Universität Konstanz Fachbereich Mathematik und Statistik Dr. Maria Infusino Patrick Michalski

TOPOLOGICAL VECTOR SPACES-SS 2017

Exercise Sheet 1

This assignment is due by Friday the 5th of May by 11:45. Please, hand in your solutions in postbox 15 near F411.

- 1) a) Prove the following characterization of basis of a topological space.
 - **Proposition 1.** Let X be a set and let \mathcal{B} be a collection of subsets of X. \mathcal{B} is a basis for a topology τ on X iff
 - *i.* \mathcal{B} covers X, *i.e.* $\forall x \in X$, $\exists B \in \mathcal{B}$ s.t. $x \in B$. In other words, $X = \bigcup_{B \in \mathcal{B}} B$.
 - *ii.* If $x \in B_1 \cap B_2$ for some $B_1, B_2 \in \mathcal{B}$, then there exists $B_3 \in \mathcal{B}$ such that $x \in B_3 \subseteq B_1 \cap B_2$.
 - b) Let \mathcal{B} be the collection of all intervals (a, b) in \mathbb{R} together with all the sets of the form (a, b) K, where $K := \{\frac{1}{n} : n \in \mathbb{N}\}$. Prove that \mathcal{B} is the basis for a topology on \mathbb{R} , which is usually called the K-topology on \mathbb{R} .
- 2) Show the following statements.
 - a) The family \mathcal{G} of all subsets of a set X containing a fixed non-empty subset A is a filter and $\mathcal{B} = \{A\}$ is its base. \mathcal{G} is known as the *principal filter* generated by A.
 - b) Given a topological space X and $x \in X$, the family $\mathcal{F}(x)$ of all neighbourhoods of x is a filter.
 - c) Let $S := \{x_n\}_{n \in \mathbb{N}}$ be a sequence of points in a set X. Then the family $\mathcal{F} := \{A \subset X : |S \setminus A| < \infty\}$ is a filter and it is known as the *filter associated* to the sequence S. For each $m \in \mathbb{N}$, set $S_m := \{x_n \in S : n \ge m\}$. Then $\mathcal{B} := \{S_m : m \in \mathbb{N}\}$ is a basis for \mathcal{F} .
- 3) Establish which of the following topologies on \mathbb{R} are comparable and for each comparable pair say which one is finer.
 - τ_1 :=standard topology, whose basis is $\mathcal{B}_1 := \{(a, b) : a, b \in \mathbb{R} \text{ with } a < b\}$
 - $\tau_2 := K$ -topology, whose basis \mathcal{B}_2 is the one defined in Exercise 1 b)
 - $\tau_3 :=$ lower limit topology, whose basis is $\mathcal{B}_3 := \{[a, b) : a, b \in \mathbb{R} \text{ with } a < b\}$