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convex sets and to the multivariate moment problem. From now on we will
focus on t.v.s. over the field of real numbers.

5.2.1 Separation of convex subsets of a real t.v.s.

Let X t.v.s.over the field of real numbers and H be a closed a�ne hyperplane
of X. We say that two disjoint subsets A and B of X are separated by H
if A is contained in one of the two closed half-spaces determined by H and
B is contained in the other one. We can express this property in terms of
functionals. Indeed, since H = L�1({a}) for some L : X ! R linear not
identically zero and some a 2 R, we can write that A and B are separated by
H if and only if:

9 a 2 R s.t. L(A) � a and L(B)  a.

where for any S ✓ X the notation L(S)  a simply means 8s 2 S,L(s)  a
(and analogously for �, <,>,=, 6=).
We say that A and B are strictly separated by H if at least one of the two
inequalities is strict. (Note that there are several definition in literature for
the strict separation but for us it will be just the one defined above) In the
present subsection we would like to investigate whether one can separate, or
strictly separate, two disjoint convex subsets of a real t.v.s..

Proposition 5.2.1. Let X be a t.v.s. over the real numbers and A,B two
disjoint nonempty convex subsets of X.
a) If A is open, then there exists a closed a�ne hyperplane H of X separating

A and B, i.e. there exists a 2 R and a functional L : X ! R linear not
identically zero s.t. L(A) � a and L(B)  a.

b) If A and B are both open, the hyperplane H can be chosen so as to strictly
separate A and B, i.e. there exists a 2 R and L : X ! R linear not
identically zero s.t. L(A) � a and L(B) < a.

c) If A is a cone and B is open, then a can be chosen to be zero, i.e. there
exists L : X ! R linear not identically zero s.t. L(A) � 0 and L(B) < 0.

Proof.

a) Consider the set A�B := {a� b : a 2 A, b 2 B}. Then: A�B is an open
subset of X as it is the union of the open sets A � y as y varies over B;
A�B is convex as it is the Minkowski sum of the convex sets A and �B;
and o /2 (A�B) because if this was the case then there would be at least a
point in the intersection of A and B which contradicts the assumption that
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they are disjoint. By applying Theorem 5.1.2 to N = {o} and U = A�B
we have that there is a closed hyperplane H of X which does not intersect
A�B (and passes through the origin) or, which is equivalent, there exists a
linear form f on X not identically zero such that f(A�B) 6= 0. Then there
exists a linear form L on X not identically zero such that L(A � B) > 0
(in the case f(A�B) < 0 just take L := �f) i.e.

8x 2 A, 8 y 2 B, L(x) > L(y). (5.5)

Since B 6= ; we have that a := inf
x2A L(x) > �1. Then (5.5) implies that

L(B)  a and we clearly have L(A) � a.
b) Let now both A and B be open convex and nonempty disjoint subsets of

X. By part a) we have that there exists a 2 R and L : X ! R linear not
identically zero s.t. L(A) � a and L(B)  a. Suppose that there exists
b 2 B s.t. L(b) = a. Since B is open, for any x 2 X there exists " > 0 s.t.
for all t 2 [0, "] we have b+ tx 2 B. Therefore, as L(B)  a, we have that

L(b+ tx)  a, 8 t 2 [0, "]. (5.6)

Now fix x 2 X, consider the function f(t) := L(b+ tx) for all t 2 R whose
first derivative is clearly given by f 0(t) = L(x) for all t 2 R. Then (5.6)
means that t = 0 is a point of local maximum for f and so f 0(0) = 0 i.e.
L(x) = 0. As x is an arbitrary point of x, we get L ⌘ 0 on X which is a
contradiction. Hence, L(B) < a.

c) Let now A be a nonempty convex cone of X and B an open convex
nonempty subset of X s.t. A \ B = ;. By part a) we have that there
exists a 2 R and L : X ! R linear not identically zero s.t. L(A) � a and
L(B)  a. Since A is a cone, for any t > 0 we have that tA ✓ A and so
tL(A) = L(tA) � a i.e. L(A) � a

t

. This implies that L(A) � inf
t>0

a

t

= 0.
Moreover, part a) also gives that L(B) < L(A). Therefore, for any t > 0
and any x 2 A, we have in particular L(B) < L(tx) = tL(x) and so
L(B)  inf

t>0 tL(x) = 0. Since B is also open, we can exactly proceed as
in part b) to get L(B) < 0.

Let us show now two interesting consequences of this result which we will
use in the following subsection.

Corollary 5.2.2. Let (X, ⌧) be a locally convex t.v.s. over R endowed. If C is
a nonempty closed convex cone in X and x0 2 X \C then there exists a linear
functional L : X ! R non identically zero s.t. L(C) � 0 and L(x0) < 0.
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Proof. As C is closed in (X, ⌧) and x0 2 X \C, we have that X \C is an open
neighbourhood of x0. Then the local convexity of (X, ⌧) guarantees that there
exists an open convex neighbourhood V of x0 s.t. V ✓ X \ C i.e. V \ C = ;.
By Proposition 5.2.1-c), we have that there exists L : X ! R linear not
identically zero s.t. L(C) � 0 and L(V ) < 0, in particular L(x0) < 0.

Before giving the second corollary, let us introduce some notations. Given
a convex cone C in a t.v.s. (X, ⌧) we define the first and the second dual of C
w.r.t. ⌧ respectively as follows:

C_
⌧

:= {` : X ! R linear |` is ⌧ � continuous and `(C) � 0}

C__
⌧

:= {x 2 X |8 ` 2 C_
⌧

, `(x) � 0}.

Corollary 5.2.3. Let X be real vector space endowed with the finest locally
convex topology '. If C is a nonempty convex cone in X, then C

'

= C__
'

.

Proof. Let us first observe that C
' ✓ C__

'

. Indeed, if x 2 C
'

then for any
` 2 C_

'

we have by definition of first dual of C that `(x) � 0. Hence, x 2 C__
'

.

Conversely, suppose there exists x0 2 C__
'

\C'

. By Corollary 5.2.2, there

exists a linear functional L : X ! R non identically zero s.t. L(C
'

) � 0 and
L(x0) < 0. As L(C) � 0 and every linear functional is '�continuous, we have
L 2 C_

'

. This together with the fact that L(x0) < 0 give x0 /2 C__
'

, which is

a contradiction. Hence, C
'

= C__
'

.

5.2.2 Multivariate real moment problem

The moment problem has been first introduced by Stieltjes in 1894 (see [6])
for the case K = [0,+1), as a mean of studying the analytic behaviour of
continued fractions. Since then it has been largely investigated in a wide
range of subjects, but the theory is still far from being up to the demand of
applications. In this section we are going to give a very brief introduction to
this problem in the finite dimensional setting but for more detailed surveys
on this topics see e.g. [1, 4, 5].

Let µ be a nonnegative Borel measure defined on R. The n�th moment
of µ is defined as

mµ

n

:=

Z

R
xnµ(dx)

If all moments of µ exist and are finite, then (mµ

n

)1
n=0 is called the moment

sequence of µ. The moment problem addresses exactly the inverse question.
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Definition 5.2.4 (Univariate real K�moment problem).
Given a sequence m := (m

n

)1
n=0 with m

n

2 R and a closed subset K of R,
does there exists a nonnegative finite Borel measure µ having m as its moment
sequence and support supp(µ) contained in K, i.e. such that

m
n

=

Z

K

xnµ(dx), 8n 2 N0 and supp(µ) ✓ K?

If such a measure exists, we say that µ is a K-representing measure for
m and that it is a solution to the K�moment problem for ..

To any sequence m := (m
n

)1
n=0 of real numbers we can always associate

the so-called Riesz’ functional defined by:

L
m

: R[x] ! R

p(x) :=
N

P

n=0
p
n

xn 7! L
m

(p) :=
N

P

n=0
p
n

m
n

.

If µ is a K�representing measure for m, then

L
m

(p) =
N

X

n=0

p
n

m
n

=
N

X

n=0

p
n

Z

K

xnµ(dx) =

Z

K

p(x)µ(dx).

Hence, we can reformulate the univariate K�moment problem in terms of
linear functionals as follows:

Definition 5.2.5 (Univariate real K�moment problem).
Given a closed subset K of Rd and a linear functional L : R[x] ! R, does
there exists a nonnegative finite Borel measure µ s.t.

L(p) =

Z

Rd

p(x)µ(dx), 8p 2 R[x]

and supp(µ) ✓ K?

This formulation clearly shows us how to pose the problem in higher di-
mensions, but before that let us fix some notations. Let d 2 N and let R[x] be
the ring of polynomials with real coe�cients and d variables x := (x1, . . . , x

d

).
Fixed a subset K of Rd, we denote by

Psd(K) := {p 2 R[x] : p(x) � 0, 8x 2 K}.
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Definition 5.2.6 (Multivariate real K�moment problem).
Given a closed subset K of Rd and a linear functional L : R[x] ! R, does
there exists a nonnegative finite Borel measure µ s.t.

L(p) =

Z

Rd

p(x)µ(dx), 8p 2 R[x]

and supp(µ) ✓ K?
If such a measure exists, we say that µ is a K-representing measure for L

and that it is a solution to the K�moment problem for L.

A necessary condition for the existence of a solution to the K�moment
problem for the linear functional L is clearly that L is nonnegative on Psd(K).
In fact, if there exists a K�representing measure µ for L then for all p 2
Psd(K) we have

L(p) =

Z

Rd

p(x)µ(dx) =

Z

K

p(x)µ(dx) � 0

since µ is nonnegative and supported on K and p is nonnegative on K.
It is then natural to ask if the nonnegative of L on Psd(K) is also su�cient.

The answer is positive and it was established by Riesz in 1923 for d = 1 and
by Haviland for any d � 2.

Theorem 5.2.7 (Riesz-Haviland Theorem). Let K be a closed subset of Rd

and L : R[x] ! R be linear. L has a K�representing measure if and only if
L(Psd(K)) � 0.

Note that this theorem provides a complete solution for the K� moment
problem but it is quite unpractical! In fact, it reduces the K�moment prob-
lem to the problem of classifying all polynomials which are nonnegative on a
prescribed closed subset K of Rd i.e. to characterize Psd(K). This is actu-
ally a hard problem to be solved for general K and it is a core question in
real algebraic geometry. For example, if we think of the case K = Rd then
for d = 1 we know that Psd(K) =

P

R[x]2, where
P

R[x]2 denotes the set
of squares of polynomials. However, for d � 2 this equality does not hold
anymore as it was proved by Hilbert in 1888. It is now clear that to make
the conditions of the Riesz-Haviland theorem actually checkable we need to
be able to write/approximate a non-negative polynomial on K by polynomi-
als whose non-negativity is “more evident”, i.e. sums of squares or elements
of quadratic modules of R[x]. For a special class of closed subsets of Rd we
actually have such representations and we can get better conditions than the
ones of Riesz-Haviland type to solve the K�moment problem.
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Definition 5.2.8. Given a finite set of polynomials S := {g1, . . . , gs}, we call
the basic closed semialgebraic set generated by S the following

K
S

:= {x 2 Rd : g
i

(x) � 0, i = 1, . . . , s}.

Definition 5.2.9. A subset M of R[x] is said to be a quadratic module if
1 2 M , M +M ✓ M and h2M ✓ M for any h 2 R[x].

Note that each quadratic module is a convex cone in R[x].

Definition 5.2.10. A quadratic module M of R[x] is called Archimedean if
there exists N 2 N s.t. N � (

P

d

i=1 x
2
i

) 2 M .

For S := {g1, . . . , gs} finite subset of R[x], we define the quadratic module
generated by S to be:

M
S

:=

(

s

X

i=0

�
i

g
i

: �
i

2
X

R[x]2, i = 0, 1, . . . , s

)

,

where g0 := 1.

Remark 5.2.11. Note that M
S

✓ Psd(K
S

) and M
S

is the smallest quadratic
module of R[x] containing S.

Consider now the finite topology on R[x] (see Definition 4.5.1) which we
have proved to be the finest locally convex topology on this space (see Propo-
sition 4.5.3) and which we therefore denote by '. By Corollary 5.2.3, we get
that

M
S

'

= (M
S

)__
'

(5.7)

Moreover, the Putinar Positivstellesatz (1993), a milestone result in real al-
gebraic geometry, provides that if M

S

is Archimedean then

Psd(K
S

) ✓ M
S

'

. (5.8)

Note that M
S

is Archimedean implies that K
S

is compact while the converse
is in general not true (see e.g. [5]).

Combining (5.7) and (5.8), we get the following result.

Proposition 5.2.12. Let S := {g1, . . . , gs} be a finite subset of R[x] and
L : R[x] ! R linear. Assume that M

S

is Archimedean. Then there exists a
K

S

-representing measure µ for L if and only if L(M
S

) � 0, i.e. L(h2g
i

) � 0
for all h 2 R[x] and for all i 2 {1, . . . , s}.
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Proof. Suppose that L(M
S

) � 0 and let us consider the finite topology '
on R[x]. Then the linear functional L is '-continuous and so L 2 (M

S

)_
'

.
Moreover, as M

S

is assumed to be Archimedean, we have

Psd(K
S

)
(5.8)
✓ M

S

'

(5.7)
= (M

S

)__
'

.

Since any p 2 Psd(K
S

) is also an element of (M
S

)__
'

, we have that for any
` 2 (M

S

)_
'

, `(Psd(K
S

)) � 0 and in particular L(Psd(K
S

)) � 0. Hence, by
Riesz-Haviland theorem we get the existence of a K

S

-representing measure µ
for L.

Conversely, suppose that the there exists a K
S

-representing measure µ
for L. Then for all p 2 M

S

we have in particular that

L(p) =

Z

Rd

p(x)µ(dx)

which is nonnegative as µ is a nonnegative measure supported on K
S

and
p 2 M

S

✓ Psd(K
S

).

From this result and its proof we understand that whenever we know that
Psd(K

S

) ✓ M
S

'

, we need to check only that L(M
S

) � 0 to find out whether
or not there exists a solution for the K

S

�moment problem for L. Then it
makes sense to look for closure results of this kind in the case when M

S

is
not Archimedean and so we cannot apply the Putinar Positivstellesatz. Ac-
tually, whenever we can find a locally convex topology ⌧ on R[x] for which
Psd(K

S

) ✓ M
S

⌧

, the conditions L(M
S

) � 0 is necessary and su�cient for
the existence of a solution of the K

S

�moment problem for any ⌧�continuous
linear functional L on R[x] (see [2]). This relationship between the closure of
quadratic modules and the representability of functionals continuous w.r.t. lo-
cally convex topologies started a new research line in the study of the moment
problem which is still bringing interesting results.
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