f̃ on X
non-identically zero.

Arguing as before (consider here the decomposition X = (H�x0)�Kx0),
we can deduce that the values of f̃ on X are completely determined by the
ones on N and so on H (because for any h 2 H we have h�x0 2 Ker(f̃) and
so f̃(h) � f̃(x0) = f̃(h � x0) = 0). Since f̃ 6⌘ 0, we have that f̃(x0) 6= 0 and
w.l.o.g. we can assume f̃(x0) = 1 i.e. f̃ ⌘ 1 on H. Therefore, for any x 2 M
there exist unique � 2 K and y 2 N � x0 ✓ H � x0 s.t. x = y + �x0, we get
that:

f̃(x) = �f̃(x0) = � = �f(x0) = f(x),

i.e. f is the restriction of f̃ to M . Furthermore, the fact that H\U = ; means
that f̃(x) = 1 implies p(x) � 1. Then for any y 2 X s.t. f̃(y) 6= 0 we have

that: f̃
⇣

y

f̃(y)

⌘

= 1 and so that p
⇣

y

f̃(y)

⌘

� 1 which implies that |f̃(y)|  p(y).

The latter obviously holds for f̃(y) = 0. Hence, (5.2) is established.
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