2. Let X and Y be two sets. For any functions $f: X \to \mathbb{K}$ and $g: Y \to \mathbb{K}$, we define:

$$\begin{array}{rcccc} f \otimes g : & X \times Y & \to & \mathbb{K} \\ & & (x,y) & \mapsto & f(x)g(y) \end{array}$$

Let E (resp. F) be the linear space of all functions from X (resp. Y) to \mathbb{K} endowed with the usual addition and multiplication by scalars. We denote by $E \otimes F$ the linear subspace of the space of all functions from $X \times Y$ to \mathbb{K} spanned by the elements of the form $f \otimes g$ for all $f \in E$ and $g \in F$. Then $E \otimes F$ is actually a tensor product of E and F (see Sheet 7, Exercise 1).

Given X and Y open subsets of \mathbb{R}^n and \mathbb{R}^m respectively, we can use the definitions in Example 2 above to construct the tensors $\mathcal{C}^k(X) \otimes \mathcal{C}^l(Y)$ for any $1 \leq k, l \leq \infty$. The approximation results in Section 1.5 imply:

Theorem 4.1.7. Let X and Y open subsets of \mathbb{R}^n and \mathbb{R}^m respectively. Then $\mathcal{C}^{\infty}_c(X) \otimes \mathcal{C}^{\infty}_c(Y)$ is sequentially dense in $\mathcal{C}^{\infty}_c(X \times Y)$. *Proof.* (see Sheet 7, Exercise 2).

4.2 Topologies on the tensor product of locally convex t.v.s.

Given two locally convex t.v.s. E and F, there various ways to construct a topology on the tensor product $E \otimes F$ which makes the vector space $E \otimes F$ in a t.v.s.. Indeed, starting from the topologies on E and F, one can define a topology on $E \otimes F$ either relying directly on the seminorms on E and F, or using an embedding of $E \otimes F$ in some space related to E and F over which a natural topology already exists. The first method leads to the so-called π -topology. The second method may lead instead to a variety of topologies, the most important of which is the so-called ε -topology that is based on the isomorphism between $E \otimes F$ and $B(E'_{\sigma}, F'_{\sigma})$ (see Proposition ??).

π -topology

Let us define the first main topology on $E \otimes F$ which we will see can be directly characterized by mean of the seminorms generating the topologies on the starting locally convex t.v.s. E and F.

Definition 4.2.1 (π -topology).

Given two locally convex t.v.s. E and F, we define the π -topology (or projective topology) on $E \otimes F$ to be the strongest locally convex topology on this vector space for which the canonical mapping $E \times F \to E \otimes F$ is continuous. The space $E \otimes F$ equipped with the π -topology will be denoted by $E \otimes_{\pi} F$. A basis of neighbourhoods of the origin in $E \otimes_{\pi} F$ is given by the family:

$$\mathcal{B} := \{ conv_b(U_\alpha \otimes V_\beta) : U_\alpha \in \mathcal{B}_E, V_\beta \in \mathcal{B}_F \},\$$

where \mathcal{B}_E (resp. \mathcal{B}_F) is a basis of neighbourhoods of the origin in E (resp. in F), $U_{\alpha} \otimes V_{\beta} := \{x \otimes y \in E \otimes F : x \in U_{\alpha}, y \in V_{\beta}\}$ and $conv_b(U_{\alpha} \otimes V_{\beta})$ denotes the smallest convex balanced subset of $E \otimes F$ containing $U_{\alpha} \otimes V_{\beta}$. In fact, on the one hand, the π -topology is by definition locally convex and so it has a basis \mathcal{B} of convex balanced neighbourhoods of the origin in $E \otimes F$. Then, as the canonical mapping ϕ is continuous w.r.t. the π -topology, we have that for any $C \in \mathcal{B}$ there exist $U_{\alpha} \in \mathcal{B}_E$ and $V_{\beta} \in \mathcal{B}_F$ s.t. $U_{\alpha} \times V_{\beta} \subseteq \phi^{-1}(C)$. Hence, $U_{\alpha} \otimes V_{\beta} = \phi(U_{\alpha} \times V_{\beta}) \subseteq C$ and so $conv_b(U_{\alpha} \otimes V_{\beta}) \subseteq conv_b(C) = C$ which yields that the topology generated by \mathcal{B}_{π} is finer than the π -topology. On the other hand, the canonical map ϕ is continuous w.r.t. the topology generated by \mathcal{B}_{π} , because for any $U_{\alpha} \in \mathcal{B}_E$ and $V_{\beta} \in \mathcal{B}_F$ we have that $\phi^{-1}(conv_b(U_{\alpha} \otimes V_{\beta})) \supseteq \phi^{-1}(U_{\alpha} \otimes V_{\beta}) = U_{\alpha} \times V_{\beta}$ which is a neighbourhood of the origin in $E \times F$. Hence, the topology generated by \mathcal{B}_{π} is coarser than the π -topology.

The π -topology on $E \otimes F$ can be described by means of the seminorms defining the locally convex topologies on E and F. Indeed, we have the following characterization of the π -topology.

Proposition 4.2.2. Let E and F be two locally convex t.v.s. and let \mathcal{P} (resp. \mathcal{Q}) be a family of seminorms generating the topology on E (resp. on F). The π -topology on $E \otimes F$ is generated by the family of seminorms

$$\{p \otimes q : p \in \mathcal{P}, q \in \mathcal{Q}\}$$

where for any $p \in \mathcal{P}, q \in \mathcal{Q}, \theta \in E \otimes F$ we define:

$$(p \otimes q)(\theta) := \inf\{\rho > 0 : \theta \in \rho W\}$$

with

$$W := conv_b(U_p \otimes V_q), U_p := \{ x \in E : p(x) \le 1 \}, and V_q := \{ y \in F : q(y) \le 1 \}.$$

Proof. (Sheet 7, Exercise 3)

The seminorm $p \otimes q$ on $E \otimes F$ defined in the previous proposition is called tensor product of the seminorms p and q (or projective cross seminorm) and it can be represented in a more practical way that shows even more directly its relation to the seminorms defining the topologies on E and F.

Theorem 4.2.3.

a) For any $\theta \in E \otimes F$, we have:

$$(p \otimes q)(\theta) := \inf \left\{ \sum_{k=1}^r p(x_k) q(y_k) : \theta = \sum_{k=1}^r x_k \otimes y_k, \, , x_k \in E, y_k \in F, r \in \mathbb{N} \right\}$$

b) For all $x \in E$ and $y \in F$, $(p \otimes q)(x \otimes y) = p(x)q(y)$.

Proof.

a) As above, we set $U_p := \{x \in E : p(x) \le 1\}, V_q := \{y \in F : q(y) \le 1\}$ and $W := conv_b(U_p \otimes V_q)$. Let $\theta \in E \otimes F$. Let us preliminarily observe that the condition " $\theta \in \rho W$ for some $\rho > 0$ " is equivalent to:

$$\theta = \sum_{k=1}^{N} t_k x_k \otimes y_k, \text{ with } \sum_{k=1}^{N} |t_k| \le \rho, \ p(x_k) \le 1, q(y_k) \le 1, \forall k \in \{1, \dots, N\}.$$

If we set $\xi_k := t_k x_k$ and $\eta_k := y_k$, then

$$\theta = \sum_{k=1}^{N} \xi_k \otimes \eta_k$$
 with $\sum_{k=1}^{N} p(\xi_k) q(\eta_k) \le \rho_k$

Then $\inf \left\{ \sum_{k=1}^r p(x_k) q(y_k) : \theta = \sum_{k=1}^r x_k \otimes y_k, \, x_k \in E, y_k \in F, r \in \mathbb{N} \right\} \leq \rho$ and since this is true for any $\rho > 0$ s.t. $\theta \in \rho W$ then we get:

$$\inf\left\{\sum_{i=1}^r p(x_i)q(y_i): \theta = \sum_{i=1}^r x_i \otimes y_i, \, , x_i \in E, y_i \in F, r \in \mathbb{N}\right\} \le (p \otimes q)(\theta).$$

Conversely, let us consider an arbitrary representation of θ , i.e.

$$\theta = \sum_{k=1}^{N} \xi_k \otimes \eta_k$$
 with $\xi_k \in E, \ \eta_k \in F$,

and let $\rho > 0$ s.t. $\sum_{k=1}^{N} p(\xi_k) q(\eta_k) \le \rho$. Let $\varepsilon > 0$. Define • $I_1 := \{k \in \{1, \dots, N\} : p(\xi_k) q(\eta_k) \ne 0\}$

- $I_2 := \{k \in \{1, \dots, N\} : p(\xi_k) \neq 0 \text{ and } q(\eta_k) = 0\}$
- $I_3 := \{k \in \{1, \dots, N\} : p(\xi_k) = 0 \text{ and } q(\eta_k) \neq 0\}$
- $I_4 := \{k \in \{1, \dots, N\} : p(\xi_k) = 0 \text{ and } q(\eta_k) = 0\}$

and set

•
$$\forall k \in I_1, x_k := \frac{\xi_k}{p(\xi_k)}, y_k := \frac{\eta_k}{q(\eta_k)}, t_k := p(\xi_k)q(\eta_k)$$

•
$$\forall k \in I_2, x_k := \frac{\zeta_k}{p(\xi_k)}, y_k := \frac{N}{\varepsilon} p(\xi_k) \eta_k, t_k := \frac{\varepsilon}{N}$$

• $\forall k \in I_3, x_k := \frac{N}{\varepsilon} q(\eta_k) \xi_k, y_k := \frac{\eta_k}{q(\eta_k)}, t_k := \frac{\varepsilon}{N}$

• $\forall k \in I_4, x_k := \frac{N}{\varepsilon} \xi_k, y_k := \eta_k, t_k := \frac{\varepsilon}{N}$ Then $\forall k \in \{1, \dots, N\}$ we have that $p(x_k) \leq 1$ and $q(y_k) \leq 1$. Also we get:

$$\begin{split} \sum_{k=1}^{N} t_k x_k \otimes y_k &= \sum_{k \in I_1} p(\xi_k) q(\eta_k) \frac{\xi_k}{p(\xi_k)} \otimes \frac{\eta_k}{q(\eta_k)} + \sum_{k \in I_2} \frac{\varepsilon}{N} \frac{\xi_k}{p(\xi_k)} \otimes \frac{N}{\varepsilon} p(\xi_k) \eta_k \\ &+ \sum_{k \in I_3} \frac{\varepsilon}{N} \frac{N}{\varepsilon} q(\eta_k) \xi_k \otimes \frac{\eta_k}{q(\eta_k)} + \sum_{k \in I_4} \frac{\varepsilon}{N} \frac{N}{\varepsilon} \xi_k \otimes \eta_k \\ &= \sum_{k=1}^{N} \xi_k \otimes \eta_k = \theta \end{split}$$

and

$$\sum_{k=1}^{N} |t_k| = \sum_{k \in I_1} p(\xi_k) q(\eta_k) + \sum_{k \in (I_2 \cup I_3 \cup I_4)} \frac{\varepsilon}{N}$$
$$= \sum_{k \in I_1} p(\xi_k) q(\eta_k) + |I_2 \cup I_3 \cup I_4| \frac{\varepsilon}{N}$$
$$\leq \sum_{k=1}^{n} p(\xi_k) q(\eta_k) + \varepsilon \leq \rho + \varepsilon.$$

Hence, by our preliminary observation we get that $\theta \in (\rho + \varepsilon)W$. As this holds for any $\varepsilon > 0$, we have $\theta \in \rho W$. Therefore, we obtain that $(p \otimes q)(\theta) \leq \rho$ which yields

$$(p \otimes q)(\theta) \le \inf \left\{ \sum_{k=1}^{N} p(\xi_k) q(\eta_k) : \theta = \sum_{k=1}^{N} \xi_k \otimes \eta_k, \, \xi_k \in E, \eta_k \in F, N \in \mathbb{N} \right\}.$$

b) Let $x \in E$ and $y \in F$. By using a), we immediately get that

$$(p \otimes q)(x \otimes y) \le p(x)q(y).$$

Conversely, consider $M := span\{x\}$ and define $L : M \to \mathbb{K}$ as $L(\lambda x) := \lambda p(x)$ for all $\lambda \in \mathbb{K}$. Then clearly L is a linear functional on M and for any $m \in M$, i.e. $m = \lambda x$ for some $\lambda \in \mathbb{K}$, we have $|L(m)| = |\lambda|p(x) = p(\lambda x) = p(m)$. Therefore, Hahn-Banach theorem can be applied and provides that:

$$\exists x' \in E' \text{ s.t. } \langle x', x \rangle = p(x) \text{ and } |\langle x', x_1 \rangle| \le p(x_1), \forall x_1 \in E.$$
(4.2)

Repeating this reasoning for y we get that:

$$\exists y' \in F' \text{ s.t. } \langle y', y \rangle = q(y) \text{ and } |\langle y', y_1 \rangle| \le q(y_1), \forall y_1 \in F.$$
(4.3)

Let us consider now any representation of $x \otimes y$, namely $x \otimes y = \sum_{k=1}^{N} x_k \otimes y_k$ with $x_k \in E$, $y_k \in F$ and $N \in \mathbb{N}$. Then using the second part of (4.2) and (4.3) we obtain:

$$\left|\langle x' \otimes y', x \otimes y \rangle\right| \le \sum_{k=1}^{N} \left|\langle x', x_k \rangle\right| \cdot \left|\langle y', y_k \rangle\right| \le \sum_{k=1}^{N} p(x_k) q(x_k).$$

Since this is true for any representation of $x \otimes y$, we deduce by a) that:

$$|\langle x' \otimes y', x \otimes y \rangle| \le (p \otimes q)(x \otimes y).$$

The latter together with the first part of (4.2) and (4.3) gives:

$$p(x)q(y) = |p(x)| \cdot |q(y)| = |\langle x', x \rangle| \cdot |\langle y', y \rangle| = \left| \langle x' \otimes y', x \otimes y \rangle \right| \le (p \otimes q)(x \otimes y).$$

Proposition 4.2.4. Let E and F be two locally convex t.v.s.. $E \otimes_{\pi} F$ is Hausdorff if and only if E and F are both Hausdorff.

Proof. (Sheet 7, Exercise 4)

Corollary 4.2.5. Let (E, p) and (F, q) be seminormed spaces. Then $p \otimes q$ is a norm on $E \otimes F$ if and only if p and q are both norms.

Proof.

Under our assumptions, the π -topology on $E \otimes F$ is generated by the single seminorm $p \otimes q$. Then, recalling that a seminormed space is normed iff it is Hausdorff and using Proposition 4.2.4, we get: $(E \otimes F, p \otimes q)$ is normed \Leftrightarrow $E \otimes_{\pi} F$ is Hausdorff $\Leftrightarrow E$ and F are both Hausdorff $\Leftrightarrow (E, p)$ and (F, q) are both normed.

Definition 4.2.6. Let (E, p) and (F, q) be normed spaces. The normed space $(E \otimes F, p \otimes q)$ is called the projective tensor product of E and F and $p \otimes q$ is said to be the corresponding projective tensor norm.

In analogy with the algebraic case (see Theorem 4.1.4-b), we also have a universal property for the space $E \otimes_{\pi} F$.

Proposition 4.2.7.

Let E, F be locally convex spaces. The π -topology on $E \otimes_{\pi} F$ is the unique locally convex topology on $E \otimes F$ such that the following property holds:

(UP) For every locally convex space G, the algebraic isomorphism between the space of bilinear mappings from $E \times F$ into G and the space of all linear mappings from $E \otimes F$ into G (given by Theorem 4.1.4-b) induces an algebraic isomorphism between B(E, F; G) and $L(E \otimes F; G)$, where B(E, F; G) denotes the space of all continuous bilinear mappings from $E \times F$ into G and $L(E \otimes F; G)$ the space of all continuous linear mappings from $E \otimes F$ into G.

Proof. Let τ be a locally convex topology on $E \otimes F$ such that the property (UP) holds. Then (UP) holds in particular for $G = (E \otimes F, \tau)$. Therefore, since in the algebraic isomorphism given by Theorem 4.1.4-b) in this case the canonical mapping $\phi : E \times F \to E \otimes F$ corresponds to the identity $id : E \otimes F \to E \otimes F$, we get that $\phi : E \times F \to E \otimes_{\tau} F$ has to be continuous.

This implies that $\tau \subseteq \pi$ by definition of π -topology. On the other hand, (UP) also holds for $G = (E \otimes F, \pi)$.

Hence, since by definition of π -topology $\phi : E \times F \to E \otimes_{\pi} F$ is continuous, the $id : E \otimes_{\tau} F \to E \otimes_{\pi} F$ has to be also continuous. This means that $\pi \subseteq \tau$, which completes the proof.

Corollary 4.2.8. $(E \otimes_{\pi} F)' \cong B(E, F)$.

Proof. By taking $G = \mathbb{K}$ in Proposition 4.2.7, we get the conclusion.