
3.3. The polar of a neighbourhood in a locally convex t.v.s.

is compact inK w.r.t. to the euclidean topology and so by Tychno↵’s theorem1

the subset P :=
Q

x2E D
x

is compact in
�

Kdim(E), ⌧
prod

�

.
Using the isomorphism introduced in Proposition 3.3.1 and (3.11), we get

that
U� ⇡ {(hx⇤, xi)

x2E : x⇤ 2 U�}
and so by (3.12) we have that U� ⇢ P . Since Corollary 3.3.2 and Proposition
3.3.1 ensure that U� is closed in

�

Kdim(E), ⌧
prod

�

, we get that U� is a closed

subset of P . Hence, by Proposition 2.1.4–1, U� is compact
�

Kdim(E), ⌧
prod

�

and so in (E⇤,�(E⇤, E)). As U� = E0 \ U� we easily see that U� is compact
in (E0,�(E0, E)).

We briefly introduce now a nice consequence of Banach-Alaoglu-Bourbaki
theorem. Let us start by introducing a norm on the topological dual space E0

of a seminormed space (E, ⇢):

⇢0(x0) := sup
x2E:⇢(x)1

|hx0, xi|.

⇢0 is usually called the operator norm on E0.

Corollary 3.3.4. Let (E, ⇢) be a normed space. The closed unit ball in E0

w.r.t. the operator norm ⇢0 is compact in E0
�

.

Proof. First of all, let us note that a normed space it is indeed a locally convex
Hausdor↵ t.v.s.. Then, by applying Banach-Alaoglu-Borubaki theorem to
the closed unit ball B̄

1

(o) in (E, ⇢), we get that
�

B̄
1

(o)
��

is compact in E0
�

.

The conclusion then easily follow by the observation that
�

B̄
1

(o)
��

actually
coincides with the closed unit ball in (E0, ⇢0):

�

B̄
1

(o)
��

= {x0 2 E0 : sup
x2 ¯

B1(o)

|hx0, xi|  1}

= {x0 2 E0 : sup
x2E0

,⇢(x)1

|hx0, xi|  1}

= {x0 2 E0 : ⇢0(x0)  1}.

1
Tychno↵ ’s theorem: The product of an arbitrary family of compact spaces endowed

with the product topology is also compact.
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Chapter 4

Tensor products of t.v.s.

4.1 Tensor product of vector spaces

As usual, we consider only vector spaces over the field K of real numbers or
of complex numbers.

Definition 4.1.1.

Let E,F,M be three vector spaces over K and � : E ⇥ F ! M be a bilinear
map. E and F are said to be �-linearly disjoint if:
(LD) For any r 2 N, any {x

1

, . . . , x
r

} finite subset of E and any {y
1

, . . . , y
r

}
finite subset of F s.t.

P

r

i=1

�(x
i

, y
j

) = 0, we have that both the following
conditions hold:

• if x
1

, . . . , x
r

are linearly independent in E, then y
1

= · · · = y
r

= 0
• if y

1

, . . . , y
r

are linearly independent in F , then x
1

= · · · = x
r

= 0

Recall that, given three vector spaces over K, a map � : E ⇥ F ! M is
said to be bilinear if:

8x
0

2 E, �
x0 : F ! M is linear

y ! �(x
0

, y)

and
8 y

0

2 F, �
y0 : E ! M is linear.

x ! �(x, y
0

)

Let us give a useful characterization of ��linear disjointness.

Proposition 4.1.2. Let E,F,M be three vector spaces, and � : E ⇥ F ! M
be a bilinear map. Then E and F are ��linearly disjoint if and only if:

(LD’) For any r, s 2 N, x
1

, . . . , x
r

linearly independent in E and y
1

, . . . , y
s

linearly independent in F , the set {�(x
i

, y
j

) : i = 1, . . . , r, j = 1, . . . , s}
consists of linearly independent vectors in M .
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4. Tensor products of t.v.s.

Proof.
()) Let x

1

, . . . , x
r

be linearly independent in E and y
1

, . . . , y
s

be linearly
independent in F . Suppose that

P

r

i=1

P

s

j=1

�
ij

�(x
i

, y
j

) = 0 for some �
ij

2 K.
Then, using the bilinearity of � and setting z

i

:=
P

s

j=1

�
ij

y
j

, we easily get
P

r

i=1

�(x
i

, z
i

) = 0. As the x
i

’s are linearly independent in E, we derive from
(LD) that all z

i

’s have to be zero. This means that for each i 2 {1, . . . , r} we
have

P

s

j=1

�
ij

y
j

= 0, which implies by the linearly independence of the y
j

’s
that �

ij

= 0 for all i 2 {1, . . . , r} and all j 2 {1, . . . , s}.
(() Let r 2 N, {x

1

, . . . , x
r

} ✓ E and {y
1

, . . . , y
r

} ✓ F be such that
P

r

i=1

�(x
i

, y
i

) = 0. Suppose that the x
i

s are linearly independent and let
{z

1

, . . . , z
s

} be a basis of span{y
1

, . . . , y
r

}. Then for each i 2 {1, . . . , r} there
exist �

ij

2 K s.t. y
i

=
P

s

j=1

�
ij

z
j

and so by the bilinearity of � we get:

0 =
r

X

i=1

�(x
i

, y
j

) =
r

X

i=1

s

X

j=1

�
ij

�(x
i

, z
j

). (4.1)

By applying (LD’) to the x
i

’s and z0
j

s, we get that all �(x
i

, z
j

)’s are linearly
independent. Therefore, (4.1) gives that �

ij

= 0 for all i 2 {1, . . . , r} and all
j 2 {1, . . . , s} and so y

i

= 0 for all i 2 {1, . . . , r}. Exchanging the roles of the
x
i

’s and the y
i

’s we get that (LD) holds.

Definition 4.1.3. A tensor product of two vector spaces E and F over K is
a pair (M,�) consisting of a vector space M over K and of a bilinear map
� : E ⇥ F ! M (canonical map) s.t. the following conditions are satisfied:
(TP1) The image of E ⇥ F spans the whole space M .
(TP2) E and F are ��linearly disjoint.

We now show that the tensor product of any two vector spaces always
exists, satisfies the “universal property” and it is unique up to isomorphisms.
For this reason, the tensor product of E and F is usually denoted by E ⌦ F
and the canonical map by (x, y) 7! x⌦ y.

Theorem 4.1.4. Let E, F be two vector spaces over K.
(a) There exists a tensor product of E and F .
(b) Let (M,�) be a tensor product of E and F . Let G be any vector space over

K, and b any bilinear mapping of E ⇥ F into G. There exists a unique
linear map b̃ : M ! G such that the following diagram is commutative.

E ⇥ F G

M

�

b

˜

b
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4.1. Tensor product of vector spaces

(c) If (M
1

,�
1

) and (M
2

,�
2

) are two tensor products of E and F , then there is
a bijective linear map u such that the following diagram is commutative.

E ⇥ F M
2

M
1

�1

�2

u

Proof.

(a) Let H be the vector space of all functions from E⇥F into K which vanish
outside a finite set (H is often called the free space of E ⇥ F ). For any
(x, y) 2 E ⇥ F , let us define the function e

(x,y)

: E ⇥ F ! K as follows:

e
(x,y)

(z, w) :=

⇢

1 if(z, w) = (x, y)
0 otherwise

.

Then BH := {e
(x,y)

: (x, y) 2 E ⇥ F} forms a basis of H, i.e.

8h 2 H, 9!�
xy

2 K : h =
X

x2E

X

y2F
�
xy

e
(x,y)

.

Let us consider now the following linear subspace of H:

N := span

8

>

<

>

:

e 
nP

i=1
a

i

x

i

,

mP
j=1

b

j

y

j

! �
n

X

i=1

m

X

j=1

a
i

b
j

e(x
i

,y

j

) : n,m 2 N, a
i

, b
j

2 K, (x
i

, y
j

) 2 E ⇥ F

9

>

=

>

;

.

We then denote by M the quotient vector space H/N , by ⇡ the quotient
map from H onto M and by

� : E ⇥ F ! M
(x, y) ! �(x, y) := ⇡

�

e
(x,y)

�

.

It is easy to see that the map � is bilinear. Let us just show the linearity
in the first variable as the proof in the second variable is just symmetric.
Fixed y 2 F , for any a, b 2 K and any x

1

, x
2

2 E, we get that:

�(ax
1

+ bx
2

, y)� a�(x
1

, y)� b�(x
2

, y) = ⇡
�

e
(ax1+bx2,y)

�� a⇡
�

e
(x1,y)

�� b⇡
�

e
x2,y)

�

= ⇡
�

e
(ax1+bx2,y)

� ae
(x1,y)

� be
(x2,y)

�

= 0,

where the last equality holds since e
(ax1+bx2,y)

� ae
(x1,y)

� be
(x2,y)

2 N .
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4. Tensor products of t.v.s.

We aim to show that (M,�) is a tensor product of E and F . It is clear
from the definition of � that

span(�(E ⇥ F )) = span(⇡(BH)) = ⇡(H) = M,

i.e. (TP1) holds. It remains to prove that E and F are ��linearly dis-
joint. Let r 2 N, {x

1

, . . . , x
r

} ✓ E and {y
1

, . . . , y
r

} ✓ F be such that
P

r

i=1

�(x
i

, y
i

) = 0. Suppose that the y
i

’s are linearly independent. For
any ' 2 E⇤, let us define the linear mapping A

�

: H ! F by setting
A

'

(e
(x,y)

) := '(x)y. Then it is easy to check that A
'

vanishes on N , so it

induces a map Ã
'

: M ! F s.t. Ã
'

(⇡(f)) = A(f), 8 f 2 H. Hence, since
P

r

i=1

�(x
i

, y
i

) = 0 can be rewritten as ⇡
�

P

r

i=1

e
(x

i

,y

i

)

�

= 0, we get that

0 = Ã
'

 

⇡

 

r

X

i=1

e(x
i

,y

i

)

!!

= A
'

 

r

X

i=1

e(x
i

,y

i

)

!

=
r

X

i=1

A
'

(e(x
i

,y

i

)) =
r

X

i=1

'(x
i

)y
i

.

This together with the linear independence of the y
i

’s implies '(x
i

) = 0
for all i 2 {1, . . . , r}. Since the latter holds for all ' 2 E⇤, we have that
x
i

= 0 for all i 2 {1, . . . , r}. Exchanging the roles of the x
i

’s and the y
i

’s
we get that (LD) holds, and so does (TP2) .

(b) Let (M,�) be a tensor product of E and F , G a vector space and b :
E ⇥ F ! G a bilinear map. Consider {x

↵

}
↵2A and {y

�

}
�2B bases of E

and F , respectively. We know that {�(x
↵

, y
�

) : ↵ 2 A,� 2 B} forms a
basis of M , as span(�(E⇥F )) = M and, by Proposition 4.1.2, (LD’) holds
so the �(x

↵

, y
�

)’s for all ↵ 2 A and all � 2 B are linearly independent.
The linear mapping b̃ will therefore be the unique linear map of M into
G such that

8↵ 2 A, 8� 2 B, b̃(�(x
↵

, y
�

)) = b(x
↵

, y
�

).

Hence, the diagram in (b) commutes.
(c) Let (M

1

,�
1

) and (M
2

,�
2

) be two tensor products of E and F . Then using
twice the universal property (b) we get that there exist unique linear maps
u : M

1

! M
2

and v : M
2

! M
1

such that the following diagrams both
commute:

E ⇥ F M
2

M
1

�1

�2

u

E ⇥ F M
1

M
2

�2

�1

v
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4.1. Tensor product of vector spaces

Then combining u � �
1

= �
2

with v � �
2

= �
1

, we get that u and v are
one the inverse of the other. Hence, there is an algebraic isomorphism
between M

1

and M
2

.

It is now natural to introduce the concept of tensor product of linear maps.

Proposition 4.1.5. Let E,F,E
1

, F
1

be four vector spaces over K, and let
u : E ! E

1

and v : F ! F
1

be linear mappings. There is a unique linear map
of E ⌦ F into E

1

⌦ F
1

, called the tensor product of u and v and denoted by
u⌦ v, such that

(u⌦ v)(x⌦ y) = u(x)⌦ v(y), 8x 2 E, 8 y 2 F.

Proof.
Let us define the mapping

b : E ⇥ F ! E
1

⌦ F
1

(x, y) 7! b(x, y) := u(x)⌦ v(y),

which is clearly bilinear because of the linearity of u and v and the bilinearity
of the canonical map of the tensor product E

1

⌦ F
1

. Then by the universal
property there is a unique linear map b̃ : E ⌦ F ! E

1

⌦ F
1

s.t. the following
diagram commutes:

E ⇥ F E
1

⌦ F
1

E ⌦ F

⌦

b

˜

b

i.e. b̃(x ⌦ y) = b(x, y), 8 (x, y) 2 E ⇥ F. Hence, using the definition of b, we
get that b̃ ⌘ u⌦ v.

Examples 4.1.6.

1. Let n,m 2 N, E = Kn and F = Km. Then E ⌦ F = Knm is a tensor
product of E and F whose canonical bilinear map � is given by:

� : E ⇥ F ! Knm

⇣

(x
i

)n
i=1

, (y
j

)m
j=1

⌘

7! (x
i

y
j

)
1in,1jm

.
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4. Tensor products of t.v.s.

2. Let X and Y be two sets. For any functions f : X ! K and g : Y ! K,
we define:

f ⌦ g : X ⇥ Y ! K
(x, y) 7! f(x)g(y).

Let E (resp. F ) be the linear space of all functions from X (resp. Y )
to K endowed with the usual addition and multiplication by scalars. We
denote by E ⌦ F the linear subspace of the space of all functions from
X⇥Y to K spanned by the elements of the form f ⌦ g for all f 2 E and
g 2 F . Then E ⌦ F is actually a tensor product of E and F .

Given X and Y open subsets of Rn and Rm respectively, we can use the
definitions in Example 2 above to construct the tensors Ck(X) ⌦ Cl(Y ) for
any 1  k, l  1. The approximation results in Section 1.5 imply easily the
following:

Theorem 4.1.7. Let X and Y open subsets of Rn and Rm respectively. Then
C1
c

(X)⌦ C1
c

(Y ) is sequentially dense in C1
c

(X ⇥ Y ).
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