3) $(\mathcal{S}(\mathbb{R}^d), \tau_Q)$ is a <u>complete</u>. By Proposition 1.1.6, it is enough to show that it is sequentially complete. Let $(f_{\nu})_{\nu \in \mathbb{N}}$ be a Cauchy sequence $\mathcal{S}(\mathbb{R}^d)$ then a fortiori we get that $(f_{\nu})_{\nu \in \mathbb{N}}$ is a Cauchy sequence in $\mathcal{C}^{\infty}(\mathbb{R}^d)$ endowed with the \mathcal{C}^{∞} -topology. Since such a space is complete, then there exists $f \in \mathcal{C}^{\infty}(\mathbb{R}^d)$ s.t. $(f_{\nu})_{\nu \in \mathbb{N}}$ converges to f in the the \mathcal{C}^{∞} -topology. From this we also know that:

$$\forall \beta \in \mathbb{N}_0^d, \forall x \in \mathbb{R}^d, (D^\beta f_\nu)(x) \to (D^\beta f)(x) \text{ as } \nu \to \infty$$
(1.11)

We are going to prove at once that $(f_{\nu})_{\nu \in \mathbb{N}}$ is converging to f in the $\tau_{\mathcal{Q}}$ topology (not only in the \mathcal{C}^{∞} -topology) and that $f \in \mathcal{S}(\mathbb{R}^d)$.

Let $m, k \in \mathbb{N}_0$ and let $\varepsilon > 0$. As $(f_{\nu})_{\nu \in \mathbb{N}}$ is a Cauchy sequence in $\mathcal{S}(\mathbb{R}^d)$, there exists a constant M s.t. $\forall \nu, \mu \geq M$ we have: $q_{m,k}(f_{\nu} - f_{\mu}) \leq \varepsilon$. Then fixing $\beta \in \mathbb{N}_0^d$ with $|\beta| \leq m$ and $x \in \mathbb{R}^d$ we get

$$(1+|x|)^k \left| (D^\beta f_\nu)(x) - (D^\beta f_\mu)(x) \right| \le \varepsilon.$$

Passing to the limit for $\mu \to \infty$ in the latter relation and using (1.11), we get

$$(1+|x|)^k \left| (D^\beta f_\nu)(x) - (D^\beta f)(x) \right| \le \varepsilon.$$

Hence, for all $\nu \geq M$ we have that $q_{m,k}(f_{\nu} - f) \leq \varepsilon$ as desired. Then by the triangular inequality it easily follows that

$$\forall m, k \in \mathbb{N}_0, q_{m,k}(f) < \infty, \text{ i.e. } f \in \mathcal{S}(\mathbb{R}^d).$$

1.3 Inductive topologies and LF-spaces

Let $\{(E_{\alpha}, \tau_{\alpha}) : \alpha \in A\}$ be a family of locally convex Hausdorff t.v.s. over the field \mathbb{K} of real or complex numbers (A is an arbitrary index set). Let E be a vector space over the same field \mathbb{K} and, for each $\alpha \in A$, let $g_{\alpha} : E_{\alpha} \to E$ be a linear mapping. The *inductive topology* τ_{ind} on E w.r.t. the family $\{(E_{\alpha}, \tau_{\alpha}, g_{\alpha}) : \alpha \in A\}$ is the topology generated by the following basis of neighbourhoods of the origin in E:

 $\mathcal{B}_{ind}: = \{ U \subset E \text{ convex, balanced, absorbing} : \forall \alpha \in A, g_{\alpha}^{-1}(U) \text{ is a neighbourhood of the origin in } (E_{\alpha}, \tau_{\alpha}) \}.$

Then it easily follows that the space (E, τ_{ind}) is a l.c. t.v.s. (c.f. Theorem 4.1.14 in TVS-I). Note that τ_{ind} is the finest locally convex topology on E for which all the mappings g_{α} ($\alpha \in A$) are continuous. Suppose there exists a locally convex topology τ on E s.t. all the g_{α} 's are continuous and $\tau_{ind} \subseteq \tau$. As (E, τ) is locally convex, there always exists a basis of neighbourhood of the origin consisting of convex, balanced, absorbing subsets of E. Then for any such a neighbourhood U of the origin in (E, τ) we have, by continuity, that $g_{\alpha}^{-1}(U)$ is a neighbourhood of the origin in $(E_{\alpha}, \tau_{\alpha})$. Hence, $U \in \mathcal{B}_{ind}$ and so $\tau \equiv \tau_{ind}$.

It is also worth to underline that (E, τ_{ind}) is not necessarily a Hausdorff t.v.s., although all the spaces $(E_{\alpha}, \tau_{\alpha})$ are Hausdorff t.v.s..

Proposition 1.3.1. Let $\{(E_{\alpha}, \tau_{\alpha}) : \alpha \in A\}$ be a family of locally convex Hausdorff t.v.s. over the field \mathbb{K} and, for any $\alpha \in A$, let $g_{\alpha} : E_{\alpha} \to E$ be a linear mapping. Let E be a vector space over \mathbb{K} endowed with the inductive topology τ_{ind} w.r.t. the family $\{(E_{\alpha}, \tau_{\alpha}, g_{\alpha}) : \alpha \in A\}, (F, \tau)$ an arbitrary locally convex t.v.s., and u a linear mapping from E into F. The mapping $u : E \to F$ is continuous if and only if $u \circ g_{\alpha} : E_{\alpha} \to F$ is continuous for all $\alpha \in A$.

Proof. Suppose u is continuous and fix $\alpha \in A$. Since g_{α} is also continuous, we have that $u \circ g_{\alpha}$ is continuous as composition of continuous mappings.³

Conversely, suppose that for each $\alpha \in A$ the mapping $u \circ g_{\alpha}$ is continuous. As (F, τ) is locally convex, there always exists a basis of neighbourhoods of

$$g_{\alpha}^{-1}(U) \subseteq g_{\alpha}^{-1}(u^{-1}(W)) = (u \circ g_{\alpha})^{-1}(U), \quad \forall \alpha \in A.$$
(1.12)

As by definition of \mathcal{B}_{ind} , each $g_{\alpha}^{-1}(U)$ is a neighbourhood of the origin in $(E_{\alpha}, \tau_{\alpha})$, so is $(u \circ g_{\alpha})^{-1}(U)$ by (1.12). Hence, all $u \circ g_{\alpha}$ are continuous.

³Alternatively: Let W be a neighbourhood of the origin in (F, τ) .

Suppose u is continuous, then we have that $u^{-1}(W)$ is a neighbourhood of the origin in (E, τ_{ind}) . Therefore, there exists $U \in \mathcal{B}_{ind}$ s.t. $U \subseteq u^{-1}(W)$ and so

the origin consisting of convex, balanced, absorbing subsets of F. Let W be such a neighbourhood. Then, by the linearity of u, we get that $u^{-1}(W)$ is a convex, balanced and absorbing subset of E. Moreover, the continuity of all $u \circ g_{\alpha}$ guarantees that each $(u \circ g_{\alpha})^{-1}(W)$ is a neighbourhood of the origin in $(E_{\alpha}, \tau_{\alpha})$, i.e. $g_{\alpha}^{-1}(u^{-1}(W))$ is a neighbourhood of the origin in $(E_{\alpha}, \tau_{\alpha})$. Then $u^{-1}(W)$, being also convex, balanced and absorbing, must be in \mathcal{B}_{ind} and so it is a neighbourhood of the origin in (E, τ_{ind}) . Hence, u is continuous. \Box

Let us consider now the case when we have a total order on the index set A and $\{E_{\alpha} : \alpha \in A\}$ is a family of linear subspaces of a vector space Eover \mathbb{K} which is directed under inclusions, i.e. $E_{\alpha} \subseteq E_{\beta}$ whenever $\alpha \leq \beta$, and s.t. $E = \bigcup_{\alpha \in A} E_{\alpha}$. For each $\alpha \in A$, let i_{α} be the canonical embedding of E_{α} in E and τ_{α} a topology on E_{α} s.t. $(E_{\alpha}, \tau_{\alpha})$ is a locally convex Hausdorff t.v.s. and, whenever $\alpha \leq \beta$, the topology induced by τ_{β} on E_{α} is coarser than τ_{α} . The space E equipped with the inductive topology τ_{ind} w.r.t. the family $\{(E_{\alpha}, \tau_{\alpha}, i_{\alpha}) : \alpha \in A\}$ is said to be the *inductive limit* of the family of linear subspaces $\{(E_{\alpha}, \tau_{\alpha}) : \alpha \in A\}$.

An inductive limit of a family of linear subspaces $\{(E_{\alpha}, \tau_{\alpha}) : \alpha \in A\}$ is said to be a *strict inductive limit* if, whenever $\alpha \leq \beta$, the topology induced by τ_{β} on E_{α} coincide with τ_{α} .

There are even more general constructions of inductive limits of a family of locally convex t.v.s. but in the following we will focus on a more concrete family of inductive limits which are more common in applications. Namely, we are going to consider the so-called *LF-spaces*, i.e. countable strict inductive limits of increasing sequences of Fréchet spaces. For convenience, let us explicitly write down the definition of an LF-space.

Definition 1.3.2. Let $\{E_n : n \in \mathbb{N}\}$ be an increasing sequence of linear subspaces of a vector space E over \mathbb{K} , i.e. $E_n \subseteq E_{n+1}$ for all $n \in \mathbb{N}$, such that $E = \bigcup_{n \in \mathbb{N}} E_n$. For each $n \in \mathbb{N}$ let (E_n, τ_n) be a Fréchet space such that the natural embedding i_n of E_n into E_{n+1} is a topological isomorphism, i.e. the topology induced by τ_{n+1} on E_n coincides with τ_n . The space E equipped with the inductive topology τ_{ind} w.r.t. the family $\{(E_n, \tau_n, i_n) : n \in \mathbb{N}\}$ is said to be the LF-space with defining sequence $\{(E_n, \tau_n) : n \in \mathbb{N}\}$.

A basis of neighbourhoods of the origin in the LF-space (E, τ_{ind}) with defining sequence $\{(E_n, \tau_n) : n \in \mathbb{N}\}$ is given by:

 $\{U \subset E \text{ convex, balanced, abs.}: \forall n \in \mathbb{N}, U \cap E_n \text{ is a nbhood of } o \text{ in } (E_n, \tau_n) \}.$

Note that from the construction of the LF-space (E, τ_{ind}) with defining sequence $\{(E_n, \tau_n) : n \in \mathbb{N}\}$ we know that each E_n is isomorphically embedded in the subsequent ones, but a priori we do not know if E_n is isomorphically embedded in E, i.e. if the topology induced by τ_{ind} on E_n is identical to the topology τ_n initially given on E_n . This is indeed true and it will be a consequence of the following lemma.

Lemma 1.3.3. Let E be a locally convex space, E_0 a linear subspace of E equipped with the subspace topology, and U a convex neighbourhood of the origin in E_0 . Then there exists a convex neighbourhood V of the origin in E such that $V \cap E_0 = U$.

Proposition 1.3.4.

Let (E, τ_{ind}) be an LF-space with defining sequence $\{(E_n, \tau_n) : n \in \mathbb{N}\}$. Then

$$\tau_{ind} \upharpoonright E_n \equiv \tau_n, \, \forall n \in \mathbb{N}.$$

From the previous proposition we can easily deduce that any LF-space is not only a locally convex t.v.s. but also Hausdorff. Indeed, if (E, τ_{ind}) is the LF-space with defining sequence $\{(E_n, \tau_n) : n \in \mathbb{N}\}$ and we denote by $\mathcal{F}(o)$ [resp. $\mathcal{F}_n(o)$] the filter of neighbourhoods of the origin in (E, τ_{ind}) [resp. in (E_n, τ_n)], then:

$$\bigcap_{V\in\mathcal{F}(o)} V = \bigcap_{V\in\mathcal{F}(o)} V \cap \left(\bigcup_{n\in\mathbb{N}} E_n\right) = \bigcup_{n\in\mathbb{N}} \bigcap_{V\in\mathcal{F}(o)} (V\cap E_n) = \bigcup_{n\in\mathbb{N}} \bigcap_{U_n\in\mathcal{F}_n(o)} U_n = \{o\},$$

which implies that (E, τ_{ind}) is Hausdorff by Corollary 2.2.4 in TVS-I.

As a particular case of Proposition 1.3.1 we get that:

Proposition 1.3.5.

Let (E, τ_{ind}) be an LF-space with defining sequence $\{(E_n, \tau_n) : n \in \mathbb{N}\}$ and (F, τ) an arbitrary locally convex t.v.s..

- 1. A linear mapping u from E into F is continuous if and only if, for each $n \in \mathbb{N}$, the restriction $u \upharpoonright E_n$ of u to E_n is continuous.
- 2. A linear form on E is continuous if and only if its restrictions to each E_n are continuous.

Note that Propositions 1.3.4 and 1.3.5 hold for any countable strict inductive limit of an increasing sequences of locally convex Hausdorff t.v.s. (even when they are not Fréchet).