
Chapter 3

Topologies on the dual space of a t.v.s.

In this chapter we are going to describe a general method to construct a whole
class of topologies on the topological dual of a t.v.s. using the notion of polar
of a subset. Among these topologies, the so-called polar topologies, there
are: the weak topology, the topology of compact convergence and the strong
topology.

In this chapter we will denote by:
• E a t.v.s. over the field K of real or complex numbers.
• E⇤ the algebraic dual of E, i.e. the vector space of all linear functionals

on E.
• E0 its topological dual of E, i.e. the vector space of all continuous linear

functionals on E.
Moreover, given x0 2 E0, we denote by hx0, xi its value at the point x of E, i.e.
hx0, xi = x0(x). The bracket h·, ·i is often called pairing between E and E0.

3.1 The polar of a subset of a t.v.s.

Definition 3.1.1. Let A be a subset of E. We define the polar of A to be the
subset A� of E0 given by:

A� :=

⇢
x0 2 E0 : sup

x2A
|hx0, xi|  1

�
.

Let us list some properties of polars:
a) The polar A� of a subset A of E is a convex balanced subset of E0.
b) If A ✓ B ✓ E, then B� ✓ A�.
c) (⇢A)� = (1

⇢

)A�, 8 ⇢ > 0, 8A ✓ E.
d) (A [B)� = A� \B�, 8A,B ✓ E.
e) If A is a cone in E, then A� ⌘ {x0 2 E0 : hx0, xi = 0, 8x 2 A} and A� is a

linear subspace of E0. In particular, this property holds when A is a linear
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subspace of E and in this case the polar of A is called the orthogonal of
A, i.e. the set of all continuous linear forms on E which vanish identically
in A.

Proof. (Sheet 5, Exercise 3)

Proposition 3.1.2. Let E be a t.v.s.. If B is a bounded subset of E, then the
polar B� of B is an absorbing subset of E0.

Proof.
Let x0 2 E0. As B is bounded in E, Corollary 2.2.10 guarantees that any
continuous linear functional x0 on E is bounded on B, i.e. there exists a
constant M(x0) > 0 such that sup

x2B |hx0, xi|  M(x0). This implies that for
any � 2 K with |�|  1

M(x

0
)

we have �x0 2 B�, since

sup
x2B

|h�x0, xi| = |�| sup
x2B

|hx0, xi|  1

M(x0)
·M(x0) = 1.

3.2 Polar topologies on the topological dual of a t.v.s.

We are ready to define an entire class of topologies on the dual E0 of E,
called polar topologies. Consider a family ⌃ of bounded subsets of E with the
following two properties:

(P1) If A,B 2 ⌃, then 9C 2 ⌃ s.t. A [B ✓ C.

(P2) If A 2 ⌃ and � 2 K, then 9B 2 ⌃ s.t. �A ✓ B.

Let us denote by ⌃� the family of the polars of the sets belonging to ⌃, i.e.

⌃� := {A� : A 2 ⌃} .

Claim: ⌃� is a basis of neighbourhoods of the origin for a locally convex
topology on E0 compatible with the linear structure.

Proof. of Claim.
By Property a) of polars and by Proposition 3.1.2, all elements of ⌃� are
convex balanced absorbing susbsets of E0. Also:

1. 8 A�, B� 2 ⌃�, 9C� 2 ⌃� s.t. C� ✓ A� \B�.
Indeed, if A� and B� in ⌃� are respectively the polars of A and B in ⌃,
then by (P1) there exists C 2 ⌃ s.t. A [ B ✓ C and so, by properties
b) and d) of polars, we get: C� ✓ (A [B)� = A� \B�.
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2. 8 A� 2 ⌃�, 8 ⇢ > 0, 9B� 2 ⌃� s.t. B� ✓ ⇢A�.
Indeed, if A� in ⌃� is the polar of A, then by (P2) there exists B 2 ⌃
s.t. 1

⇢

A ✓ B and so, by properties b) and c) of polars, we get that

B� ✓
⇣
1

⇢

A
⌘�

= ⇢A�.

By Theorem 4.1.14 in TVS-I, there exists a unique locally convex topology on
E0 compatible with the linear structure and having ⌃� as a basis of neighbor-
hoods of the origin.

Definition 3.2.1. Given a family ⌃ of bounded subsets of a t.v.s. E s.t. (P1)
and (P2) hold, we call ⌃�topology on E0 the locally convex topology defined
by taking, as a basis of neighborhoods of the origin in E0, the family ⌃� of the
polars of the subsets that belong to ⌃. We denote by E0

⌃

the space E0 endowed
with the ⌃-topology.

It is easy to see from the definition that (Sheet 6, Exercise 1):
• The ⌃�topology on E0 is generated by the following family of semi-

norms:

{p
A

: A 2 ⌃} , where p
A

(x0) := sup
x2A

|hx0, xi|, 8x0 2 E0. (3.1)

• Define for any A 2 ⌃ and " > 0 the following subset of E0:

W
"

(A) :=

⇢
x0 2 E0 : sup

x2A
|hx0, xi|  "

�
.

The family B := {W
"

(A) : A 2 ⌃, " > 0} is a basis of neighbourhoods of
the origin for the ⌃�topology on E0.

Proposition 3.2.2. A filter F 0 on E0 converges to an element x0 2 E0 in the
⌃-topology on E0 if and only if F 0 converges uniformly to x0 on each subset A
belonging to ⌃, i.e. the following holds:

8" > 0, 9M 0 2 F 0 s.t. sup
x2A

|hx0, xi � hy0, xi|  ", 8 y0 2 M 0. (3.2)

This proposition explain why the ⌃�topology on E0 is often referred as
topology of the uniform converge over the sets of ⌃.

Proof.
Suppose that (3.2) holds and let U be a neighbourhood of the origin in

the ⌃�topology on E0. Then there exists " > 0 and A 2 ⌃ s.t. W
"

(A) ✓ U
and so

x0 +W
"

(A) ✓ x0 + U. (3.3)
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On the other hand, since we have that

x0 +W
"

(A) =

⇢
x0 + y0 2 E0 : sup

x2A
|hy0, xi|  "

�

=

⇢
z0 2 E0 : sup

x2A
|hz0 � x0, xi|  "

�
, (3.4)

the condition (3.2) together with (3.3) gives that

9M 0 2 F 0 s.t.M 0 ✓ x0 +W
"

(A) ✓ x0 + U.

The latter implies that x0 +U 2 F 0 since F 0 is a filter and so the family of all
neighbourhoods of x0 in the ⌃�topology on E0 is contained in F 0, i.e. F 0 ! x0.

Conversely, if F 0 ! x0, then for any neighbourhood V of x0 in the ⌃�topology
on E0 we have V 2 F 0. In particular, for all A 2 ⌃ and for all " > 0 we have
x0+W

"

(A) 2 F 0. Then by taking M 0 := x0+W
"

(A) and using (3.4), we easily
get (3.2).

The weak topology on E 0

The weak topology on E0 is the ⌃�topology corresponding to the family ⌃ of
all finite subsets of E and it is usually denoted by �(E0, E) (this topology is
often also referred with the name of weak*-topology or weak dual topology).
We denote by E0

�

the space E0 endowed with the topology �(E0, E).
A basis of neighborhoods of �(E0, E) is given by the family

B
�

:= {W
"

(x
1

, . . . , x
r

) : r 2 N, x
1

, . . . , x
r

2 E, " > 0}

where
W

"

(x
1

, . . . , x
r

) :=
�
x0 2 E0 : |hx0, x

j

i|  ", j = 1, . . . , r
 
. (3.5)

Note that a sequence {x0
n

}
n2N of elements in E0 converges to the origin

in the weak topology if and only if at each point x 2 E the sequence of their
values {hx0

n

, xi}
n2N converges to zero in K (see Sheet 6, Exercise 2). In other

words, the weak topology on E0 is nothing else but the topology of pointwise
convergence in E, when we look at continuous linear functionals on E simply
as functions on E.

The topology of compact convergence on E 0

The topology of compact convergence on E0 is the ⌃�topology corresponding
to the family ⌃ of all compact subsets of E and it is usually denoted by
c(E0, E). We denote by E0

c

the space E0 endowed with the topology c(E0, E).
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The strong topology on E’

The strong topology on E0 is the ⌃�topology corresponding to the family ⌃ of
all bounded subsets of E and it is usually denoted by b(E0, E). As a filter in
E0 converges to the origin in the strong topology if and only if it converges to
the origin uniformly on every bounded subset of E (see Proposition 3.2.2), the
strong topology on E0 is sometimes also referred as the topology of bounded
convergence. When E0 carries the strong topology, it is usually called the
strong dual of E and denoted by E0

b

.

In general we can compare two polar topologies by using the following
criterion: If ⌃

1

and ⌃
2

are two families of bounded subsets of a t.v.s. E such
that (P1) and (P2) hold and ⌃

1

◆ ⌃
2

, then the ⌃
1

-topology is finer than
the ⌃

2

-topology. In particular, this gives the following comparison relations
between the three polar topologies on E0 introduced above:

�(E0, E) ✓ c(E0, E) ✓ b(E0, E).

Proposition 3.2.3. Let ⌃ be a family of bounded subsets of a t.v.s. E s.t.
(P1) and (P2) hold. If the union of all subsets in ⌃ is dense in E, then E0

⌃

is Hausdor↵.

Proof. Assume that the union of all subsets in ⌃ is dense in E. As the
⌃�topology is locally convex, to show that E0

⌃

is Hausdor↵ is enough to check
that the family of seminorms in (3.1) is separating (see Proposition 4.3.3 in
TVS-I). Suppose that p

A

(x0) = 0 for all A 2 ⌃, then

sup
x2 A

|hx0, xi| = 0, 8A 2 ⌃

which gives

hx0, xi = 0, 8x 2
[

A2⌃
A.

As the continuous functional x0 is zero on a dense subset of E, it has to be
identically zero on the whole E. Hence, the family {p

A

: A 2 ⌃} is a separating
family of seminorms which generates the ⌃�topology on E0.

Corollary 3.2.4. The topology of compact convergence, the weak and the
strong topologies on E0 are all Hausdor↵.

Let us consider now for any x 2 E the linear functional v
x

on E0 which
associates to each element of the dual E0 its “value at the point x”, i.e.

v
x

: E0 ! K
x0 7! hx0, xi.
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Clearly, each v
x

2 (E0)⇤ but when can we say that v
x

2 (E0
⌃

)0? Can we find
conditions on ⌃ which guarantee the continuity of v

x

w.r.t. the ⌃�topology?
Fixed an arbitrary x 2 E, v

x

is continuous on E0
⌃

if and only if for any
" > 0, v�1

x

(B̄
"

(0)) is a neighbourhood of the origin in E0 w.r.t. the ⌃�topology
(B̄

"

(0) denotes the closed ball of radius " and center 0 in K). This means that

8 " > 0, 9A 2 ⌃ : A� ✓ v�1

x

(B̄
"

(0)) = {x0 2 E0 : |hx0, xi|  "}

i.e.

8 " > 0, 9A 2 ⌃ :

����hx
0,
1

"
xi
����  1, 8x0 2 A�. (3.6)

Then it is easy to see that the following holds:

Proposition 3.2.5. Let ⌃ be a family of bounded subsets of a t.v.s. E s.t.
(P1) and (P2) hold. If ⌃ covers E then for every x 2 E the value at x is a
continuous linear functional on E0

⌃

, i.e. v
x

2 (E0
⌃

)0.

Proof. If E ✓
S

A2⌃A then for any x 2 E and any " > 0 we have 1

"

2 A for
some A 2 ⌃ and so |hx0, 1

"

xi|  1 for all x0 2 A�. This means that (3.6) is
fulfilled, which is equivalent to v

x

being continuous w.r.t. the ⌃�topology on
E0.

Remark 3.2.6. The previous proposition means that, if ⌃ covers E then the
image of E under the canonical map

' : E ! (E0
⌃

)⇤

x 7! v
x

.

is contained in the topological dual of E0
⌃

, i.e. '(E) ✓ (E0
⌃

)0.

Proposition 3.2.5 is useful to get the following characterization of the weak
topology on E0, which is often taken as a definition for this topology.

Proposition 3.2.7. The weak topology on E0 is the coarsest topology on E0

such that, for all x 2 E, v
x

is continuous.

Proof. (Sheet 6, Exercise 3)
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