Universität Konstanz Fachbereich Mathematik und Statistik Dr. Maria Infusino Patick Michalski



## TOPOLOGICAL VECTOR SPACES–SS 2017 Exercise Sheet 6

This assignment is due by Tuesday the 13th of June by 11:45 and will be discussed in the tutorial on Tuesday the 20th of June at 13:30 in D404. Please, hand in your solutions in postbox 15 near F411.

- 1) Let  $\mathcal{F}$  be a filter of a topological Hausdorff space X. If  $\mathcal{F}$  converges to  $x \in X$  and also to  $y \in X$ , then x = y.
- 2) Let A be a subset of a topological space X. Then  $x \in \overline{A}$  if and only if there exists a filter  $\mathcal{F}$  of subsets of X such that  $A \in \mathcal{F}$  and  $\mathcal{F}$  converges to x.
- 3) Let X be a Hausdorff t.v.s.. Assume that there exists a countable basis  $\mathcal{B}$  of neighbourhoods of the origin in X. Prove the following statements:
  - a) X is complete if and only if X is sequentially complete.
  - b) Suppose additionally that Y is another t.v.s. (not necessarily with a countable basis). A mapping  $f: X \to Y$  (not necessarily linear) is continuous if and only if it is sequentially continuous.

Recall that a mapping f from a topological space X into a topological space Y is said to be *sequentially continuous* if for every sequence  $\{x_n\}_{n\in\mathbb{N}}$  convergent to a point  $x \in X$  the sequence  $\{f(x_n)\}_{n\in\mathbb{N}}$  converges to f(x) in Y.

4) Let  $\mathcal{C}(\mathbb{R})$  be the vector space of real valued functions defined and continuous on the real line, and  $\mathcal{C}_c(\mathbb{R})$  the space of functions  $f \in \mathcal{C}(\mathbb{R})$  whose support is a compact subset of  $\mathbb{R}$ . The collection of the sets

$$N_{\varepsilon,n} := \left\{ f \in \mathcal{C}(\mathbb{R}) : \sup_{|t| \le n} |f(t)| \le \varepsilon \right\}$$

for all  $\varepsilon \in \mathbb{R}^+$  and all  $n \in \mathbb{N}$  is a basis of neighbourhoods of the origin for a topology  $\tau$ on  $\mathcal{C}(\mathbb{R})$  which is compatible with the linear structure (given by the pointwise addition and scalar multiplication of functions in  $\mathcal{C}(\mathbb{R})$ ).

Prove that:

- a) The t.v.s.  $(\mathcal{C}(\mathbb{R}), \tau)$  is a complete Hausdorff space [Hint: use Exercise 1].
- **b)** The linear subspace  $\mathcal{C}_c(\mathbb{R})$  is dense in  $\mathcal{C}(\mathbb{R})$ .
- c)  $\mathcal{C}(\mathbb{R})$  is topologically isomorphic to the completion of  $\mathcal{C}_c(\mathbb{R})$ .