Universität Konstanz Fachbereich Mathematik und Statistik Dr. Maria Infusino Patick Michalski

TOPOLOGICAL VECTOR SPACES-SS 2017 Exercise Sheet 8

This assignment is due by Friday the 30th of June by 11:45 and will be discussed in the tutorial next Tuesday the 4th of July at 13:30 in D404. Please, hand in your solutions in postbox 15 near F411.

- 1) Let S, T be arbitrary subsets of a vector space X. Show that the following hold.
 - a) conv(S) is convex
 - b) $S \subseteq conv(S)$
 - c) A set is convex if and only if it is equal to its own convex hull.
 - d) If $S \subseteq T$ then $conv(S) \subseteq conv(T)$
 - e) conv(conv(S)) = conv(S).
 - f) conv(S+T) = conv(S) + conv(T).
 - g) The convex hull of S is the smallest convex set containing S, i.e. conv(S) is the intersection of all convex sets containing S.
 - h) The convex hull of a balanced set is balanced
- 2) Prove the following characterization of locally convex t.v.s (i.e. Theorem 4.1.14 in the lecture notes)

Theorem 1. If X is a l.c. t.v.s. then there exists a basis \mathcal{B} of neighbourhoods of the origin consisting of absorbing absolutely convex subsets s.t.

- a) $\forall U, V \in \mathcal{B}, \exists W \in \mathcal{B} \ s.t. \ W \subseteq U \cap V$
- b) $\forall U \in \mathcal{B}, \forall \rho > 0, \exists W \in \mathcal{B} \text{ s.t. } W \subseteq \rho U$

Conversely, if \mathcal{B} is a collection of absorbing absolutely convex subsets of a vector space X s.t. a) and b) hold, then there exists a unique topology compatible with the linear structure of X s.t. \mathcal{B} is a basis of neighbourhoods of the origin in X for this topology (which is necessarily locally convex).

3) Let $\mathcal{C}(\mathbb{R})$ be the vector space of all real valued continuous functions on the real line. For any bounded interval [a, b] with a < b and any p > 0, we define:

$$q_p(f) := \left(\int_a^b |f(t)|^p dt\right)^{\frac{1}{p}}, \ \forall f \in \mathcal{C}(\mathbb{R}).$$

Show that for any $1 \le p < \infty$ the function q_p is a seminorm but that if $0 then <math>q_p$ is not a seminorm.

4) Let 0 and consider the vector space

$$\ell_p := \{(x_i)_{i \in \mathbb{N}} : \forall i \in \mathbb{N}, x_i \in \mathbb{R} \text{ and } \sum_{i=1}^{\infty} |x_i|^p < \infty \}.$$

For any $x, y \in \ell_p$ define $d(x, y) := |x - y|_p$ where for any $z := (x_i)_{i \in \mathbb{N}} \in \ell_p$ we set $|z|_p := \sum_{i=1}^{\infty} |z_i|^p$. Show that the t.v.s. given by ℓ_p endowed with the topology induced by d is not locally convex.