
3. Topologies on the dual space of a t.v.s.

Clearly, each v
x

2 (E0)⇤ but when can we say that v
x

2 (E0
⌃

)0? Can we find
conditions on ⌃ which guarantee the continuity of v

x

w.r.t. the ⌃�topology?
Fixed an arbitrary x 2 E, v

x

is continuous on E0
⌃

if and only if for any
" > 0, v�1

x

(B̄
"

(0)) is a neighbourhood of the origin in E0 w.r.t. the ⌃�topology
(B̄

"

(0) denotes the closed ball of radius " and center 0 in K). This means that

8 " > 0, 9A 2 ⌃ : A� ✓ v�1

x

(B̄
"

(0)) = {x0 2 E0 : |hx0, xi|  "}

i.e.

8 " > 0, 9A 2 ⌃ :

�

�

�

�

hx0, 1
"
xi
�

�

�

�

 1, 8x0 2 A�. (3.6)

Then it is easy to see that the following holds:

Proposition 3.2.5. Let ⌃ be a family of bounded subsets of a t.v.s. E s.t.
(P1) and (P2) hold. If ⌃ covers E then for every x 2 E the value at x is a
continuous linear functional on E0

⌃

, i.e. v
x

2 (E0
⌃

)0.

Proof. If E ✓
S

A2⌃A then for any x 2 E and any " > 0 we have 1

"

2 A for
some A 2 ⌃ and so |hx0, 1

"

xi|  1 for all x0 2 A�. This means that (3.6) is
fulfilled, which is equivalent to v

x

being continuous w.r.t. the ⌃�topology on
E0.

The previous proposition is useful to get the following characterization of
the weak topology on E0, which is often taken as a definition for this topology.

Proposition 3.2.6. Let E be a t.v.s.. The weak topology on E0 is the coarsest
topology on E0 such that, for all x 2 E, v

x

is continuous.

Proof. (Sheet 6, Exercise 3)

Proposition 3.2.5 means that, if ⌃ covers E then the image of E under the
canonical map

' : E ! (E0
⌃

)⇤

x 7! v
x

.

is contained in the topological dual of E0
⌃

, i.e. '(E) ✓ (E0
⌃

)0. In general, the
canonical map ' : E ! (E0

⌃

)0 is neither injective or surjective. However, when
we restrict our attention to locally convex Hausdor↵ t.v.s., the following con-
sequence of Hahn-Banach theorem guarantees the injectivity of the canonical
map.

Proposition 3.2.7. If E is a locally convex Hausdor↵ t.v.s with E 6= {o},
then for every o 6= x

0

2 E there exists x0 2 E0 s.t. hx0, x
0

i 6= 0, i.e. E0 6= {o}.
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3.2. Polar topologies on the topological dual of a t.v.s.

Proof.
Let o 6= x

0

2 E. Since (E, ⌧) is a locally convex Hausdor↵ t.v.s, Proposition
4.3.3 in TVS-I ensures that ⌧ is generated by a separating family P of semi-
norms on E and so there exists p 2 P s.t. p(x

0

) 6= 0. Take M := span{x
0

}
and define the ` : M ! K by `(↵x

0

) := ↵p(x
0

) for all ↵ 2 K. The functional
` is clearly linear and continuous on M . Then by the Hahn-Banach theorem
(see Theorem 5.1.1 in TVS-I) we have that there exists a linear functional
x0 : E ! K such that x0(m) = `(m) for all m 2 M and |x0(x)|  p(x) for all
x 2 E. Hence, x0 2 E0 and hx0, x

0

i = `(x
0

) = p(x
0

) 6= 0.

Corollary 3.2.8. Let E be a non-trivial locally convex Hausdor↵ t.v.s and ⌃
a family of bounded subsets of E s.t. (P1) and (P2) hold and ⌃ covers E.
Then the canonical map ' : E ! (E0

⌃

)0 is injective.

Proof. Let o 6= x
0

2 E. By Proposition 3.2.7, we know that there exists
x0 2 E0 s.t. v

x

(x0) 6= 0 which proves that v
x

is not identically zero on E0 and
so that Ker(') = {o}. Hence, ' is injective.

In the particular case of the weak topology on E0 the canonical map ' :
E ! (E0

�

)0 is also surjective, and so E can be regarded as the dual of its weak
dual E0

�

. To show this result we will need to use the following consequence of
Hahn-Banach theorem:

Lemma 3.2.9. Let Y be a closed linear subspace of a locally convex t.v.s. X.
If Y 6= X, then there exists f 2 X 0 s.t. f is not identically zero on X but
identically vanishes on Y .

Proposition 3.2.10. Let E be a locally convex Hausdor↵ t.v.s. Then the
canonical map ' : E ! (E0

�

)0 is an isomorphism.

Proof. Let L 2 (E0
�

)0. By the definition of �(E0, E) and Proposition 4.6.1 in
TVS-I, we have that there exist F ⇢ E with |F | < 1 and C > 0 s.t.

|L(x0)|  Cp
F

(x0) = C sup
x2F

|hx0, xi|. (3.7)

Take M := span(F ) and d := dim(M). Consider an algebraic basis B :=
{e

1

, . . . , e
d

} of M and for each j 2 {1, . . . , d} apply Lemma 3.2.9 to Y :=
span{B \ {e

j

}} and X := M . Then for each j 2 {1, . . . , d} there exists f
j

:
M ! K linear and continuous such that hf

j

, e
k

i = 0 if k 6= j and hf
j

, e
j

i 6= 0.
W.l.o.g. we can assume hf

j

, e
j

i = 1. By applying Hanh-Banach theorem (see
Theorem 5.1.1 in TVS-I), we get that for each j 2 {1, . . . , d} there exists e0

j

:
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3. Topologies on the dual space of a t.v.s.

E ! K linear and continuous such that e0
j

�
M

= f
j

, in particular he0
j

, e
k

i = 0
for k 6= j and he0

j

, e
j

i = 1.

Let M 0 := span{e0
1

, . . . , e0
d

} ⇢ E0, x
L

:=
P

d

j=1

L(e0
j

)e
j

2 M and for any

x0 2 E0 define p(x0) :=
P

d

j=1

hx0, e
j

ie0
j

2 M 0. Then for any x0 2 E0 we get
that:

hx0, x
L

i =
d

X

j=1

L(e0
j

)hx0, e
j

i = L(p(x0)) (3.8)

and also

hx0 � p(x0), e
k

i = hx0, e
k

i �
d

X

j=1

hx0, e
j

ihe0
j

, e
k

i = hx0, e
k

i � hx0, e
k

ihe
k

, e
k

i = 0

which gives
hx0 � p(x0),mi = 0, 8m 2 M. (3.9)

Then for all x0 2 E0 we have:

|L(x0 � p(x0))|
(3.7)

 C sup
x2F

|hx0 � p(x0), xi| (3.9)= 0

which give that L(x0) = L(p(x0))
(3.8)

= hx0, x
L

i = v
x

L

(x0). Hence, we have
proved that for every L 2 (E0

�

)0 there exists x
L

2 E s.t. '(x
L

) ⌘ v
x

L

⌘ L,
i.e. ' : E ! (E0

�

)0 is surjective. Then we are done because the injectivity of
' : E ! (E0

�

)0 follows by applying Corollary 3.2.8 to this special case.

Remark 3.2.11. The previous result suggests that it is indeed more conve-
nient to restrict our attention to locally convex Hausdor↵ t.v.s. when dealing
with weak duals. Moreover, as showed in Proposition 3.2.7, considering locally
convex Hausdor↵ t.v.s has the advantage of avoiding the pathological situation
in which the topological dual of a non-trivial t.v.s. is reduced to the only zero
functional (for an example of a t.v.s. on which there are no continuous linear
functional than the trivial one, see Exercise 4 in Sheet 6).

3.3 The polar of a neighbourhood in a locally convex t.v.s.

Let us come back now to the study of the weak topology and prove one of
the milestones of the t.v.s. theory: the Banach-Alaoglu-Bourbaki theorem. To
prove this important result we need to look for a moment at the algebraic
dual E⇤ of a t.v.s. E. In analogy to what we did in the previous section, we
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3.3. The polar of a neighbourhood in a locally convex t.v.s.

can define the weak topology on the algebraic dual E⇤ (which we will denote
by �(E⇤, E)) as the coarsest topology such that for any x 2 E the linear
functional w

x

is continuous, where

w
x

: E⇤ ! K
x⇤ 7! hx⇤, xi := x⇤(x).

(3.10)

(Note that w
x

� E0 = v
x

). Equivalently, the weak topology on the algebraic
dual E⇤ is the locally convex topology on E⇤ generated by the family {q

F

:
F ✓ E, |F | < 1} of seminorms q

F

(x⇤) := sup
x2F |hx⇤, xi| on E⇤. It is then

easy to see that �(E0, E) = �(E⇤, E) � E0.
An interesting property of the weak topology on the algebraic dual of a

t.v.s. is the following one:

Proposition 3.3.1. If E is a t.v.s. over K, then its algebraic dual E⇤ endowed
with the weak topology �(E⇤, E) is topologically isomorphic to the product of
dim(E) copies of the field K endowed with the product topology.

Proof.
Let {e

i

}
i2I be an algebraic basis of E, i.e. 8x 2 E, 9 {x

i

}
i2I 2 Kdim(E) s.t.

x =
P

i2I xiei. For any linear functions L : E ! K and any x 2 E we then
have L(x) =

P

i2I xiL(ei). Hence, L is completely determined by the sequence

{L(e
i

)}
i2I2Kdim(E). Conversely, every element u :={u

i

}
i2I 2Kdim(E) uniquely

defines the linear functional L
u

on E via L
u

(e
i

) := u
i

for all i 2 I. This
completes the proof that E⇤ is algebraically isomorphic to Kdim(E). Moreover,
the collection {W

"

(e
i1 , . . . , eir) : " > 0, r 2 N, i

1

, . . . , i
r

2 I}, where

W
"

(e
i1 , . . . , eir) := {x⇤ 2 E⇤ : |hx⇤, e

i

j

i|  ", for j = 1, . . . , r},

is a basis of neighbourhoods of the origin in (E⇤,�(E⇤, E)). Via the isomor-
phism described above, we have that for any " > 0, r 2 N, and i

1

, . . . , i
r

2 I:

W
"

(e
i1 , . . . , eir) ⇡

n

{u
i

}
i2I 2 Kdim(E) : |u

i

j

|  ", for j = 1, . . . , r
o

=
r

Y

j=1

B̄
"

(0)⇥
Y

I\{i1,...,ir}

K

and so W
"

(e
i1 , . . . , eir) is a neighbourhood of the product topology ⌧

prod

on
Kdim(E) (recall that we always consider the euclidean topology on K). There-
fore, (E⇤,�(E⇤, E)) is topological isomorphic to

�

Kdim(E), ⌧
prod

�

.
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3. Topologies on the dual space of a t.v.s.

Let us now focus our attention on the polar of a neighbourhood U of the
origin in a non-trivial locally convex Hausdor↵ t.v.s. E. We are considering
here only non-trivial locally convex Hausdor↵ t.v.s. in order to be sure to
have non-trivial continuous linear functionals (see Remark 3.2.11) and so to
make a meaningful analysis on the topological dual.

First of all let us observe that:

{x⇤ 2 E⇤ : sup
x2U

|hx⇤, xi|  1} ⌘ U� := {x0 2 E0 : sup
x2U

|hx0, xi|  1}. (3.11)

Indeed, since E0 ✓ E⇤, we clearly have U� ✓ {x⇤ 2 E⇤ : sup
x2U |hx⇤, xi|  1}.

Moreover, any linear functional x⇤ 2 E⇤ s.t. sup
x2A |hx⇤, xi|  1 is continuous

on E and it is therefore an element of E0.
It is then quite straightforward to show that:

Proposition 3.3.2. The polar of a neighbourhood U of the origin in E is
closed w.r.t. �(E⇤, E).

Proof. By (3.11) and (3.10), it is clear that U� =
T

x2Aw�1

x

([�1, 1]). On
the other hand, by definition of �(E⇤, E) we have that w

x

is continuous on
(E⇤,�(E⇤, E)) for all x 2 E and so each w�1

x

([�1, 1]) is closed in (E⇤,�(E⇤, E)).
Hence, U� is closed in (E⇤,�(E⇤, E)) as the intersection of closed subsets of
(E⇤,�(E⇤, E)).

We are ready now to prove the famous Banach-Alaoglu-Bourbaki Theorem

Theorem 3.3.3 (Banach-Alaoglu-Bourbaki Theorem).
The polar of a neighbourhood U of the origin in a locally convex Hausdor↵
t.v.s. E 6= {o} is compact in E0

�

.

Proof.
Since U is a neighbourhood of the origin in E, U is absorbing in E, i.e.
8x 2 E, 9M

x

> 0 s.t.M
x

x 2 U . Hence, for all x 2 E and all x0 2 U� we have
|hx0,M

x

xi|  1, which is equivalent to:

8x 2 E, 8x0 2 U�, |hx0, xi|  1

M
x

. (3.12)

For any x 2 E, the subset

D
x

:=

⇢

↵ 2 K : |↵|  1

M
x

�
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3.3. The polar of a neighbourhood in a locally convex t.v.s.

is compact inK w.r.t. to the euclidean topology and so by Tychno↵’s theorem1

the subset P :=
Q

x2E D
x

is compact in
�

Kdim(E), ⌧
prod

�

.
Using the isomorphism introduced in Proposition 3.3.1 and (3.11), we get

that
U� ⇡ {(hx⇤, xi)

x2E : x⇤ 2 U�}

and so by (3.12) we have that U� ⇢ P . Since Corollary 3.3.2 and Proposition
3.3.1 ensure that U� is closed in

�

Kdim(E), ⌧
prod

�

, we get that U� is a closed

subset of P . Hence, by Proposition 2.1.4–1, U� is compact
�

Kdim(E), ⌧
prod

�

and so in (E⇤,�(E⇤, E)). As U� = E0 \ U� we easily see that U� is compact
in (E0,�(E0, E)).

1
Tychno↵ ’s theorem: The product of an arbitrary family of compact spaces endowed

with the product topology is also compact.
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