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2. Let X andY be two sets. For any functions f: X > Kandg:Y — K,
we define:
f®g: XxY — K

(z,y) = [f(x)gy).

Let E (resp. F) be the linear space of all functions from X (resp. Y')
to K endowed with the usual addition and multiplication by scalars. We
denote by E ® F' the linear subspace of the space of all functions from
X xY to K spanned by the elements of the form f® g for oll f € E
and g € F. Then E ® F is actually a tensor product of E and F (see
Sheet 7, Exercise 1).

Given X and Y open subsets of R™ and R™ respectively, we can use the
definitions in Example 2 above to construct the tensors C*(X) ® C!(Y) for any
1 < k,l < 0o. The approximation results in Section 1.5 imply:

Theorem 4.1.7. Let X andY open subsets of R™ and R™ respectively. Then
CX(X) ®CX(Y) is sequentially dense in C°(X X Y).
Proof. (see Sheet 7, Exercise 2).

Topologies on the tensor product of locally convex t.v.s.

Given two locally convex t.v.s. E and F, there various ways to construct a
topology on the tensor product F ® F which makes the vector space £ ® F
in a t.v.s.. Indeed, starting from the topologies on F and F', one can define a
topology on E ® F' either relying directly on the seminorms on F and F', or
using an embedding of F ® F' in some space related to E and F' over which
a natural topology already exists. The first method leads to the so-called
m—topology. The second method may lead instead to a variety of topologies,
the most important of which is the so-called e—topology that is based on the
isomorphism between E ® F' and B(E., F)) (see Proposition ?7).

m—topology

Let us define the first main topology on E ® F which we will see can be
directly characterized by mean of the seminorms generating the topologies on
the starting locally convex t.v.s. E and F'.

Definition 4.2.1 (7—topology).

Given two locally convex t.v.s. E and F, we define the m—topology (or pro-
jective topology) on E ® F' to be the strongest locally convex topology on this
vector space for which the canonical mapping E X F'— E ® F is continuous.
The space E ® F' equipped with the m—topology will be denoted by E ®, F'.
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A basis of neighbourhoods of the origin in £ ®, F is given by the family:
B := {convy(Uy ® V) : Uy € B, Vg € Br},

where Bg (resp. Bp) is a basis of neighbourhoods of the origin in E (resp.
in F),Us @ Vg3 :={z @y e E®QF: x € Uy,y € Vg} and convy(U, ® V3) de-
notes the smallest convex balanced subset of F ® F' containing U, ® V3. In
fact, on the one hand, the m—topology is by definition locally convex and so it
has a basis B of convex balanced neighbourhoods of the origin in E® F'. Then,
as the canonical mapping ¢ is continuous w.r.t. the m—topology, we have that
for any C' € B there exist U, € Bg and Vg € Bp s.t. U, x Vg C ¢~ 1(0).
Hence, U, ® Vg = ¢(Uq x V) C C and so convy(Uy ® V3) C convy(C) = C
which yields that the topology generated by B is finer than the m—topology.
On the other hand, the canonical map ¢ is continuous w.r.t. the topology
generated by By, because for any U, € Bg and Vg € Br we have that
¢ (convy(Uy @ V3)) 2 ¢ 1 (Usy ® V) = U, x V3 which is a neighbourhood of
the origin in £ x F. Hence, the topology generated by B, is coarser than the
m—topology.

The m—topology on F ® F' can be described by means of the seminorms
defining the locally convex topologies on E and F'. Indeed, we have the fol-
lowing characterization of the m—topology.

Proposition 4.2.2. Let E and F be two locally convexr t.v.s. and let P
(resp. Q) be a family of seminorms generating the topology on E (resp.on F).
The m—topology on E ® F' is generated by the family of seminorms

{p®q: peP,qe Q},
where for any p € P,q € Q,0 € E® F we define:

(p®@q)(0) :=inf{p>0: 0 e pW}
with
W = convp(Up@Vy),Up :={x € E:p(x) <1}, and Vy:={y € F:q(y) < 1}.

Proof. (Sheet 7, Exercise 3) O

The seminorm p® g on E ® F' defined in the previous proposition is called
tensor product of the seminorms p and q (or projective cross seminorm) and
it can be represented in a more practical way that shows even more directly
its relation to the seminorms defining the topologies on F and F.
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Theorem 4.2.3.
a) Forany 0 € E® F, we have:

(p®q)(6) := inf {ZP(%)Q(%) 0= Tk @y ax €E,yp € Fir € N} :
=1 k=1

b) Forallx € E andy € F, (p®q)(x®@y) = p(x)q(y).
Proof.
a) As above, we set U, :={z € E:p(z) <1}, V,:={y € F :q(y) <1} and

W = convp(U, @ V). Let § € E® F. Let us preliminarily observe that the
condition “f € pW for some p > 0” is equivalent to:

N N

0=> tewr @y, with Y |tel < p, p(zx) < 1,q() < 1,¥k € {1,...,N}.
k=1 k=1

If we set & := tpxr and n == yg, then
N N

0=> & @newith Y p(&)a(n) < p.
k=1 k=1

Then inf {}°,_; p(xr)q(yr) : 0= 11 Tk @y, ;21 € E,yp € F,r e N} < p
and since this is true for any p > 0 s.t. 6§ € pW then we get:

inf {ZP(%)Q(%) 0= 2 Qy, ,m€Ey€Fre N} < (p®q)().

i=1 i=1

Conversely, let us consider an arbitrary representation of 6, i.e.

N
0=> & @mnpwith & € E, ng € F,
k=1
and let p > 0 s.t. Zivzl p(&k)q(nk) < p. Let € > 0. Define
o [ := {k‘ S {1,,N} :p(gk)q@?k) 7’é 0}
o Iy :={ke{l,...,N}:p(&) # 0 and q(nx) = 0}
o Is:={ke{l,...,N}:p(&) =0 andq(nx) # 0}
o Iy:={ke{l,...,N}:p(&) =0 andq(n) = 0}

and set
o Vk € I,y = oo, yp = s g = p(&k)a ()
o Vk eIy, ) := pfélw Yp = :

o Vk € I3, wp i= Zq(m)&ks Yk = gy th =

=
|
o
g
—~~
A
-
~—
=
T
~
=
I

N
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o Vk €Iy, xp =N, yp =i, tr 1= 5
<

Then Vk € {1,..., N} we have that p(x) < 1 and ¢q(yi) < 1. Also we get:

N
_ €k Mk e & N
;thk Quyp = ];p(gk)Q<77k)p(§k) ® oy k;b Nt © P(E)K

e N Nk e N
+ Zﬁ;q(ﬁk)fk@@ )+Z N 2 Sk O

kels a0mw) i
N
= > G =0
k=1
and
al £
ol = D opEalm)+ Y N
k=1 kel ke(I2UI3Uly)
€
= Z p(&k)a(nr) + [12 U I3 U 14\N

kel
n
< D pl&)alm) +e<pte
k=1

Hence, by our preliminary observation we get that 8 € (p+¢)W. As this holds
for any € > 0, we have 6 € pW. Therefore, we obtain that (p ® ¢)(0) < p
which yields

N N
(p®q)(0) < inf {ZP(&)Q(%) 0= &@m, € EqeFNe N} :

k=1 k=1
b) Let x € F and y € F. By using a), we immediately get that
(P ®@q)(r®y) < plr)q(y).

Conversely, consider M := span{z} and define L : M — K as L(Az) := A\p(z)
for all A € K. Then clearly L is a linear functional on M and for any m € M,
ie. m = Az for some X\ € K, we have |L(m)| = |A|p(z) = p(Ax) = p(m).
Therefore, Hahn-Banach theorem can be applied and provides that:

d2' € E' st.(2/,2) = p(x) and |(2/,21)| < p(z1), V21 € E. (4.2)
Repeating this reasoning for y we get that:

3y e F' st. (¢ y) = q(y) and (v, 41)| < q(y1), Vy1 € F. (4.3)
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Let us consider now any representation of x ® y, namely x @y = Zi\[zl T Q Yk
with zx € F, yp € F and N € N. Then using the second part of (4.2) and
(4.3) we obtain:

Mz

(@' @y, 2 ®y)| Z x| [ k)
k=1 k=1

Since this is true for any representation of x ® y, we deduce by a) that:

(2’ @y, z0y)| < (pq)(z@y).

The latter together with the first part of (4.2) and (4.3) gives:

p(2)q(y) = p(@)|-la@)| = (&', 2)|-|(v, 9)| = | (@' @,z @ y)| < (p@q)(z®Y).

O]

Proposition 4.2.4. Let E and F be two locally convex t.v.s.. E ®; F 1is
Hausdorff if and only if E and F are both Hausdorff.

Proof. (Sheet 7, Exercise 4) O

Corollary 4.2.5. Let (E,p) and (F,q) be seminormed spaces. Then p ® q is
a norm on E® F if and only if p and q are both norms.

Proof.

Under our assumptions, the m—topology on E ® F' is generated by the single
seminorm p ® g. Then, recalling that a seminormed space is normed iff it is
Hausdorff and using Proposition 4.2.4, we get: (F ® F,p ® q) is normed <
E ®, F is Hausdorff & E and F' are both Hausdorff < (E,p) and (F, q) are
both normed. O

Definition 4.2.6. Let (E,p) and (F,q) be normed spaces. The normed space
(E® F,p® q) is called the projective tensor product of E and F and p® q is
said to be the corresponding projective tensor norm.

In analogy with the algebraic case (see Theorem 4.1.4-b), we also have a
universal property for the space E ®;, F.

Proposition 4.2.7.
Let E, F be locally convex spaces. The m—topology on E Q, F is the unique
locally convex topology on EE® F such that the following property holds:



4.2. Topologies on the tensor product of locally convex t.v.s.

(UP) For every locally convex space G, the algebraic isomorphism between
the space of bilinear mappings from E X F into G and the space of all
linear mappings from E® F into G (given by Theorem 4.1./-b) induces
an algebraic isomorphism between B(E, F;G) and L(E ® F;G), where
B(E, F;G) denotes the space of all continuous bilinear mappings from
EXF into G and L(E®QF; G) the space of all continuous linear mappings
from E® F into G.

Proof. Let T be alocally convex topology on E®F such that the property (UP)
holds. Then (UP) holds in particular for G = (E' ® F, 7). Therefore, since in
the algebraic isomorphism given by Theorem 4.1.4-b) in this case the canonical
mapping ¢ : E x ' = E® F corresponds to the identity id : FQF — EQ F,
we get that ¢ : E X F' — E ®; F has to be continuous.

ExF—2 yE®.F

l

E®, F

This implies that 7 C 7 by definition of m—topology. On the other hand, (UP)
also holds for G = (E® F, 7).

ExF—2 yE®. F

l

E®; F
Hence, since by definition of m—topology ¢ : E x ' — E ®,; F is continuous,
the id : F ®, FF — E ®,; F has to be also continuous. This means that = C 7,
which completes the proof. O

Corollary 4.2.8. (E®, F)' 2 B(E,F).

Proof. By taking G = K in Proposition 4.2.7, we get the conclusion. O
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