
1.1. Metrizable topological vector spaces

Let us introduce now three general properties of all metrizable t.v.s. (not
necessarily l.c.), which are well-known in the theory of metric spaces.

Proposition 1.1.6. A metrizable t.v.s. X is complete if and only if X is
sequentially complete.

Proof. (Sheet 1, Exercise 2-a))

(For the definitions of completeness and sequentially completeness of a
t.v.s., see Definition 2.5.5 and Definition 2.5.6 in TVS-I. See also Proposition
2.5.7 and Example 2.5.9 n TVS-I for more details on the relation between
these two notions for general t.v.s..)

Proposition 1.1.7. Let X be a metrizable t.v.s. and Y be any t.v.s. (not
necessarily metrizable). A mapping f : X ! Y (not necessarily linear) is
continuous if and only if it is sequentially continuous.

Proof. (Sheet 1, Exercise 2-b))

Recall that a mapping f from a topological space X into a topological
space Y is said to be sequentially continuous if for every sequence {x

n

}
n2N

convergent to a point x 2 X the sequence {f(x
n

)}
n2N converges to f(x) in Y .

The proof that continuity of f : X ! Y always implies its sequentially
continuity is pretty straightforward and holds under the general assumption
that X and Y are topological spaces (see Proposition 1.1.38 in TVS-I). The
converse does not hold in general as the following example shows.

Example 1.1.8.

Let us consider the set C([0, 1]) of all real-valued continuous functions on [0, 1].
This is a vector space w.r.t. the pointwise addition and multiplication by real
scalars. We endow C([0, 1]) with two topologies which both make it into a
t.v.s.. The first topology � is the one give by the metric:

d(f, g) :=

Z
1

0

|f(x)� g(x)|
1 + |f(x)� g(x)| , 8f, g 2 C([0, 1]).

The second topology ⌧ is instead the topology generated by the family (p
x

)
x2[0,1]

of seminorms on C([0, 1]), where

p
x

(f) := |f(x)|, 8f 2 C([0, 1]).

We will show that the identity map I : (C([0, 1]), ⌧) ! (C([0, 1]),�) is sequen-
tially continuous but not continuous.
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1. Special classes of topological vector spaces

• I is sequentially continuous
Let (f

n

)
n2N be a sequence of elements in C([0, 1]) which is ⌧�convergent to

f 2 C([0, 1]) as n ! 1, i.e. |f
n

(x)� f(x)| ! 0, 8x 2 [0, 1] as n ! 1. Set

g
n

(x) :=
|f

n

(x)� f(x)|
1 + |f

n

(x)� f(x)| , 8x 2 [0, 1], 8n 2 N.

Then |g
n

(x)|  1, 8x 2 [0, 1], 8n 2 N and g
n

(x) ! 0 8x 2 [0, 1] as n ! 1.
Hence, by the Lebesgue dominated convergence theorem, we get

R
1

0

g
n

(x)dx !
0 as n ! 1, that is, d(f

n

, f) ! 0 as n ! 1, i.e. the sequence (I(f
n

))
n2N is

��convergent to f as n ! 1.
• I is not continuous
Suppose that I is continuous at o 2 C([0, 1]) and fix " 2 (0, 1). Then there
exists a neighbourhood N of the origin in (C([0, 1]), ⌧) s.t. N ⇢ I�1(Bd

"

(o)),
where Bd

"

(o) := {f 2 C([0, 1]) : d(f, 0)  "}. This means that there exist
n 2 N, x

1

, . . . , x
n

2 [0, 1] and � > 0 s.t.

n\

i=1

�U
p

x

i

⇢ Bd

"

(o), (1.4)

where U
p

x

i

:= {f 2 C([0, 1]) : |f(x
i

)|  1}.
Take now f

k

(x) := k(x � x
1

) · · · (x � x
n

), 8k 2 N, 8x 2 [0, 1]. Then f
k

2
C([0, 1]) for all k 2 N and f

k

(x
i

) = 0 < � for all i = 1, . . . , n. Hence,

f
k

2
n\

i=1

{f 2 C([0, 1]) : |f(x
i

)|  �} =

n\

i=1

�U
p

x

i

(1.4)

⇢ Bd

"

(o), 8k 2 N (1.5)

Set

h
k

(x) :=
|f

k

(x)|
1 + |f

k

(x)| , 8x 2 [0, 1], 8k 2 N.

Then |h
k

(x)|  1, 8x 2 [0, 1], 8k 2 N and h
k

(x) ! 1 8x 2 [0, 1] \ {x
1

, . . . , x
n

}
as k ! 1. Hence, by the Lebesgue dominated convergence theorem, we getR
1

0

h
k

(x)dx !
R
1

0

1dx = 1 as k ! 1, that is, d(f
k

, f) ! 1 as k ! 1. This
together with (1.5) gives tha " � 1 which contradicts our assumption " 2 (0, 1).

By Proposition 1.1.7, we then conclude that (C([0, 1]), ⌧) is not metrizable.

Proposition 1.1.9. A complete metrizable t.v.s. X is a Baire space, i.e. X
fulfills any of the following properties:
(B) the union of any countable family of closed sets, none of which has interior
points, has no interior points.
(B’) the intersection of any countable family of everywhere dense open sets is
an everywhere dense set.
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1.1. Metrizable topological vector spaces

Note that the equivalence of (B) and (B’) is easily given by taking the
complements. Indeed, the complement of a closed set C without interior
points is clearly open and we get: X \ (X \ C) = C̊ = ; which is equivalent
to X \ C = X, i.e. X \ C is everywhere dense.

Example 1.1.10. An example of Baire space is R with the euclidean topology.
Instead Q with the subset topology given by the euclidean topology on R is not
a Baire space. Indeed, for any q 2 Q the subset {q} is closed and has empty
interior in Q, but [

q2Q{q} = Q which has interior points in Q (actually its
interior is the whole Q).

Before proving Proposition 1.1.9, let us observe that the converse of the
proposition does not hold because there exist Baire spaces which are not
metrizable. Moreover, the assumptions of Proposition 1.1.9 cannot be weak-
ened, because there exist complete non-metrizable t.v.s and metrizable non-
complete t.v.s which are not Baire spaces.

Proof. of Proposition 1.1.9
We are going to prove that Property (B’) holds in any complete metrizable
t.v.s.. Let {⌦

k

}
k2N be a sequence of dense open subsets of X and let us denote

by A their intersection. We need to show that A intersects every open subset
of X (this means indeed that A is dense, since every neighborhood of every
point in X contains some open set and hence some point of A).

Let O be an arbitrary open subset of X. Since X is a metrizable t.v.s.,
there exists a countable basis {U

k

}
k2N of neighbourhoods of the origin which

we may take all closed and s.t. U
k+1

✓ U
k

for all k 2 N. As ⌦
1

is open and
dense we have that O \ ⌦

1

is open and non-empty. Therefore, there exists
x
1

2 O \⌦
1

and k
1

2 N s.t. x
1

+U
k1 ✓ O \⌦

1

. Let us call G
1

the interior of
x
1

+ U
k1 .

As ⌦
2

is dense and G
1

is a non-empty open set, we have that G
1

\ ⌦
2

is open and non-empty. Hence, there exists x
2

2 G
1

\ ⌦
2

and k
2

2 N s.t.
x
2

+U
k2 ✓ G

1

\⌦
2

. Let us choose k
2

> k
1

and call G
2

the interior of x
2

+U
k2 .

Proceeding in this way, we get a sequence of open sets G := {G
l

}
l2N with the

following properties for any l 2 N:
1. G

l

✓ ⌦
l

\O

2. G
l+1

✓ G
l

3. G
l

✓ x
l

+ U
k

l

.

Note that the family G does not contain the empty set and Property 2 implies
that for any G

j

, G
k

2 G the intersection G
j

\ G
k

= G
max{j,k} 2 G. Hence, G
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1. Special classes of topological vector spaces

is a basis of a filter F in X1. Moreover, Property 3 implies that

8l 2 N, G
l

�G
l

✓ U
k

l

� U
k

l

(1.6)

which guarantees that F is a Cauchy filter in X. Indeed, for any neighbour-
hood U of the origin in X there exists a balanced neighbourhood of the origin
such that V � V ✓ U and so there exists k 2 N such that U

k

✓ V . Hence,
there exists l 2 N s.t. k

l

� l and so U
k

l

✓ U
k

. Then by (1.6) we have that
G

l

� G
l

✓ U
k

l

� U
k

l

✓ V � V ✓ U . Since G
l

2 G and so in F , we have got
that F is a Cauchy filter.

AsX is complete, the Cauchy filter F has a limit point x 2 X, i.e. the filter
of neighbourhoods of x is contained in the filter F . This implies that x 2 G

l

for all l 2 N (If there would exists l 2 N s.t. x /2 G
l

then there would exists a
neighbourhood N of x s.t. N \ G

l

= ;. As G
l

2 F and any neighbourhood
of x belongs to F , we get ; 2 F which contradicts the definition of filter.)
Hence:

x 2
\

l2N
G

l

✓ O \
\

l2N
⌦
l

= O \A.

1.2 Fréchet spaces

Definition 1.2.1. A complete metrizable locally convex t.v.s. is called a
Fréchet space (or F-space)

Note that by Theorem 1.1 and Proposition 1.1.9, any Fréchet space is in
particular a Hausdor↵ Baire space. Combining the properties of metrizable
t.v.s. which we proved in Sheet 1 and the results about complete t.v.s. which
we have seen in TVS-I, we easily get the following properties:

• Any closed linear subspace of an F-space endowed with the induced
subspace topology is an F-space.

• The product of a countable family of F-spaces endowed with the product
topology is an F-space.

• The quotient of an F-space modulo a closed subspace endowed with the
quotient topology is an F-space.

Examples of F-spaces are: Hausdor↵ finite dimensional t.v.s., Hilbert spaces,
and Banach spaces. In the following we will present two examples of F-spaces
which do not belong to any of these categories.

1
Recall that a basis of a filter onX is a family G of non-empty subsets ofX s.t. 8G1, G2 2

G, 9G3 2 G s.t. G3 ⇢ G1 \G2.
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