2. Let X and Y be two sets. For any functions $f: X \rightarrow \mathbb{K}$ and $g: Y \rightarrow \mathbb{K}$, we define:

$$
\begin{array}{lll}
f \otimes g: & X \times Y & \rightarrow \mathbb{K} \\
& (x, y) & \mapsto f(x) g(y) .
\end{array}
$$

Let E (resp. F) be the linear space of all functions from X (resp. Y) to \mathbb{K} endowed with the usual addition and multiplication by scalars. We denote by $E \otimes F$ the linear subspace of the space of all functions from $X \times Y$ to \mathbb{K} spanned by the elements of the form $f \otimes g$ for all $f \in E$ and $g \in F$. Then $E \otimes F$ is actually a tensor product of E and F (see Sheet 7, Exercise 1).

Given X and Y open subsets of \mathbb{R}^{n} and \mathbb{R}^{m} respectively, we can use the definitions in Example 2 above to construct the tensors $\mathcal{C}^{k}(X) \otimes \mathcal{C}^{l}(Y)$ for any $1 \leq k, l \leq \infty$. The approximation results in Section 1.5 imply:

Theorem 4.1.7. Let X and Y open subsets of \mathbb{R}^{n} and \mathbb{R}^{m} respectively. Then $\mathcal{C}_{c}^{\infty}(X) \otimes \mathcal{C}_{c}^{\infty}(Y)$ is sequentially dense in $\mathcal{C}_{c}^{\infty}(X \times Y)$.
Proof. (see Sheet 7, Exercise 2).

4.2 Topologies on the tensor product of locally convex t.v.s.

Given two locally convex t.v.s. E and F, there various ways to construct a topology on the tensor product $E \otimes F$ which makes the vector space $E \otimes F$ in a t.v.s.. Indeed, starting from the topologies on E and F, one can define a topology on $E \otimes F$ either relying directly on the seminorms on E and F, or using an embedding of $E \otimes F$ in some space related to E and F over which a natural topology already exists. The first method leads to the so-called π-topology. The second method may lead instead to a variety of topologies, the most important of which is the so-called ε-topology that is based on the isomorphism between $E \otimes F$ and $B\left(E_{\sigma}^{\prime}, F_{\sigma}^{\prime}\right)$ (see Proposition ??).

π-topology

Let us define the first main topology on $E \otimes F$ which we will see can be directly characterized by mean of the seminorms generating the topologies on the starting locally convex t.v.s. E and F.

Definition 4.2.1 (π-topology).
Given two locally convex t.v.s. E and F, we define the π-topology (or projective topology) on $E \otimes F$ to be the strongest locally convex topology on this vector space for which the canonical mapping $E \times F \rightarrow E \otimes F$ is continuous. The space $E \otimes F$ equipped with the π-topology will be denoted by $E \otimes_{\pi} F$.

A basis of neighbourhoods of the origin in $E \otimes_{\pi} F$ is given by the family:

$$
\mathcal{B}:=\left\{\operatorname{conv}_{b}\left(U_{\alpha} \otimes V_{\beta}\right): U_{\alpha} \in \mathcal{B}_{E}, V_{\beta} \in \mathcal{B}_{F}\right\},
$$

where $\mathcal{B}_{E}\left(\right.$ resp. $\left.\mathcal{B}_{F}\right)$ is a basis of neighbourhoods of the origin in E (resp. in $F), U_{\alpha} \otimes V_{\beta}:=\left\{x \otimes y \in E \otimes F: x \in U_{\alpha}, y \in V_{\beta}\right\}$ and $\operatorname{conv}_{b}\left(U_{\alpha} \otimes V_{\beta}\right)$ denotes the smallest convex balanced subset of $E \otimes F$ containing $U_{\alpha} \otimes V_{\beta}$. In fact, on the one hand, the π-topology is by definition locally convex and so it has a basis \mathcal{B} of convex balanced neighbourhoods of the origin in $E \otimes F$. Then, as the canonical mapping ϕ is continuous w.r.t. the π-topology, we have that for any $C \in \mathcal{B}$ there exist $U_{\alpha} \in \mathcal{B}_{E}$ and $V_{\beta} \in \mathcal{B}_{F}$ s.t. $U_{\alpha} \times V_{\beta} \subseteq \phi^{-1}(C)$. Hence, $U_{\alpha} \otimes V_{\beta}=\phi\left(U_{\alpha} \times V_{\beta}\right) \subseteq C$ and so $\operatorname{conv}_{b}\left(U_{\alpha} \otimes V_{\beta}\right) \subseteq \operatorname{conv}_{b}(C)=C$ which yields that the topology generated by \mathcal{B}_{π} is finer than the π-topology. On the other hand, the canonical map ϕ is continuous w.r.t. the topology generated by \mathcal{B}_{π}, because for any $U_{\alpha} \in \mathcal{B}_{E}$ and $V_{\beta} \in \mathcal{B}_{F}$ we have that $\phi^{-1}\left(\operatorname{conv}_{b}\left(U_{\alpha} \otimes V_{\beta}\right)\right) \supseteq \phi^{-1}\left(U_{\alpha} \otimes V_{\beta}\right)=U_{\alpha} \times V_{\beta}$ which is a neighbourhood of the origin in $E \times F$. Hence, the topology generated by \mathcal{B}_{π} is coarser than the π-topology.

The π-topology on $E \otimes F$ can be described by means of the seminorms defining the locally convex topologies on E and F. Indeed, we have the following characterization of the π-topology.

Proposition 4.2.2. Let E and F be two locally convex t.v.s. and let \mathcal{P} (resp. Q) be a family of seminorms generating the topology on E (resp. on F). The π-topology on $E \otimes F$ is generated by the family of seminorms

$$
\{p \otimes q: p \in \mathcal{P}, q \in \mathcal{Q}\}
$$

where for any $p \in \mathcal{P}, q \in \mathcal{Q}, \theta \in E \otimes F$ we define:

$$
(p \otimes q)(\theta):=\inf \{\rho>0: \theta \in \rho W\}
$$

with
$W:=\operatorname{conv}_{b}\left(U_{p} \otimes V_{q}\right), U_{p}:=\{x \in E: p(x) \leq 1\}$, and $V_{q}:=\{y \in F: q(y) \leq 1\}$.
Proof. (Sheet 7, Exercise 3)
The seminorm $p \otimes q$ on $E \otimes F$ defined in the previous proposition is called tensor product of the seminorms p and q (or projective cross seminorm) and it can be represented in a more practical way that shows even more directly its relation to the seminorms defining the topologies on E and F.

Theorem 4.2.3.

a) For any $\theta \in E \otimes F$, we have:

$$
(p \otimes q)(\theta):=\inf \left\{\sum_{k=1}^{r} p\left(x_{k}\right) q\left(y_{k}\right): \theta=\sum_{k=1}^{r} x_{k} \otimes y_{k},, x_{k} \in E, y_{k} \in F, r \in \mathbb{N}\right\}
$$

b) For all $x \in E$ and $y \in F,(p \otimes q)(x \otimes y)=p(x) q(y)$.

Proof.
a) As above, we set $U_{p}:=\{x \in E: p(x) \leq 1\}, V_{q}:=\{y \in F: q(y) \leq 1\}$ and $W:=\operatorname{conv}_{b}\left(U_{p} \otimes V_{q}\right)$. Let $\theta \in E \otimes F$. Let us preliminarily observe that the condition " $\theta \in \rho W$ for some $\rho>0$ " is equivalent to:

$$
\theta=\sum_{k=1}^{N} t_{k} x_{k} \otimes y_{k}, \text { with } \sum_{k=1}^{N}\left|t_{k}\right| \leq \rho, p\left(x_{k}\right) \leq 1, q\left(y_{k}\right) \leq 1, \forall k \in\{1, \ldots, N\}
$$

If we set $\xi_{k}:=t_{k} x_{k}$ and $\eta_{k}:=y_{k}$, then

$$
\theta=\sum_{k=1}^{N} \xi_{k} \otimes \eta_{k} \text { with } \sum_{k=1}^{N} p\left(\xi_{k}\right) q\left(\eta_{k}\right) \leq \rho
$$

Then $\inf \left\{\sum_{k=1}^{r} p\left(x_{k}\right) q\left(y_{k}\right): \theta=\sum_{k=1}^{r} x_{k} \otimes y_{k},, x_{k} \in E, y_{k} \in F, r \in \mathbb{N}\right\} \leq \rho$ and since this is true for any $\rho>0$ s.t. $\theta \in \rho W$ then we get:

$$
\inf \left\{\sum_{i=1}^{r} p\left(x_{i}\right) q\left(y_{i}\right): \theta=\sum_{i=1}^{r} x_{i} \otimes y_{i},, x_{i} \in E, y_{i} \in F, r \in \mathbb{N}\right\} \leq(p \otimes q)(\theta)
$$

Conversely, let us consider an arbitrary representation of θ, i.e.

$$
\theta=\sum_{k=1}^{N} \xi_{k} \otimes \eta_{k} \text { with } \xi_{k} \in E, \eta_{k} \in F
$$

and let $\rho>0$ s.t. $\sum_{k=1}^{N} p\left(\xi_{k}\right) q\left(\eta_{k}\right) \leq \rho$. Let $\varepsilon>0$. Define

- $I_{1}:=\left\{k \in\{1, \ldots, N\}: p\left(\xi_{k}\right) q\left(\eta_{k}\right) \neq 0\right\}$
- $I_{2}:=\left\{k \in\{1, \ldots, N\}: p\left(\xi_{k}\right) \neq 0\right.$ and $\left.q\left(\eta_{k}\right)=0\right\}$
- $I_{3}:=\left\{k \in\{1, \ldots, N\}: p\left(\xi_{k}\right)=0\right.$ and $\left.q\left(\eta_{k}\right) \neq 0\right\}$
- $I_{4}:=\left\{k \in\{1, \ldots, N\}: p\left(\xi_{k}\right)=0\right.$ and $\left.q\left(\eta_{k}\right)=0\right\}$
and set
- $\forall k \in I_{1}, x_{k}:=\frac{\xi_{k}}{p\left(\xi_{k}\right)}, y_{k}:=\frac{\eta_{k}}{q\left(\eta_{k}\right)}, t_{k}:=p\left(\xi_{k}\right) q\left(\eta_{k}\right)$
- $\forall k \in I_{2}, x_{k}:=\frac{\xi_{k}}{p\left(\xi_{k}\right)}, y_{k}:=\frac{N}{\varepsilon} p\left(\xi_{k}\right) \eta_{k}, t_{k}:=\frac{\varepsilon}{N}$
- $\forall k \in I_{3}, x_{k}:=\frac{N}{\varepsilon} q\left(\eta_{k}\right) \xi_{k}, y_{k}:=\frac{\eta_{k}}{q\left(\eta_{k}\right)}, t_{k}:=\frac{\varepsilon}{N}$
- $\forall k \in I_{4}, x_{k}:=\frac{N}{\varepsilon} \xi_{k}, y_{k}:=\eta_{k}, t_{k}:=\frac{\varepsilon}{N}$

Then $\forall k \in\{1, \ldots, N\}$ we have that $p\left(x_{k}\right) \leq 1$ and $q\left(y_{k}\right) \leq 1$. Also we get:

$$
\begin{aligned}
\sum_{k=1}^{N} t_{k} x_{k} \otimes y_{k} & =\sum_{k \in I_{1}} p\left(\xi_{k}\right) q\left(\eta_{k}\right) \frac{\xi_{k}}{p\left(\xi_{k}\right)} \otimes \frac{\eta_{k}}{q\left(\eta_{k}\right)}+\sum_{k \in I_{2}} \frac{\varepsilon}{N} \frac{\xi_{k}}{p\left(\xi_{k}\right)} \otimes \frac{N}{\varepsilon} p\left(\xi_{k}\right) \eta_{k} \\
& +\sum_{k \in I_{3}} \frac{\varepsilon}{N} \frac{N}{\varepsilon} q\left(\eta_{k}\right) \xi_{k} \otimes \frac{\eta_{k}}{q\left(\eta_{k}\right)}+\sum_{k \in I_{4}} \frac{\varepsilon}{N} \frac{N}{\varepsilon} \xi_{k} \otimes \eta_{k} \\
& =\sum_{k=1}^{N} \xi_{k} \otimes \eta_{k}=\theta
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{k=1}^{N}\left|t_{k}\right| & =\sum_{k \in I_{1}} p\left(\xi_{k}\right) q\left(\eta_{k}\right)+\sum_{k \in\left(I_{2} \cup I_{3} \cup I_{4}\right)} \frac{\varepsilon}{N} \\
& =\sum_{k \in I_{1}} p\left(\xi_{k}\right) q\left(\eta_{k}\right)+\left|I_{2} \cup I_{3} \cup I_{4}\right| \frac{\varepsilon}{N} \\
& \leq \sum_{k=1}^{n} p\left(\xi_{k}\right) q\left(\eta_{k}\right)+\varepsilon \leq \rho+\varepsilon
\end{aligned}
$$

Hence, by our preliminary observation we get that $\theta \in(\rho+\varepsilon) W$. As this holds for any $\varepsilon>0$, we have $\theta \in \rho W$. Therefore, we obtain that $(p \otimes q)(\theta) \leq \rho$ which yields

$$
(p \otimes q)(\theta) \leq \inf \left\{\sum_{k=1}^{N} p\left(\xi_{k}\right) q\left(\eta_{k}\right): \theta=\sum_{k=1}^{N} \xi_{k} \otimes \eta_{k},, \xi_{k} \in E, \eta_{k} \in F, N \in \mathbb{N}\right\} .
$$

b) Let $x \in E$ and $y \in F$. By using a), we immediately get that

$$
(p \otimes q)(x \otimes y) \leq p(x) q(y)
$$

Conversely, consider $M:=\operatorname{span}\{x\}$ and define $L: M \rightarrow \mathbb{K}$ as $L(\lambda x):=\lambda p(x)$ for all $\lambda \in \mathbb{K}$. Then clearly L is a linear functional on M and for any $m \in M$, i.e. $m=\lambda x$ for some $\lambda \in \mathbb{K}$, we have $|L(m)|=|\lambda| p(x)=p(\lambda x)=p(m)$. Therefore, Hahn-Banach theorem can be applied and provides that:

$$
\begin{equation*}
\exists x^{\prime} \in E^{\prime} \text { s.t. }\left\langle x^{\prime}, x\right\rangle=p(x) \text { and }\left|\left\langle x^{\prime}, x_{1}\right\rangle\right| \leq p\left(x_{1}\right), \forall x_{1} \in E . \tag{4.2}
\end{equation*}
$$

Repeating this reasoning for y we get that:

$$
\begin{equation*}
\exists y^{\prime} \in F^{\prime} \text { s.t. }\left\langle y^{\prime}, y\right\rangle=q(y) \text { and }\left|\left\langle y^{\prime}, y_{1}\right\rangle\right| \leq q\left(y_{1}\right), \forall y_{1} \in F \text {. } \tag{4.3}
\end{equation*}
$$

Let us consider now any representation of $x \otimes y$, namely $x \otimes y=\sum_{k=1}^{N} x_{k} \otimes y_{k}$ with $x_{k} \in E, y_{k} \in F$ and $N \in \mathbb{N}$. Then using the second part of (4.2) and (4.3) we obtain:

$$
\left|\left\langle x^{\prime} \otimes y^{\prime}, x \otimes y\right\rangle\right| \leq \sum_{k=1}^{N}\left|\left\langle x^{\prime}, x_{k}\right\rangle\right| \cdot\left|\left\langle y^{\prime}, y_{k}\right\rangle\right| \leq \sum_{k=1}^{N} p\left(x_{k}\right) q\left(x_{k}\right)
$$

Since this is true for any representation of $x \otimes y$, we deduce by a) that:

$$
\left|\left\langle x^{\prime} \otimes y^{\prime}, x \otimes y\right\rangle\right| \leq(p \otimes q)(x \otimes y)
$$

The latter together with the first part of (4.2) and (4.3) gives:
$p(x) q(y)=|p(x)| \cdot|q(y)|=\left|\left\langle x^{\prime}, x\right\rangle\right| \cdot\left|\left\langle y^{\prime}, y\right\rangle\right|=\left|\left\langle x^{\prime} \otimes y^{\prime}, x \otimes y\right\rangle\right| \leq(p \otimes q)(x \otimes y)$.

Proposition 4.2.4. Let E and F be two locally convex t.v.s.. $E \otimes_{\pi} F$ is Hausdorff if and only if E and F are both Hausdorff.

Proof. (Sheet 7, Exercise 4)

Corollary 4.2.5. Let (E, p) and (F, q) be seminormed spaces. Then $p \otimes q$ is a norm on $E \otimes F$ if and only if p and q are both norms.

Proof.
Under our assumptions, the π-topology on $E \otimes F$ is generated by the single seminorm $p \otimes q$. Then, recalling that a seminormed space is normed iff it is Hausdorff and using Proposition 4.2.4, we get: $(E \otimes F, p \otimes q)$ is normed \Leftrightarrow $E \otimes_{\pi} F$ is Hausdorff $\Leftrightarrow E$ and F are both Hausdorff $\Leftrightarrow(E, p)$ and (F, q) are both normed.

Definition 4.2.6. Let (E, p) and (F, q) be normed spaces. The normed space $(E \otimes F, p \otimes q)$ is called the projective tensor product of E and F and $p \otimes q$ is said to be the corresponding projective tensor norm.

In analogy with the algebraic case (see Theorem 4.1.4-b), we also have a universal property for the space $E \otimes_{\pi} F$.

Proposition 4.2.7.

Let E, F be locally convex spaces. The π-topology on $E \otimes_{\pi} F$ is the unique locally convex topology on $E \otimes F$ such that the following property holds:
(UP) For every locally convex space G, the algebraic isomorphism between the space of bilinear mappings from $E \times F$ into G and the space of all linear mappings from $E \otimes F$ into G (given by Theorem 4.1.4-b) induces an algebraic isomorphism between $B(E, F ; G)$ and $L(E \otimes F ; G)$, where $B(E, F ; G)$ denotes the space of all continuous bilinear mappings from $E \times F$ into G and $L(E \otimes F ; G)$ the space of all continuous linear mappings from $E \otimes F$ into G.

Proof. Let τ be a locally convex topology on $E \otimes F$ such that the property (UP) holds. Then (UP) holds in particular for $G=(E \otimes F, \tau)$. Therefore, since in the algebraic isomorphism given by Theorem 4.1.4-b) in this case the canonical mapping $\phi: E \times F \rightarrow E \otimes F$ corresponds to the identity $i d: E \otimes F \rightarrow E \otimes F$, we get that $\phi: E \times F \rightarrow E \otimes_{\tau} F$ has to be continuous.

This implies that $\tau \subseteq \pi$ by definition of π-topology. On the other hand, (UP) also holds for $G=(E \otimes F, \pi)$.

Hence, since by definition of π-topology $\phi: E \times F \rightarrow E \otimes_{\pi} F$ is continuous, the $i d: E \otimes_{\tau} F \rightarrow E \otimes_{\pi} F$ has to be also continuous. This means that $\pi \subseteq \tau$, which completes the proof.

Corollary 4.2.8. $\left(E \otimes_{\pi} F\right)^{\prime} \cong B(E, F)$.
Proof. By taking $G=\mathbb{K}$ in Proposition 4.2.7, we get the conclusion.

