
1. Preliminaries

The Hausdor↵ criterion could be paraphrased by saying that smaller neigh-
borhoods make larger topologies. This is a very intuitive theorem, because
the smaller the neighbourhoods are the easier it is for a set to contain neigh-
bourhoods of all its points and so the more open sets there will be.

Proof.
) Suppose ⌧ ✓ ⌧ 0. Fixed any point x 2 X, let U 2 B(x). Then, since U is

a neighbourhood of x in (X, ⌧), there exists O 2 ⌧ s.t. x 2 O ✓ U . But O 2 ⌧
implies by our assumption that O 2 ⌧ 0, so U is also a neighbourhood of x in
(X, ⌧ 0). Hence, by Def. 1.1.11 for B0(x), there exists V 2 B0(x) s.t. V ✓ U .

( Conversely, let W 2 ⌧ . Then W is a neighbourhood of x w.r.t. ⌧ . Since
B(x) is a base of neighbourhoods w.r.t. ⌧ , for each x 2 W there exists U 2 B(x)
such that x 2 U ✓ W . This together with the assumption guarantees that
there exists V 2 B0(x) s.t. x 2 V ✓ U ✓ W . Hence, by Remark 1.1.10, we
have W 2 ⌧ 0.

1.1.3 Reminder of some simple topological concepts

Definition 1.1.18. Given a topological space (X, ⌧) and a subset S of X, the
subset or induced topology on S is defined by ⌧

S

:= {S \U | U 2 ⌧}. That is,
a subset of S is open in the subset topology if and only if it is the intersection
of S with an open set in (X, ⌧).
Alternatively, we can define the subspace topology for a subset S of X as the
coarsest topology for which the inclusion map ◆ : S ,! X is continuous.

Note that (S, ⌧
s

) is a topological space in its own.

Definition 1.1.19. Given a collection of topological space (X
i

, ⌧
i

), where i 2 I
(I is an index set possibly uncountable), the product topology on the Cartesian
product X :=

Q
i2I Xi

is defined in the following way: a set U is open in X
i↵ it is an arbitrary union of sets of the form

Q
i2I Ui

, where each U
i

2 ⌧
i

and
U
i

6= X
i

for only finitely many i.
Alternatively, we can define the product topology to be the coarsest topology
for which all the canonical projections p

i

: X ! X
i

are continuous.

Given a topological space X, we define:

Definition 1.1.20.

• The closure of a subset A ✓ X is the smallest closed set containing A.
It will be denoted by Ā. Equivalently, Ā is the intersection of all closed
subsets of X containing A.

• The interior of a subset A ✓ X is the largest open set contained in it.
It will be denoted by Å. Equivalently, Å is the union of all open subsets
of X contained in A.
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1.1. Topological spaces

Proposition 1.1.21. Given a top. space X and A ✓ X, the following hold.
• A point x is a closure point of A, i.e. x 2 Ā, if and only if each

neighborhood of x has a nonempty intersection with A.
• A point x is an interior point of A, i.e. x 2 Å, if and only if there exists

a neighborhood of x which entirely lies in A.
• A is closed in X i↵ A = Ā.
• A is open in X i↵ A = Å.

Proof. (Sheet 2, Exercise 1)

Example 1.1.22. Let ⌧ be the standard euclidean topology on R. Consider
X := (R, ⌧) and Y :=

�
(0, 1], ⌧

Y

�
, where ⌧

Y

is the topology induced by ⌧ on
(0, 1]. The closure of (0, 12) in X is [0, 12 ], but its closure in Y is (0, 12 ].

Definition 1.1.23. Let A and B be two subsets of the same topological space X.
A is dense in B if B ✓ Ā. In particular, A is said to be dense in X (or ev-
erywhere dense) if Ā = X.

Examples 1.1.24.

• Standard examples of sets everywhere dense in the real line R (with the
euclidean topology) are the set of rational numbers Q and the one of
irrational numbers R�Q.

• A set X is equipped with the discrete topology if and only if the whole
space X is the only dense set in itself.
If X has the discrete topology then every subset is equal to its own
closure (because every subset is closed), so the closure of a proper subset
is always proper. Conversely, if X is the only dense subset of itself, then
for every proper subset A its closure Ā is also a proper subset of X. Let
y 2 X be arbitrary. Then to X \ {y} is a proper subset of X and so
it has to be equal to its own closure. Hence, {y} is open. Since y is
arbitrary, this means that X has the discrete topology.

• Every non-empty subset of a set X equipped with the trivial topology
is dense, and every topology for which every non-empty subset is dense
must be trivial.
If X has the trivial topology and A is any non-empty subset of X, then
the only closed subset of X containing A is X. Hence, Ā = X, i.e. A
is dense in X. Conversely, if X is endowed with a topology ⌧ for which
every non-empty subset is dense, then the only non-empty subset of X
which is closed is X itself. Hence, ; and X are the only closed subsets
of ⌧ . This means that X has the trivial topology.

Proposition 1.1.25. Let X be a topological space and A ⇢ X. A is dense in
X if and only if every nonempty open set in X contains a point of A.
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1. Preliminaries

Proof. If A is dense in X, then by definition Ā = X. Let O be any nonempty
open subset in X. Then for any x 2 O we have that x 2 Ā and O 2 F(x).
Therefore, by Proposition 1.1.21, we have that O \ A 6= ;. Conversely, let
x 2 X. By definition of neighbourhood, for any U 2 F(x) there exists an
open subset O of X s.t. x 2 O ✓ U . Then U \A 6= ; since O contains a point
of A by our assumption. Hence, by Proposition 1.1.21, we get x 2 Ā and so
that A is dense in X.

Definition 1.1.26. A topological space X is said to be separable if there exists
a countable dense subset of X.

Example 1.1.27.

• R with the euclidean topology is separable.

• The space C([0, 1]) of all continuous functions from [0, 1] to R endowed
with the uniform topology1 is separable, since by the Weirstrass approx-
imation theorem Q[x] = C([0, 1]).

Let us briefly consider now the notion of convergence.
First of all let us concern with filters. When do we say that a filter F on
a topological space X converges to a point x 2 X? Intuitively, if F has to
converge to x, then the elements of F , which are subsets of X, have to get
somehow “smaller and smaller” about x, and the points of these subsets need
to get “nearer and nearer” to x. This can be made more precise by using
neighborhoods of x: we want to formally express the fact that, however small
a neighborhood of x is, it should contain some subset of X belonging to the
filter F and, consequently, all the elements of F which are contained in that
particular one. But in view of Axiom (F3), this means that the neighborhood
of x under consideration must itself belong to the filter F , since it must contain
some element of F .

Definition 1.1.28. Given a filter F in a topological space X, we say that it
converges to a point x 2 X if every neighborhood of x belongs to F , in other
words if F is finer than the filter of neighborhoods of x.

We recall now the definition of convergence of a sequence to a point and
we see how it easily connects to the previous definition.

1
The uniform topology on C([0, 1]) is the topology induced by the supremum norm

k · k1, i.e. the topology on C([0, 1]) having as basis of neighbourhoods of any f 2 C([0, 1])
the collection {B

"

(f) : " 2 R+} where B

"

(f) := {g 2 C([0, 1]) : kg � fk1 < "} and

khk1 := sup

x2[0,1]
|h(x)|, 8h 2 C([0, 1])
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1.1. Topological spaces

Definition 1.1.29. Given a sequence of points {x
n

}
n2N in a topological space

X, we say that it converges to a point x 2 X if for any U 2 F(x) there exists
N 2 N such that x

n

2 U for all n � N .

If we now consider the filter F
S

associated to the sequence S := {x
n

}
n2N,

i.e. F
S

:= {A ⇢ X : |S \A| < 1}, then it is easy to see that:

Proposition 1.1.30. Given a sequence of points S := {x
n

}
n2N in a topolog-

ical space X, S converges to a point x 2 X if and only if the associated filter
F
S

converges to x.

Proof. Set for each m 2 N, set S
m

:= {x
n

2 S : n � m}. By Definition 1.1.29,
S converges to x i↵ 8U 2 F(x), 9N 2 N : S

N

✓ U . As B := {S
m

: m 2 N}
is a basis for F

S

(see Problem Sheet 1, Exercise 2 c)), we have that 8U 2
F(x), U 2 F

S

, which is equivalent to say that F(x) ✓ F
S

.

1.1.4 Mappings between topological spaces

Let (X, ⌧
X

) and (Y, ⌧
Y

) be two topological spaces.

Definition 1.1.31. A map f : X ! Y is continuous if the preimage of any
open set in Y is open in X, i.e. 8U 2⌧

Y

, f�1(U) := {x 2 X : f(x) 2 U} 2 ⌧
X

.
Equivalently, given any point x 2 X and any V 2 F(f(x)) in Y , the preimage
f�1(V ) 2 F(x) in X.

Examples 1.1.32.
• Any constant map f : X ! Y is continuous.

Suppose that f(x) := y for all x 2 X and some y 2 Y . Let U 2 ⌧
Y

. If
y 2 U then f�1(U) = X and if y /2 U then f�1(U) = ;. Hence, in either
case, f�1(U) is open in ⌧

X

.
• If g : X ! Y is continuous, then the restriction of g to any subset S

of X is also continuous w.r.t. the subset topology induced on S by the
topology on X.

• Let X be a set endowed with the discrete topology, Y be a set endowed
with the trivial topology and Z be any topological space. Any maps f :
X ! Z and g : Z ! Y are continuous.

Definition 1.1.33. A mapping f : X ! Y is open if the image of any open
set in X is open in Y , i.e. 8V 2 ⌧

X

, f(V ) := {f(x) : x 2 V } 2 ⌧
Y

. In the
same way, a closed mapping f : X ! Y sends closed sets to closed sets.

Note that a map may be open, closed, both, or neither of them. Moreover,
open and closed maps are not necessarily continuous.
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1. Preliminaries

Example 1.1.34. If Y has the discrete topology (i.e. all subsets are open
and closed) then every function f : X ! Y is both open and closed (but
not necessarily continuous). For example, if we take the standard euclidean
topology on R and the discrete topology on Z then the floor function R ! Z
is open and closed, but not continuous. (Indeed, the preimage of the open set
{0} is [0, 1) ⇢ R, which is not open in the standard euclidean topology).

If a continuous map f is one-to-one, f�1 does not need to be continuous.

Example 1.1.35.
Let us consider [0, 1) ⇢ R and S1 ⇢ R2 endowed with the subspace topologies
given by the euclidean topology on R and on R2, respectively. The map

f : [0, 1) ! S1

t 7! (cos 2⇡t, sin 2⇡t).

is bijective and continuous but f�1 is not continuous, since there are open
subsets of [0, 1) whose image under f is not open in S1. (For example, [0, 12)
is open in [0, 1) but f([0, 12)) is not open in S1.)

Definition 1.1.36. A one-to-one map f from X onto Y is a homeomorphism
if and only if f and f�1 are both continuous. Equivalently, i↵ f and f�1 are
both open (closed). If such a mapping exists, X and Y are said to be two
homeomorphic topological spaces.

In other words an homeomorphism is a one-to-one mapping which sends
every open (resp. closed) set of X in an open (resp. closed) set of Y and
viceversa, i.e. an homeomorphism is both an open and closed map. Note that
the homeomorphism gives an equivalence relation on the class of all topological
spaces.

Examples 1.1.37. In these examples we consider any subset of Rn endowed
with the subset topology induced by the Euclidean topology on Rn.

1. Any open interval of R is homeomorphic to any other open interval of
R and also to R itself.

2. A circle and a square in R2 are homeomorphic.
3. The circle S1 with a point removed is homeomorphic to R.

Let us consider now the case when a set X carries two di↵erent topologies
⌧1 and ⌧2. Then the following two properties are equivalent:

• the identity ◆ of X is continuous as a mapping from (X, ⌧1) and (X, ⌧2)
• the topology ⌧1 is finer than the topology ⌧2.

Therefore, ◆ is a homeomorphism if and only if the two topologies coincide.
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1.1. Topological spaces

Proof. Suppose that ◆ is continuous. Let U 2 ⌧2. Then ◆�1(U) = U 2 ⌧1,
hence U 2 ⌧1. Therefore, ⌧2 ✓ ⌧1. Conversely, assume that ⌧2 ✓ ⌧1 and
take any U 2 ⌧2. Then U 2 ⌧1 and by definition of identity we know that
◆�1(U) = U . Hence, ◆�1(U) 2 ⌧1 and therefore, ◆ is continuous.

Proposition 1.1.38. Continuous maps preserve the convergence of sequences.
That is, if f : X ! Y is a continuous map between two topological spaces
(X, ⌧

X

) and (Y, ⌧
Y

) and if {x
n

}
n2N is a sequence of points in X convergent to

a point x 2 X then {f(x
n

)}
n2N converges to f(x) 2 Y .

Proof. (Sheet 2, Exercise 4 b))

1.1.5 Hausdor↵ spaces

Definition 1.1.39. A topological space X is said to be Hausdor↵ (or sepa-
rated) if any two distinct points of X have neighbourhoods without common
points; or equivalently if:
(T2) two distinct points always lie in disjoint open sets.

In literature, the Hausdor↵ space are often called T2-spaces and the axiom
(T2) is said to be the separation axiom.

Proposition 1.1.40. In a Hausdor↵ space the intersection of all closed neigh-
bourhoods of a point contains the point alone. Hence, the singletons are closed.

Proof. Let us fix a point x 2 X, where X is a Hausdor↵ space. Denote
by C the intersection of all closed neighbourhoods of x. Suppose that there
exists y 2 C with y 6= x. By definition of Hausdor↵ space, there exist a
neighbourhood U(x) of x and a neighbourhood V (y) of y s.t. U(x)\V (y) = ;.
Therefore, y /2 U(x) because otherwise any neighbourhood of y (in particular
V (y)) should have non-empty intersection with U(x). Hence, y /2 C.

Examples 1.1.41.

1. Any metric space2 is Hausdor↵.
Indeed, for any x, y 2 (X, d) with x 6= y just choose 0 < " < 1

2d(x, y)
and you get B

"

(x) \B
"

(y) = ;.
2. Any set endowed with the discrete topology is a Hausdor↵ space.

Indeed, any singleton is open in the discrete topology so for any two
distinct point x, y we have that {x} and {y} are disjoint and open.

2
Any metric space (X, d) is a topological space, because we can equip it with the topology

induced by the metric d, i.e. the topology having as basis of neighbourhoods of any x 2 X

the collection {B
"

(x) : " 2 R+} where B

"

(x) := {y 2 X : d(y, x) < "}.
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1. Preliminaries

3. The only Hausdor↵ topology on a finite set is the discrete topology.
Let X be a finite set endowed with a Hausdor↵ topology ⌧ . As X is
finite, any subset S of X is finite and so S is a finite union of singletons.
But since (X, ⌧) is Hausdor↵, the previous proposition implies that any
singleton is closed. Hence, any subset S of X is closed and so the ⌧ has
to be the discrete topology.

4. An infinite set with the cofinite topology is not Hausdor↵.
In fact, any two non-empty open subsets O1, O2 in the cofinite topology
on X are complements of finite subsets. Therefore, their intersection
O1 \ O2 is a complement of a finite subset, but X is infinite and so
O1 \O2 6= ;. Hence, X is not Hausdor↵.

1.2 Linear mappings between vector spaces

The basic notions from linear algebra are assumed to be well-known and so
they are not recalled here. However, we briefly give again the definition of
vector space and fix some general terminology for linear mappings between
vector spaces. In this section we are going to consider vector spaces over the
field K of real or complex numbers which is given the usual euclidean topology
defined by means of the modulus.

Definition 1.2.1. A set X with the two mappings:

X ⇥X ! X
(x, y) 7! x+ y vector addition

K⇥X ! X
(�, x) 7! �x scalar multiplication

is a vector space (or linear space) over K if the following axioms are satisfied:
(L1) 1. (x+ y) + z = x+ (y + z), 8x, y, z 2 X (associativity of +)

2. x+ y = y + x, 8x, y 2 X (commutativity of +)
3. 9 o 2 X: x+ o = x, 8x,2 X (neutral element for +)
4. 8x 2 X, 9! � x 2 X s.t. x+ (�x) = o (inverse element for +)

(L2) 1. �(µx) = (�µ)x, 8x 2 X, 8�, µ 2 K
(compatibility of scalar multiplication with field multiplication)

2. 1x = x 8x 2 X (neutral element for scalar multiplication)
3. (�+ µ)x = �x+ µx, 8x 2 X, 8�, µ 2 K

(distributivity of scalar multiplication with respect to field addition)
4. �(x+ y) = �x+ �y, 8x, y 2 X, 8� 2 K

(distributivity of scalar multiplication wrt vector addition)
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1.2. Linear mappings between vector spaces

Definition 1.2.2.
Let X,Y be two vector space over K. A mapping f : X ! Y is called lin-
ear mapping or homomorphism if f preserves the vector space structure, i.e.
f(�x+ µy) = �f(x) + µf(y) 8x, y 2 X, 8�, µ 2 K.

Definition 1.2.3.

• A linear mapping from X to itself is called endomorphism.
• A one-to-one linear mapping is called monomorphism. If S is a subspace

of X, the identity map is a monomorphism and it is called embedding.
• An onto (surjective) linear mapping is called epimorphism.
• A bijective (one-to-one and onto) linear mapping between two vector

spaces X and Y over K is called (algebraic) isomorphism. If such a
map exists, we say that X and Y are (algebraically) isomorphic X ⇠= Y .

• An isomorphism from X into itself is called automorphism.

It is easy to prove that: A linear mapping is one-to-one (injective) if and
only if f(x) = 0 implies x = 0.

Definition 1.2.4. A linear mapping from X ! K is called linear functional
or linear form on X. The set of all linear functionals on X is called algebraic
dual and it is denoted by X⇤.

Note that the dual space of a finite dimensional vector space X is isomor-
phic to X.
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