
4. Tensor products of t.v.s.

2. Let X and Y be two sets. For any functions f : X ! K and g : Y ! K,
we define:

f ⌦ g : X ⇥ Y ! K
(x, y) 7! f(x)g(y).

Let E (resp. F ) be the linear space of all functions from X (resp. Y )
to K endowed with the usual addition and multiplication by scalars. We
denote by E ⌦ F the linear subspace of the space of all functions from
X ⇥ Y to K spanned by the elements of the form f ⌦ g for all f 2 E
and g 2 F . Then E ⌦ F is actually a tensor product of E and F (see
Sheet 7, Exercise 1).

Given X and Y open subsets of Rn and Rm respectively, we can use the
definitions in Example 2 above to construct the tensors Ck(X)⌦Cl(Y ) for any
1  k, l  1. The approximation results in Section 1.5 imply:

Theorem 4.1.7. Let X and Y open subsets of Rn and Rm respectively. Then
C1
c

(X)⌦ C1
c

(Y ) is sequentially dense in C1
c

(X ⇥ Y ).

Proof. (see Sheet 7, Exercise 2).

4.2 Topologies on the tensor product of locally convex t.v.s.

Given two locally convex t.v.s. E and F , there various ways to construct a
topology on the tensor product E ⌦ F which makes the vector space E ⌦ F
in a t.v.s.. Indeed, starting from the topologies on E and F , one can define a
topology on E ⌦ F either relying directly on the seminorms on E and F , or
using an embedding of E ⌦ F in some space related to E and F over which
a natural topology already exists. The first method leads to the so-called
⇡�topology. The second method may lead instead to a variety of topologies,
the most important of which is the so-called "�topology that is based on the
isomorphism between E ⌦ F and B(E0

�

, F 0
�

) (see Proposition ??).

⇡�topology

Let us define the first main topology on E ⌦ F which we will see can be
directly characterized by mean of the seminorms generating the topologies on
the starting locally convex t.v.s. E and F .

Definition 4.2.1 (⇡�topology).
Given two locally convex t.v.s. E and F , we define the ⇡�topology (or pro-
jective topology) on E ⌦ F to be the strongest locally convex topology on this
vector space for which the canonical mapping E ⇥ F ! E ⌦ F is continuous.
The space E ⌦ F equipped with the ⇡�topology will be denoted by E ⌦

⇡

F .
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4.2. Topologies on the tensor product of locally convex t.v.s.

A basis of neighbourhoods of the origin in E ⌦
⇡

F is given by the family:

B := {conv
b

(U
↵

⌦ V
�

) : U
↵

2 B
E

, V
�

2 B
F

} ,

where B
E

(resp. B
F

) is a basis of neighbourhoods of the origin in E (resp.
in F ), U

↵

⌦ V
�

:= {x⌦ y 2 E ⌦ F : x 2 U
↵

, y 2 V
�

} and conv
b

(U
↵

⌦ V
�

) de-
notes the smallest convex balanced subset of E ⌦ F containing U

↵

⌦ V
�

. In
fact, on the one hand, the ⇡�topology is by definition locally convex and so it
has a basis B of convex balanced neighbourhoods of the origin in E⌦F . Then,
as the canonical mapping � is continuous w.r.t. the ⇡�topology, we have that
for any C 2 B there exist U

↵

2 B
E

and V
�

2 B
F

s.t. U
↵

⇥ V
�

✓ ��1(C).
Hence, U

↵

⌦ V
�

= �(U
↵

⇥ V
�

) ✓ C and so conv
b

(U
↵

⌦ V
�

) ✓ conv
b

(C) = C
which yields that the topology generated by B

⇡

is finer than the ⇡�topology.
On the other hand, the canonical map � is continuous w.r.t. the topology
generated by B

⇡

, because for any U
↵

2 B
E

and V
�

2 B
F

we have that
��1(conv

b

(U
↵

⌦ V
�

)) ◆ ��1(U
↵

⌦ V
�

) = U
↵

⇥ V
�

which is a neighbourhood of
the origin in E ⇥ F . Hence, the topology generated by B

⇡

is coarser than the
⇡�topology.

The ⇡�topology on E ⌦ F can be described by means of the seminorms
defining the locally convex topologies on E and F . Indeed, we have the fol-
lowing characterization of the ⇡�topology.

Proposition 4.2.2. Let E and F be two locally convex t.v.s. and let P
(resp.Q) be a family of seminorms generating the topology on E (resp.on F ).
The ⇡�topology on E ⌦ F is generated by the family of seminorms

{p⌦ q : p 2 P, q 2 Q},

where for any p 2 P, q 2 Q, ✓ 2 E ⌦ F we define:

(p⌦ q)(✓) := inf{⇢ > 0 : ✓ 2 ⇢W}
with

W := conv
b

(U
p

⌦V
q

), U
p

:= {x 2 E : p(x)  1}, and V
q

:= {y 2 F : q(y)  1}.

Proof. (Sheet 7, Exercise 3)

The seminorm p⌦ q on E⌦F defined in the previous proposition is called
tensor product of the seminorms p and q (or projective cross seminorm) and
it can be represented in a more practical way that shows even more directly
its relation to the seminorms defining the topologies on E and F .
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4. Tensor products of t.v.s.

Theorem 4.2.3.

a) For any ✓ 2 E ⌦ F , we have:

(p⌦q)(✓) := inf

(

r

X

k=1

p(x
k

)q(y
k

) : ✓ =
r

X

k=1

x
k

⌦ y
k

, , x
k

2 E, y
k

2 F, r 2 N
)

.

b) For all x 2 E and y 2 F , (p⌦ q)(x⌦ y) = p(x)q(y).

Proof.
a) As above, we set U

p

:= {x 2 E : p(x)  1}, V
q

:= {y 2 F : q(y)  1} and
W := conv

b

(U
p

⌦ V
q

). Let ✓ 2 E ⌦ F . Let us preliminarily observe that the
condition “✓ 2 ⇢W for some ⇢ > 0” is equivalent to:

✓ =
N

X

k=1

t
k

x
k

⌦ y
k

, with
N

X

k=1

|t
k

|  ⇢, p(x
k

)  1, q(y
k

)  1, 8k 2 {1, . . . , N}.

If we set ⇠
k

:= t
k

x
k

and ⌘
k

:= y
k

, then

✓ =
N

X

k=1

⇠
k

⌦ ⌘
k

with
N

X

k=1

p(⇠
k

)q(⌘
k

)  ⇢.

Then inf {Pr

k=1

p(x
k

)q(y
k

) : ✓ =
P

r

k=1

x
k

⌦ y
k

, , x
k

2 E, y
k

2 F, r 2 N}  ⇢
and since this is true for any ⇢ > 0 s.t. ✓ 2 ⇢W then we get:

inf

(

r

X

i=1

p(x
i

)q(y
i

) : ✓ =
r

X

i=1

x
i

⌦ y
i

, , x
i

2 E, y
i

2 F, r 2 N
)

 (p⌦ q)(✓).

Conversely, let us consider an arbitrary representation of ✓, i.e.

✓ =
N

X

k=1

⇠
k

⌦ ⌘
k

with ⇠
k

2 E, ⌘
k

2 F,

and let ⇢ > 0 s.t.
P

N

k=1

p(⇠
k

)q(⌘
k

)  ⇢. Let " > 0. Define
• I

1

:= {k 2 {1, . . . , N} : p(⇠
k

)q(⌘
k

) 6= 0}
• I

2

:= {k 2 {1, . . . , N} : p(⇠
k

) 6= 0 and q(⌘
k

) = 0}
• I

3

:= {k 2 {1, . . . , N} : p(⇠
k

) = 0 and q(⌘
k

) 6= 0}
• I

4

:= {k 2 {1, . . . , N} : p(⇠
k

) = 0 and q(⌘
k

) = 0}
and set

• 8k 2 I
1

, x
k

:= ⇠

k

p(⇠

k

)

, y
k

:= ⌘

k

q(⌘

k

)

, t
k

:= p(⇠
k

)q(⌘
k

)

• 8k 2 I
2

, x
k

:= ⇠

k

p(⇠

k

)

, y
k

:= N

"

p(⇠
k

)⌘
k

, t
k

:= "

N

• 8k 2 I
3

, x
k

:= N

"

q(⌘
k

)⇠
k

, y
k

:= ⌘

k

q(⌘

k

)

, t
k

:= "

N
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4.2. Topologies on the tensor product of locally convex t.v.s.

• 8k 2 I
4

, x
k

:= N

"

⇠
k

, y
k

:= ⌘
k

, t
k

:= "

N

Then 8k 2 {1, . . . , N} we have that p(x
k

)  1 and q(y
k

)  1. Also we get:

N

X

k=1

t
k

x
k

⌦ y
k

=
X

k2I1
p(⇠

k

)q(⌘
k

)
⇠
k

p(⇠
k

)
⌦ ⌘

k

q(⌘
k

)
+

X

k2I2

"

N

⇠
k

p(⇠
k

)
⌦ N

"
p(⇠

k

)⌘
k

+
X

k2I3

"

N

N

"
q(⌘

k

)⇠
k

⌦ ⌘
k

q(⌘
k

)
+

X

k2I4

"

N

N

"
⇠
k

⌦ ⌘
k

=
N

X

k=1

⇠
k

⌦ ⌘
k

= ✓

and

N

X

k=1

|t
k

| =
X

k2I1
p(⇠

k

)q(⌘
k

) +
X

k2(I2[I3[I4)

"

N

=
X

k2I1
p(⇠

k

)q(⌘
k

) + |I
2

[ I
3

[ I
4

| "
N


n

X

k=1

p(⇠
k

)q(⌘
k

) + "  ⇢+ ".

Hence, by our preliminary observation we get that ✓ 2 (⇢+")W . As this holds
for any " > 0, we have ✓ 2 ⇢W . Therefore, we obtain that (p ⌦ q)(✓)  ⇢
which yields

(p⌦ q)(✓)  inf

(

N

X

k=1

p(⇠
k

)q(⌘
k

) : ✓ =
N

X

k=1

⇠
k

⌦ ⌘
k

, , ⇠
k

2 E, ⌘
k

2 F,N 2 N
)

.

b) Let x 2 E and y 2 F . By using a), we immediately get that

(p⌦ q)(x⌦ y)  p(x)q(y).

Conversely, consider M := span{x} and define L : M ! K as L(�x) := �p(x)
for all � 2 K. Then clearly L is a linear functional on M and for any m 2 M ,
i.e. m = �x for some � 2 K, we have |L(m)| = |�|p(x) = p(�x) = p(m).
Therefore, Hahn-Banach theorem can be applied and provides that:

9x0 2 E0 s.t. hx0, xi = p(x) and |hx0, x
1

i|  p(x
1

), 8x
1

2 E. (4.2)

Repeating this reasoning for y we get that:

9 y0 2 F 0 s.t. hy0, yi = q(y) and |hy0, y
1

i|  q(y
1

), 8 y
1

2 F. (4.3)
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4. Tensor products of t.v.s.

Let us consider now any representation of x⌦y, namely x⌦y =
P

N

k=1

x
k

⌦y
k

with x
k

2 E, y
k

2 F and N 2 N. Then using the second part of (4.2) and
(4.3) we obtain:

�

�hx0 ⌦ y0, x⌦ yi�� 
N

X

k=1

|hx0, x
k

i| · |hy0, y
k

i| 
N

X

k=1

p(x
k

)q(x
k

).

Since this is true for any representation of x⌦ y, we deduce by a) that:

�

�hx0 ⌦ y0, x⌦ yi��  (p⌦ q)(x⌦ y).

The latter together with the first part of (4.2) and (4.3) gives:

p(x)q(y) = |p(x)|·|q(y)| = |hx0, xi|·|hy0, yi| = �

�hx0 ⌦ y0, x⌦ yi��  (p⌦q)(x⌦y).

Proposition 4.2.4. Let E and F be two locally convex t.v.s.. E ⌦
⇡

F is
Hausdor↵ if and only if E and F are both Hausdor↵.

Proof. (Sheet 7, Exercise 4)

Corollary 4.2.5. Let (E, p) and (F, q) be seminormed spaces. Then p⌦ q is
a norm on E ⌦ F if and only if p and q are both norms.

Proof.
Under our assumptions, the ⇡�topology on E ⌦ F is generated by the single
seminorm p ⌦ q. Then, recalling that a seminormed space is normed i↵ it is
Hausdor↵ and using Proposition 4.2.4, we get: (E ⌦ F, p ⌦ q) is normed ,
E ⌦

⇡

F is Hausdor↵ , E and F are both Hausdor↵ , (E, p) and (F, q) are
both normed.

Definition 4.2.6. Let (E, p) and (F, q) be normed spaces. The normed space
(E ⌦F, p⌦ q) is called the projective tensor product of E and F and p⌦ q is
said to be the corresponding projective tensor norm.

In analogy with the algebraic case (see Theorem 4.1.4-b), we also have a
universal property for the space E ⌦

⇡

F .

Proposition 4.2.7.

Let E,F be locally convex spaces. The ⇡�topology on E ⌦
⇡

F is the unique
locally convex topology on E ⌦ F such that the following property holds:
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4.2. Topologies on the tensor product of locally convex t.v.s.

(UP) For every locally convex space G, the algebraic isomorphism between
the space of bilinear mappings from E ⇥ F into G and the space of all
linear mappings from E ⌦F into G (given by Theorem 4.1.4-b) induces
an algebraic isomorphism between B(E,F ;G) and L(E ⌦ F ;G), where
B(E,F ;G) denotes the space of all continuous bilinear mappings from
E⇥F into G and L(E⌦F ;G) the space of all continuous linear mappings
from E ⌦ F into G.

Proof. Let ⌧ be a locally convex topology on E⌦F such that the property (UP)
holds. Then (UP) holds in particular for G = (E ⌦ F, ⌧). Therefore, since in
the algebraic isomorphism given by Theorem 4.1.4-b) in this case the canonical
mapping � : E⇥F ! E⌦F corresponds to the identity id : E⌦F ! E⌦F ,
we get that � : E ⇥ F ! E ⌦

⌧

F has to be continuous.

E ⇥ F E ⌦
⌧

F

E ⌦
⌧

F

�

�

id

This implies that ⌧ ✓ ⇡ by definition of ⇡�topology. On the other hand, (UP)
also holds for G = (E ⌦ F,⇡).

E ⇥ F E ⌦
⇡

F

E ⌦
⌧

F

�

�

id

Hence, since by definition of ⇡�topology � : E ⇥ F ! E ⌦
⇡

F is continuous,
the id : E ⌦

⌧

F ! E ⌦
⇡

F has to be also continuous. This means that ⇡ ✓ ⌧ ,
which completes the proof.

Corollary 4.2.8. (E ⌦
⇡

F )0 ⇠= B(E,F ).

Proof. By taking G = K in Proposition 4.2.7, we get the conclusion.

65


	Special classes of topological vector spaces
	Metrizable topological vector spaces
	Fréchet spaces
	Inductive topologies and LF-spaces
	Projective topologies and examples of projective limits
	Approximation procedures in spaces of functions

	Bounded subsets of topological vector spaces
	Preliminaries on compactness
	Bounded subsets: definition and general properties
	Bounded subsets of special classes of t.v.s.

	Topologies on the dual space of a t.v.s.
	The polar of a subset of a t.v.s.
	Polar topologies on the topological dual of a t.v.s.
	The polar of a neighbourhood in a locally convex t.v.s.

	Tensor products of t.v.s.
	Tensor product of vector spaces
	Topologies on the tensor product of locally convex t.v.s.


